Diagnostic and Prognostic Potential of AKR1B10 in Human Hepatocellular Carcinoma
Abstract
:1. Introduction
Discovery and Characterization of AKR1B10
2. AKR1B10 and HCC
2.1. Association of Altered AKR1B10 Expression with HCC
2.2. AKR1B10 as A Prognostic Biomarker in HCC
2.3. Molecular Mechanisms by Which AKR1B10 Contributes to The Development of HCC
3. Clinical Significance of AKR1B10 in the Treatment of HCC
3.1. AKR1B10 and Chemoresistance
3.2. AKR1B10 Inhibitors
4. Conclusions
Funding
Conflicts of Interest
References
- Balogh, J.; Victor, D., 3rd; Asham, E.H.; Burroughs, S.G.; Boktour, M.; Saharia, A.; Ghobrial, R.M.; Monsour, H.P., Jr. Hepatocellular carcinoma: A review. J. Hepatocell. Carcinoma 2016, 3, 41–53. [Google Scholar] [CrossRef]
- El-Serag, H.B.; Kanwal, F. Epidemiology of hepatocellular carcinoma in the United States: Where are we? Where do we go? Hepatology 2014, 60, 1767–1775. [Google Scholar] [CrossRef]
- Mittal, S.; El-Serag, H.B. Epidemiology of hepatocellular carcinoma: Consider the population. J. Clin. Gastroenterol. 2013, 47, S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Llovet, J.M.; Bruix, J. Hepatocellular carcinoma. Lancet 2012, 379, 1245–1255. [Google Scholar] [CrossRef]
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef]
- Ilikhan, S.U.; Bilici, M.; Sahin, H.; Akca, A.S.; Can, M.; Oz, I.I.; Guven, B.; Buyukuysal, M.C.; Ustundag, Y. Assessment of the correlation between serum prolidase and alpha-fetoprotein levels in patients with hepatocellular carcinoma. World J. Gastroenterol. 2015, 21, 6999–7007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erstad, D.J.; Tanabe, K.K. Hepatocellular carcinoma: Early-stage management challenges. J. Hepatocell. Carcinoma 2017, 4, 81–92. [Google Scholar] [CrossRef]
- Lohitesh, K.; Chowdhury, R.; Mukherjee, S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: An insight. Cancer Cell Int. 2018, 18, 44. [Google Scholar] [CrossRef]
- Cicinnati, V.R.; Sotiropoulos, G.C.; Beckebaum, S. Established and emerging therapies for hepatocellular carcinoma. Minerva Med. 2010, 101, 405–418. [Google Scholar] [PubMed]
- Barski, O.A.; Tipparaju, S.M.; Bhatnagar, A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab. Rev. 2008, 40, 553–624. [Google Scholar] [CrossRef] [PubMed]
- Penning, T.M. The aldo-keto reductases (AKRs): Overview. Chem. Biol. Interact. 2015, 234, 236–246. [Google Scholar] [CrossRef]
- Scuric, Z.; Stain, S.C.; Anderson, W.F.; Hwang, J.J. New member of aldose reductase family proteins overexpressed in human hepatocellular carcinoma. Hepatology 1998, 27, 943–950. [Google Scholar] [CrossRef] [Green Version]
- Cao, D.; Fan, S.T.; Chung, S.S. Identification and characterization of a novel human aldose reductase-like gene. J. Biol. Chem. 1998, 273, 11429–11435. [Google Scholar] [CrossRef] [PubMed]
- Hyndman, D.J.; Flynn, T.G. Sequence and expression levels in human tissues of a new member of the aldo-keto reductase family. Biochim. Biophys. Acta 1998, 1399, 198–202. [Google Scholar] [CrossRef]
- Gallego, O.; Ruiz, F.X.; Ardevol, A.; Dominguez, M.; Alvarez, R.; de Lera, A.R.; Rovira, C.; Farrés, J.; Fita, I.; Parés, X. Structural basis for the high all-trans-retinaldehyde reductase activity of the tumor marker AKR1B10. Proc. Natl. Acad. Sci. USA 2007, 104, 20764–20769. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Yan, R.; Zu, X.; Cheng, J.M.; Rao, K.; Liao, D.F.; Cao, D. Aldo-keto reductase family 1 B10 affects fatty acid synthesis by regulating the stability of acetyl-CoA carboxylase-alpha in breast cancer cells. J. Biol. Chem. 2008, 283, 3418–3423. [Google Scholar] [CrossRef]
- Martin, H.J.; Breyer-Pfaff, U.; Wsol, V.; Venz, S.; Block, S.; Maser, E. Purification and characterization of akr1b10 from human liver: Role in carbonyl reduction of xenobiotics. Drug Metab. Dispos. 2006, 34, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, R.; Minagawa, H.; Honda, M.; Miyazaki, K.; Tabuse, Y.; Kamijo, K.I.; Ueda, T.; Kaneko, S. Protein expression profile characteristic to hepatocellular carcinoma revealed by 2D-DIGE with supervised learning. Biochim. Biophys. Acta 2008, 1784, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Heringlake, S.; Hofdmann, M.; Fiebeler, A.; Manns, M.P.; Schmiegel, W.; Tannapfel, A. Identification and expression analysis of the aldo-ketoreductase1-B10 gene in primary malignant liver tumours. J. Hepatol. 2010, 52, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Wang, F.; Song, C.; Sun, Z.; Cheng, K.; Tan, Y.; Wang, H.; Zou, H. Large-scale proteome quantification of hepatocellular carcinoma tissues by a three-dimensional liquid chromatography strategy integrated with sample preparation. J. Proteome Res. 2014, 13, 3645–3654. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Li, C.; Zu, X.; Lin, M.; Liu, Q.; Liu, J.; Xu, G.; Chen, Z.; Xu, Y.; Liu, L.; et al. A Large-Scale Multicenter Study Validates AKR1B10 as a New Prevalent Serum Marker for Detection of Hepatocellular Carcinoma. Hepatology 2019. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Gao, L.; Bai, H.; Dou, X. Identification of a role for serum aldo-keto reductase family 1 member B10 in early detection of hepatocellular carcinoma. Oncol. Lett. 2018, 16, 7123–7130. [Google Scholar] [CrossRef] [PubMed]
- Kanno, M.; Kawaguchi, K.; Honda, M.; Horii, R.; Takatori, H.; Shimakami, T.; Kitamura, K.; Arai, K.; Yamashita, T.; Sakai, Y.; et al. Serum aldo-keto reductase family 1 member B10 predicts advanced liver fibrosis and fatal complications of nonalcoholic steatohepatitis. J. Gastroenterol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, K.J.; Sotiropoulos, G.C.; Baba, H.A.; Schmid, K.W.; Muller, D.; Paul, A.; Auer, T.; Gamerith, G.; Loeffler-Ragg, J. AKR1B10 expression is associated with less aggressive hepatocellular carcinoma: A clinicopathological study of 168 cases. Liver Int. 2011, 31, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Gao, L.; Zhao, L.; Sheng, Q.; Zhang, C.; An, Z.; Xia, T.; Ding, Y.; Wang, J.; Bai, H.; et al. Immunohistochemistry Detects Increased Expression of Aldo-Keto Reductase Family 1 Member B10 (AKR1B10) in Early-Stage Hepatocellular Carcinoma. Med. Sci. Monit. 2018, 24, 7414–7423. [Google Scholar] [CrossRef]
- Matkowskyj, K.A.; Bai, H.; Liao, J.; Zhang, W.; Li, H.; Rao, S.; Omary, R.; Yang, G.Y. Aldoketoreductase family 1B10 (AKR1B10) as a biomarker to distinguish hepatocellular carcinoma from benign liver lesions. Hum. Pathol. 2014, 45, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Atyah, M.; Yin, Y.R.; Zhou, C.H.; Zhou, Q.; Chen, W.Y.; Dong, Q.Z.; Ren, N. Integrated analysis of the impact of age on genetic and clinical aspects of hepatocellular carcinoma. Aging 2018, 10, 2079–2097. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.A.; Jan, Y.J.; Ko, B.S.; Wu, Y.J.; Lu, Y.J.; Liang, S.M.; Liu, C.C.; Chen, S.C.; Wang, J.; Shyue, S.K.; et al. Regulation of aldo-keto-reductase family 1 B10 by 14-3-3epsilon and their prognostic impact of hepatocellular carcinoma. Oncotarget 2015, 6, 38967–38982. [Google Scholar] [CrossRef] [PubMed]
- Tsuzura, H.; Genda, T.; Sato, S.; Murata, A.; Kanemitsu, Y.; Narita, Y.; Ishikawa, S.; Kikuchi, T.; Mori, M.; Hirano, K.; et al. Expression of aldo-keto reductase family 1 member b10 in the early stages of human hepatocarcinogenesis. Int. J. Mol. Sci. 2014, 15, 6556–6568. [Google Scholar] [CrossRef]
- Sonohara, F.; Inokawa, Y.; Hishida, M.; Kanda, M.; Nishikawa, Y.; Yamada, S.; Fujii, T.; Sugimoto, H.; Kodera, Y.; Nomoto, S. Prognostic significance of AKR1B10 gene expression in hepatocellular carcinoma and surrounding non-tumorous liver tissue. Oncol. Lett. 2016, 12, 4821–4828. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Qi, L.N.; Zhong, J.H.; Qin, H.G.; Ye, J.Z.; Lu, S.D.; Ma, L.; Xiang, B.D.; Li, L.Q.; You, X.M. High expression of AKR1B10 predicts low risk of early tumor recurrence in patients with hepatitis B virus-related hepatocellular carcinoma. Sci. Rep. 2017, 7, 42199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, S.Y.; Song, D.H.; Lee, J.J.; Lee, H.W.; Cho, S.Y.; Park, C.K. High expression of aldo-keto reductase 1B10 is an independent predictor of favorable prognosis in patients with hepatocellular carcinoma. Gut Liver 2014, 8, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Jan, Y.J.; Ko, B.S.; Wu, Y.J.; Wu, Y.J.; Liou, J.Y. Prognostic Significance of 14-3-3epsilon, Aldo-keto Reductase Family 1 B10 and Metallothionein-1 in Hepatocellular Carcinoma. Anticancer Res. 2018, 38, 6855–6863. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Genda, T.; Hirano, K.; Tsuzura, H.; Narita, Y.; Kanemitsu, Y.; Kikuchi, T.; Iijima, K.; Wada, R.; Ichida, T. Up-regulated aldo-keto reductase family 1 member B10 in chronic hepatitis C: Association with serum alpha-fetoprotein and hepatocellular carcinoma. Liver Int. 2012, 32, 1382–1390. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Genda, T.; Ichida, T.; Murata, A.; Tsuzura, H.; Narita, Y.; Kanemitsu, Y.; Ishikawa, S.; Kikuchi, T.; Mori, M.; et al. Impact of aldo-keto reductase family 1 member B10 on the risk of hepatitis C virus-related hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2016, 31, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Murata, A.; Genda, T.; Ichida, T.; Amano, N.; Sato, S.; Tsuzura, H.; Sato, S.; Narita, Y.; Kanemitsu, Y.; Shimada, Y.; et al. Pretreatment AKR1B10 expression predicts the risk of hepatocellular carcinoma development after hepatitis C virus eradication. World J. Gastroenterol. 2016, 22, 7569–7578. [Google Scholar] [CrossRef] [PubMed]
- Semmo, N.; Weber, T.; Idle, J.R.; Beyoglu, D. Metabolomics reveals that aldose reductase activity due to AKR1B10 is upregulated in hepatitis C virus infection. J. Viral Hepat. 2015, 22, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Genda, T.; Ichida, T.; Murata, A.; Kamei, M.; Tsuzura, H.; Sato, S.; Narita, Y.; Kanemitsu, Y.; Ishikawa, S.; et al. Aldo-keto reductase family 1 member B10 is associated with hepatitis B virus-related hepatocellular carcinoma risk. Hepatol. Res. 2017, 47, E85–E93. [Google Scholar] [CrossRef] [PubMed]
- Mounier, C.; Bouraoui, L.; Rassart, E. Lipogenesis in cancer progression (review). Int. J. Oncol. 2014, 45, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yan, R.; Luo, D.; Watabe, K.; Liao, D.F.; Cao, D. Aldo-keto reductase family 1 member B10 promotes cell survival by regulating lipid synthesis and eliminating carbonyls. J. Biol. Chem. 2009, 284, 26742–26748. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Fei, X.; Chen, X.; Chen, Y. Biostatistics mining associated method identifies AKR1B10 enhancing hepatocellular carcinoma cell growth and degenerated by miR-383-5p. Sci. Rep. 2018, 8, 11094. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liu, B.; Wang, S.; Liu, J. MicroRNA-383 is a tumor suppressor in human lung cancer by targeting endothelial PAS domain-containing protein 1. Cell Biochem. Funct. 2016, 34, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.Y.; Lau, E.Y.; Leung, H.W.; Leung, C.O.; Ho, N.P.; Gurung, S.; Cheng, L.K.; Lin, C.H.; Lo, R.C.L.; Ma, S.; et al. IRAK1 Augments Cancer Stemness and Drug Resistance via the AP-1/AKR1B10 Signaling Cascade in Hepatocellular Carcinoma. Cancer Res. 2018, 78, 2332–2342. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Liao, W.; Yao, W.; Zhu, R.; Li, Y.; He, S. Aldo-keto Reductase Family 1 Member B 10 Mediates Liver Cancer Cell Proliferation through Sphingosine-1-Phosphate. Sci. Rep. 2016, 6, 22746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, L.; Shen, H.; Huang, C.; Jing, H.; Cao, D. AKR1B10 induces cell resistance to daunorubicin and idarubicin by reducing C13 ketonic group. Toxicol. Appl. Pharmacol. 2011, 255, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, Y.; Kezuka, C.; Endo, S.; Ikari, A.; Soda, M.; Yamamura, K.; Toyooka, N.; El-Kabbani, O.; Hara, A.; Matsunaga, T. Acquisition of doxorubicin resistance facilitates migrating and invasive potentials of gastric cancer MKN45 cells through up-regulating aldo-keto reductase 1B10. Chem. Biol. Interact. 2015, 230, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, T.; Suzuki, A.; Kezuka, C.; Okumura, N.; Iguchi, K.; Inoue, I.; Soda, M.; Endo, S.; El-Kabbani, O.; Hara, A.; et al. Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-gamma-dependent mechanism. Chem. Biol. Interact. 2016, 256, 142–153. [Google Scholar] [CrossRef]
- Huang, L.; He, R.; Luo, W.; Zhu, Y.S.; Li, J.; Tan, T.; Zhang, X.; Hu, Z.; Luo, D. Aldo-Keto Reductase Family 1 Member B10 Inhibitors: Potential Drugs for Cancer Treatment. Recent Pat. Anticancer Drug Discov. 2016, 11, 184–196. [Google Scholar] [CrossRef]
- Brimble, M.A.; Flowers, C.L.; Trzoss, M.; Tsang, K.Y. A facile synthesis of fused aromatic spiroacetals based on the 3,4,3′,4′-tetrahydro-2,2′-spirobis (2H-1-benzopyran) skeleton. Tetrahedron 2006, 62, 5883–5896. [Google Scholar] [CrossRef]
- Matsunaga, T.; Endo, S.; Soda, M.; Zhao, H.T.; El-Kabbani, O.; Tajima, K.; Hara, A. Potent and selective inhibition of the tumor marker AKR1B10 by bisdemethoxycurcumin: Probing the active site of the enzyme with molecular modeling and site-directed mutagenesis. Biochem. Biophys. Res. Commun. 2009, 389, 128–132. [Google Scholar] [CrossRef]
- Soda, M.; Hu, D.; Endo, S.; Takemura, M.; Li, J.; Wada, R.; Ifuku, S.; Zhao, H.T.; El-Kabbani, O.; Ohta, S.; et al. Design, synthesis and evaluation of caffeic acid phenethyl ester-based inhibitors targeting a selectivity pocket in the active site of human aldo-keto reductase 1B10. Eur. J. Med. Chem. 2012, 48, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Endo, S.; Matsunaga, T.; Mamiya, H.; Ohta, C.; Soda, M.; Kitade, Y.; Tajima, K.; Zhao, H.T.; El-Kabbani, O.; Hara, A. Kinetic studies of AKR1B10, human aldose reductase-like protein: Endogenous substrates and inhibition by steroids. Arch. Biochem. Biophys. 2009, 487, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cousido-Siah, A.; Ruiz, F.X.; Fanfrlik, J.; Gimenez-Dejoz, J.; Mitschler, A.; Kamlar, M.; Veselý, J.; Ajani, H.; Parés, X.; Farrés, J.; et al. IDD388 Polyhalogenated Derivatives as Probes for an Improved Structure-Based Selectivity of AKR1B10 Inhibitors. ACS Chem. Biol. 2016, 11, 2693–2705. [Google Scholar] [CrossRef] [PubMed]
- Takemura, M.; Endo, S.; Matsunaga, T.; Soda, M.; Zhao, H.T.; El-Kabbani, O.; Tajima, K.; Iinuma, M.; Hara, A. Selective inhibition of the tumor marker aldo-keto reductase family member 1B10 by oleanolic acid. J. Nat. Prod. 2011, 74, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, X.; Zhou, S.; Zhang, H.; Wang, L.; Xu, J.; Hu, X.; Yin, W.; Yan, G.; Zhang, J. Design and synthesis of polyhydroxy steroids as selective inhibitors against AKR1B10 and molecular docking. Steroids 2016, 110, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Friemel, J.; Rechsteiner, M.; Frick, L.; Bohm, F.; Struckmann, K.; Egger, M.; Moch, H.; Heikenwalder, M.; Weber, A. Intratumor heterogeneity in hepatocellular carcinoma. Clin. Cancer Res. 2015, 21, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
Study Design | Assay | AKR1B10 | Reference |
---|---|---|---|
18 HCC versus 18 non-HCC | protein | Increased | [18] |
22 HCC versus 22 NT 1 | mRNA | Increased | [19] |
210 HCCs versus non-neoplastic liver tissue | protein | Increased | |
89 HCC versus 33 BLL 2 | protein | Increased | [26] |
61 HCC versus 8 NL 3 and 61 NT | protein | Increased | [29] |
158 HCC versus NT | mRNA | Increased | [30] |
110 HCCs versus adjacent NT | mRNA | Increased | [31] |
44 HCC versus 37 non-HCC | protein | Increased | [25] |
280 HCC versus 168 NT | protein | Increased | [27] |
Study Sample | Main Findings | Prognosis 1 | Reference |
---|---|---|---|
168 HCCs with viral and non-viral etiology | AKR1B10 overexpression associated with lower pT-classification Loss of AKR1B10 correlated with increased proliferative activity Poorer prognosis in patients with AKR1B10-negative HCCs compared with patients with AKR1B10- positive HCCs | Favorable | [24] |
48 HCC with hepatitis C virus (HCV) | ≥6% up-regulation of AKR1B10 associated with ≥21-fold relative risk of HCC | Poor | [34] |
255 HCCs with viral and non-viral etiology | High AKR1B10 expression independently predicted longer RFS 2 and longer disease-specific survival. | Favorable | [32] |
109 HCCs with viral and non-viral etiology | AKR1B10 expression associated with free surgical margins, early BCLC 3 staging, and lack of metastasis Higher AKR1B10 expression associated with better OS 4, progression-free survival, and lower metastatic risk | Favorable | [28] |
26 HCC with viral and non-viral etiology | Lower AKR1B10 expression was associated with worse RFS and OS. | Favorable | [30] |
43 HCC with HCV | High AKR1B10 expression independently predicted HCC. 5-year cumulative incidences of HCC were 22.8% and 2.2% in patients with high and low AKR1B10 expression, respectively. | Poor | [35] |
8 HCC with HCV | High AKR1B10 expression was the only independent risk factor for HCC. 5-year cumulative incidences of HCC were 13.7% and 0.5% in patients with high and low AKR1B10 expression, respectively. | Poor | [36] |
13 HCC with HBV | High AKR1B10 expression independently predicted HCC. 5-year cumulative incidences of HCC were 20.6% and 2.6% in patients with high and low AKR1B10 expression, respectively. | Poor | [38] |
110 HCC with HBV | Higher AKR1B10 expression associated with higher DFS 5 and OS and low risk of early HCC recurrence | Favorable | [31] |
Name | IC50 1 AKR1B10 | IC50 AKR1B1 | Ratio 2 | Reference |
---|---|---|---|---|
BDMC 3 | 60 nM | 5100 nM | 85 | [49] |
10c 4 | 6.2 nM | 4900 nM | 790 | [51] |
Isolithocholic acid | 27 nM | 6900 nM | 256 | [52] |
MK204 5 | 80 nM | 21,700 nM | 271 | [53] |
Oleanolic acid | 90 nM | 124,000 nM | 1378 | [54] |
Polyhydroxy steroid 6 6 | 830 nM | >100,000 nM | >120 | [55] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
DiStefano, J.K.; Davis, B. Diagnostic and Prognostic Potential of AKR1B10 in Human Hepatocellular Carcinoma. Cancers 2019, 11, 486. https://doi.org/10.3390/cancers11040486
DiStefano JK, Davis B. Diagnostic and Prognostic Potential of AKR1B10 in Human Hepatocellular Carcinoma. Cancers. 2019; 11(4):486. https://doi.org/10.3390/cancers11040486
Chicago/Turabian StyleDiStefano, Johanna K., and Bethany Davis. 2019. "Diagnostic and Prognostic Potential of AKR1B10 in Human Hepatocellular Carcinoma" Cancers 11, no. 4: 486. https://doi.org/10.3390/cancers11040486
APA StyleDiStefano, J. K., & Davis, B. (2019). Diagnostic and Prognostic Potential of AKR1B10 in Human Hepatocellular Carcinoma. Cancers, 11(4), 486. https://doi.org/10.3390/cancers11040486