Analysis of Short-term Blood Pressure Variability in Pheochromocytoma/Paraganglioma Patients
Abstract
:1. Introduction
2. Results
3. Discussion
Limitations and Strengths
4. Materials and Methods
- (i)
- Ankle-brachial index (ABI): we measured ABI after a 5 minutes rest in the supine position. The ABI was determined using an automated oscillometric measurement BOSO-ABI system neo (Bosch+Sohn GmbH U. Co. KG, Jungingen, Germany), which allows simultaneous arm-leg BP measurements.
- (ii)
- Carotid Doppler ultrasonography: it determines the common carotid intima-media thickness (calculated from three separate values 1 cm proximal to the common carotid artery bifurcation in the left and right common carotid arteries), the characteristics of plaques, and the degree of stenosis [52].
4.1. PPGL Diagnosis
4.2. Genetic Analysis
4.3. Blood Pressure Variability Assessment
- (i)
- Degree of nocturnal BP fall (dipping pattern), calculated as [(daytime SBP − night-time SBP)/daytime SBP × 100%] for SBP and [(daytime DBP − night-time DBP)/daytime DBP × 100%] for DBP. Patients were classified as dippers if BP falls ≥10% and <20% of daytime average BP or non-dippers (fall <10%). Nocturnal BP falls ≥20% and <0% identified “extreme” dipper and “reverse” dipper subjects.
- (ii)
- Standard deviation (SD) of 24-h, daytime, and night-time SBP and DBP;
- (iii)
- Average of daytime and night-time SD, each weighted for the duration of the day and night periods [24-h “weighted” SD of BP (wSD)], which allows for removing the mathematical interference from night-time BP fall;
- (iv)
- ARV for 24-h SBP and DBP, i.e., the average of the absolute differences between consecutive BP measurements over 24-h, according to a mathematical algorithm: ARV = 1N−1 , where N denotes the number of valid BP measurements, and k is the order of measurements.
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lenders, J.W.; Duh, Q.Y.; Eisenhofer, G.; Gimenez-Roqueplo, A.P.; Grebe, S.K.; Murad, M.H.; Naruse, M.; Pacak, K.; Young, W.F., Jr. Endocrine Society. J. Clin. Endocrinol. Metab. 2014, 99, 1915–1942. [Google Scholar] [CrossRef]
- Gimenez-Roqueplo, A.P.; Dahia, P.L.; Robledo, M. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm. Metab. Res. 2012, 44, 328–333. [Google Scholar] [CrossRef]
- Castinetti, F.; Waguespack, S.G.; Machens, A.; Uchino, S.; Hasse-Lazar, K.; Sanso, G.; Else, T.; Dvorakova, S.; Qi, X.P.; Elisei, R.; et al. Natural history, treatment, and long-term follow up of patients with multiple endocrine neoplasia type 2B: An international, multicentre, retrospective study. Lancet Diabetes Endocrinol. 2019, 7, 213–220. [Google Scholar] [CrossRef]
- Zinnamosca, L.; Petramala, L.; Cotesta, D.; Marinelli, C.; Schina, M.; Cianci, R.; Giustini, S.; Sciomer, S.; Anastasi, E.; Calvieri, S.; et al. Neurofibromatosis type 1 (NF1) and pheochromocytoma: Prevalence, clinical and cardiovascular aspects. Arch. Dermatol. Res. 2011, 303, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Cotesta, D.; Petramala, L.; Serra, V.; Pergolini, M.; Crescenzi, E.; Zinnamosca, L.; De Toma, G.; Ciardi, A.; Carbone, I.; Massa, R.; et al. Clinical experience with pheochromocytoma in a single centre over 16 years. High Blood Press. Cardiovasc. Prev. 2009, 16, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Zelinka, T.; Pacák, K.; Widimský, J., Jr. Characteristics of blood pressure in pheochromocytoma. Ann. N. Y. Acad. Sci. 2006, 1073, 86–93. [Google Scholar] [CrossRef]
- Parati, G.; Ochoa, J.E.; Lombardi, C.; Bilo, G. Assessment and management of blood-pressure variability. Nat. Rev. Cardiol. 2013, 10, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Chadachan, V.M.; Ye, M.T.; Tay, J.C.; Subramaniam, K.; Setia, S. Understanding short-term blood-pressure variability phenotypes: From concept to clinical practice. Int. J. Gen. Med. 2018, 11, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Pomidossi, G.; Albini, F.; Malaspina, D.; Mancia, G. Relationship of 24 h blood pressure mean and variability to severity of target-organ damage in hypertension. J. Hypertens. 1987, 5, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Parati, G. The role of blood pressure variability in end-organ damage. J. Hypertens. Suppl. 2003, 21, S17–S23. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Ochoa, J.E.; Bilo, G. Blood pressure variability, cardiovascular risk, and risk for renal disease progression. Curr. Hypertens. Rep. 2012, 14, 421–431. [Google Scholar] [CrossRef]
- Sega, R.; Corrao, G.; Bombelli, M.; Beltrame, L.; Facchetti, R.; Grassi, G.; Ferrario, M.; Mancia, G. Blood pressure variability and organ damage in a general population: Results from the PAMELA study (Pressioni Arteriose Monitorate E Loro Associazioni). Hypertension 2002, 39, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Frattola, A.; Parati, G.; Cuspidi, C.; Albini, F.; Mancia, G. Prognostic value of 24 h blood pressure variability. J. Hypertens. 1993, 11, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Sander, D.; Kukla, C.; Klingelhöfer, J.; Winbeck, K.; Conrad, B. Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: A 3-year follow-up study. Circulation 2000, 102, 1536–1541. [Google Scholar] [CrossRef] [PubMed]
- Littler, W.A.; Honour, A.J. Direct arterial pressure, heart rate, and electrocardiogram in unrestricted patients before and after removal of a phaeochromocyoma. Q. J. Med. 1974, 43, 441–449. [Google Scholar] [PubMed]
- Van Eps, R.G.S.; van den Meiracker, A.H.; Boomsma, F.; Man in’t Veld, A.J.; Schalekamp, M.A. Diurnal variation of blood pressure in patients with catecholamine-producing tumors. Am. J. Hypertens. 1994, 7, 492–497. [Google Scholar] [PubMed]
- Dabrowska, B.; Feltynowski, T.; Wocial, B.; Szpak, W.; Januszewicz, W. Effect of removal of phaeochromocytoma on diurnal variability of blood pressure, heart rhythm and excretion of catecholamines. J. Hum. Hypertens. 1990, 4, 397–399. [Google Scholar] [PubMed]
- Meisel, S.R.; Mor-Avi, V.; Rosenthal, T.; Akselrod, S. Spectral analysis of the systolic blood pressure signal in secondary hypertension: A method for the identification of phaeochromocytoma. J. Hypertens. 1994, 12, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Khorram-Manesh, A.; Ahlman, O.; Nilsson, O.; Friberg, P.; Odén, A.; Stenström, G.; Hansson, G.; Stenquist, O.; Wängberg, B.; Tisell, L.E.; et al. Long-term outcome of a large series of patients surgically treated for pheochromocytoma. J. Intern. Med. 2005, 258, 55–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenders, J.W.M.; Eisenhofer, G. Update on Modern Management of Pheochromocytoma and Paraganglioma. Endocrinol. Metab. (Seoul). 2017, 32, 152–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibao, C.; Lipsitz, L.A.; Biaggioni, I.; American Society of Hypertension Writing Group. Evaluation and treatment of orthostatic hypotension. J. Am. Soc. Hypertens. 2013, 7, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Cavallaro, G.; Basile, U.; Polistena, A.; Giustini, S.; Arena, R.; Scorsi, A.; Zinnamosca, L.; Letizia, C.; Calvieri, S.; De Toma, G. Surgical management of abdominal manifestations of type 1 neurofibromatosis: Experience of a single center. Am. Surg. 2010, 76, 389–396. [Google Scholar]
- Prejbisz, A.; Lenders, J.W.; Eisenhofer, G.; Januszewicz, A. Cardiovascular manifestations of phaeochromocytoma. J. Hypertens. 2011, 29, 2049–2060. [Google Scholar] [CrossRef] [PubMed]
- Zelinka, T.; Petrák, O.; Turková, H.; Holaj, R.; Strauch, B.; Kršek, M.; Vránková, A.B.; Musil, Z.; Dušková, J.; Kubinyi, J.; et al. High incidence of cardiovascular complications in pheochromocytoma. Horm. Metab. Res. 2012, 44, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Olmati, F.; Petramala, L.; Bisogni, V.; Concistré, A.; Saracino, V.; Oliviero, G.; Bonvicini, M.; Mezzadri, M.; Ciardi, A.; Iannucci, G.; et al. A rare case report of hypertrophic cardiomyopathy induced by catecholamine-producing tumor. Medicine (Baltimore) 2018, 97, e13369. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, T.D.; Blüher, M.; Windgassen, M.; Paschke, R. Improvement of insulin sensitivity after adrenalectomy in patients with pheochromocytoma. J. Clin. Endocrinol. Metab. 2003, 88, 3632–3636. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, G.S.; Parati, G.; Vlachopoulos, C.; Achimastos, A.; Andreadis, E.; Asmar, R.; Avolio, A.; Benetos, A.; Bilo, G.; Boubouchairopoulou, N.; et al. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: Current status and future directions-Position statement of the European Society of Hypertension Working Group on blood pressure monitoring and cardiovascular variability. J. Hypertens. 2016, 34, 1665–1677. [Google Scholar] [PubMed]
- Pengo, M.F.; Rossitto, G.; Bisogni, V.; Piazza, D.; Frigo, A.C.; Seccia, T.M.; Maiolino, G.; Rossi, G.P.; Pessina, A.C.; Calò, L.A. Systolic and diastolic short-term blood pressure variability and its determinants in patients with controlled and uncontrolled hypertension: A retrospective cohort study. Blood Press. 2015, 24, 124–129. [Google Scholar] [CrossRef]
- Mena, L.J.; Felix, V.G.; Melgarejo, J.D.; Maestre, G.E. 24-Hour Blood Pressure Variability Assessed by Average Real Variability: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2017, 6, e006895. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.W.; Thijs, L.; Li, Y.; Boggia, J.; Kikuya, M.; Björklund-Bodegård, K.; Richart, T.; Ohkubo, T.; Jeppesen, J.; Torp-Pedersen, C.; et al. International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes Investigators. Prognostic value of reading-to-reading blood pressure variability over 24 h in 8938 subjects from 11 populations. Hypertension 2010, 55, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Palatini, P.; Reboldi, G.; Beilin, L.J.; Casiglia, E.; Eguchi, K.; Imai, Y.; Kario, K.; Ohkubo, T.; Pierdomenico, S.D.; Schwartz, J.E.; et al. Added predictive value of night-time blood pressure variability for cardiovascular events and mortality: The Ambulatory Blood Pressure-International Study. Hypertension 2014, 64, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Facchetti, R.; Parati, G.; Zanchetti, A. Visit-to-visit blood pressure variability, carotidatherosclerosis, and cardiovascular events in the European Lacidipine Study on Atherosclerosis. Circulation 2012, 126, 569–578. [Google Scholar] [CrossRef]
- Grillo, A.; Bernardi, S.; Rebellato, A.; Fabris, B.; Bardelli, M.; Burrello, J.; Rabbia, F.; Veglio, F.; Fallo, F.; Carretta, R. Ambulatory Blood Pressure Monitoring-Derived Short-Term Blood Pressure Variability in Primary Aldosteronism. J. Clin. Hypertens. (Greenwich) 2015, 17, 603–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebellato, A.; Grillo, A.; Dassie, F.; Sonino, N.; Maffei, P.; Martini, C.; Paoletta, A.; Fabris, B.; Carretta, R.; Fallo, F. Ambulatory blood pressure monitoring-derived short-term blood pressure variability is increased in Cushing’s syndrome. Endocrine 2014, 47, 557–563. [Google Scholar] [CrossRef]
- Marrone, O.; Bonsignore, M.R. Blood-pressure variability in patients with obstructive sleep apnea: Current perspectives. Nat. Sci. Sleep 2018, 10, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Bilo, G.; Pengo, M.F.; Lombardi, C.; Parati, G. Blood pressure variability and obstructive sleep apnea. A question of phenotype? Hypertens. Res. 2019, 42, 27–28. [Google Scholar] [CrossRef]
- Concistrè, A.; Grillo, A.; La Torre, G.; Carretta, R.; Fabris, B.; Petramala, L.; Marinelli, C.; Rebellato, A.; Fallo, F.; Letizia, C. Ambulatory blood pressure monitoring-derived short-term blood pressure variability in primary hyperparathyroidism. Endocrine 2018, 60, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Mena, L.J.; Maestre, G.E.; Hansen, T.W.; Thijs, L.; Liu, Y.; Boggia, J.; Li, Y.; Kikuya, M.; Björklund-Bodegård, K.; Ohkubo, T.; et al. International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes (IDACO) Investigators. How many measurements are needed to estimate blood pressure variability without loss of prognostic information? Am. J. Hypertens. 2013, 27, 46–55. [Google Scholar] [CrossRef]
- Bilo, G.; Giglio, A.; Styczkiewicz, K.; Caldara, G.; Kawecka-Jaszcz, K.; Mancia, G.; Parati, G. How to improve the assessment of 24 h blood pressure variability. Blood Press. Monit. 2005, 10, 321–323. [Google Scholar] [CrossRef]
- Padfield, P.L.; Jyothinagaram, S.G.; McGinley, I.M.; Watson, D.M. Reversal of the relationship between heart rate and blood pressure in phaeochromocytoma: A non-invasive diagnostic approach? J. Hum. Hypertens. 1991, 5, 501–504. [Google Scholar]
- Spieker, C.; Barenbrock, M.; Rahn, K.H.; Zidek, W. Circadian blood pressure variations in endocrine disorders. Blood Press. 1993, 2, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Middeke, M.; Schrader, J. Nocturnal blood pressure in normotensive subjects and those with white coat, primary, and secondary hypertension. Br. Med. J. 1994, 308, 630–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plouin, P.F.; Chatellier, G.; Fofol, I.; Corvol, P. Tumor Recurrence and Hypertension Persistence After Successful Pheochromocytoma Operation. Hypertension 1997, 29, 1133–1139. [Google Scholar] [CrossRef]
- McCullagh, E.P.; Engel, W.J. Pheochromocytoma with hypermetabolism: Report of two cases. Ann. Surg. 1942, 116, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Petrák, O.; Haluzíková, D.; Kaválková, P.; Štrauch, B.; Rosa, J.; Holaj, R.; Brabcová Vránková, A.; Michalsky, D.; Haluzík, M.; Zelinka, T.; et al. Changes in energy metabolism in pheochromocytoma. J. Clin. Endocrinol. Metab. 2013, 98, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Malpas, S.C. Neural influences on cardiovascular variability: Possibilities and pitfalls. Am. J. Physiol. Heart Circ. Physiol. 2002, 282, H6–H20. [Google Scholar] [CrossRef]
- Thrasher, T.N. Baroreceptors and the long-term control of blood pressure. Exp. Physiol. 2004, 89, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Bravo, E.; Tagle, R. Pheochromocytoma: State-of-the-art and future prospects. Endocr. Rev. 2003, 24, 539–553. [Google Scholar] [CrossRef]
- Zelinka, T.; Strauch, B.; Petrák, O.; Holaj, R.; Vranková, A.; Weisserová, H.; Pacák, K.; Widimský, J., Jr. Increased blood pressure variability in pheochromocytoma compared to essential hypertension patients. J. Hypertens. 2005, 23, 2033–2039. [Google Scholar] [CrossRef]
- Munakata, M.; Aihara, A.; Imai, Y.; Noshiro, T.; Ito, S.; Yoshinaga, K. Altered sympathetic and vagal modulations of the cardiovascular system in patients with pheochromocytoma: Their relations to orthostatic hypotension. Am. J. Hypertens. 1999, 12, 572–580. [Google Scholar] [CrossRef]
- Levenson, J.A.; Safar, M.E.; London, G.M.; Simon, A.C. Haemodynamics in patients with phaeochromocytoma. Clin. Sci. (Lond.) 1980, 58, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef]
- Neumann, H.P.; Bausch, B.; McWhinney, S.R.; Bender, B.U.; Gimm, O.; Franke, G.; Schipper, J.; Klisch, J.; Altehoefer, C.; Zerres, K.; et al. Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 2002, 346, 1459–1466. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.; Asmar, R.; Beilin, L.; Imai, Y.; Mallion, J.M.; Mancia, G.; Mengden, T.; Myers, M.; Padfield, P.; Palatini, P.; et al. European Society of Hypertension recommendations for conventional, ambulatory and home blood pressure measurement. J. Hypertens. 2003, 21, 821–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mena, L.; Pintos, S.; Queipo, N.V.; Aizpúrua, J.A.; Maestre, G.; Sulbarán, T.J. A reliable index for the prognostic significance of blood pressure variability. J. Hypertens. 2005, 23, 505–511. [Google Scholar] [CrossRef]
Age (Years) | 53 ± 18 |
Males/Females (%) | 30.4/69.6 |
Mean Follow-Up (months) | 26 ± 25 |
Signs and Symptoms (%) | |
Hypertension (sustained and/or paroxysmal) | 60.8 |
Palpitation attacks | 87.5 |
Headache | 87.5 |
Sweating | 65.2 |
Syncope | 13.0 |
Orthostatic hypotension | 17.4 |
Chest pain | 17.4 |
Others (i.e., abdominal pain, dizziness, etc.) | 21.7 |
Type of PPGL (%) | |
adrenal catecholamine-producing tumor (PHEO) | 91.4 |
extra-adrenal catecholamine-producing tumor (PGL) | 8.6 |
Benign/Malignant form (%) | 100/0 |
Site of Extra-Adrenal Masses (n) | |
Abdominal | 2 |
Neck | 1 |
Multifocal forms (n) | 1 |
Germline Mutation | |
Total (n, %) | 8 (34.8) |
NF1 (n) | 2 |
RET (n) | 2 |
VHL (n) | 3 |
SDHD (n) | 1 |
Cigarettes Smoking (%) | |
yes | 17.4 |
no | 21.7 |
ex-smokers | 13.0 |
n.a. | 47.8 |
Comorbidities (%) | |
Coronary artery disease and/or cerebrovascular accidents | 17.4 |
Atrial fibrillation (history or current) | 4.3 |
Diabetes mellitus | 4.3 |
Dyslipidemia | 21.7 |
Parameters | Total (n = 23) | ||
---|---|---|---|
Baseline | Follow-Up | p | |
Age (years) | 52 ± 18 | 54 ± 18 | 0.001 |
BMI (kg/m2) | 23.0 ± 3.4 | 23.1 ± 3.5 | 0.875 |
Waist circumference (cm) | 86.7 ± 11.3 | 88.4 ± 9.0 | 0.321 |
Office SBP (mmHg) | 147 ± 32 | 131 ± 16 | 0.021 |
Office DBP (mmHg) | 85 ± 20 | 79 ± 10 | 0.146 |
Office HR (beats/min) | 75 ± 14 | 70 ± 14 | 0.754 |
N. of antihypertensive drugs | 2.2 ± 1.7 | 1.0 ± 1.1 | 0.001 |
24-h urinary metanephrines (μg/24-h) | 357.4 ± 190.3 | 64.1 ± 30.5 | <0.001 |
Serum creatinine (mg/dL) | 0.83 ± 0.25 | 0.98 ± 0.43 | 0.050 |
Total cholesterol (mg/dL) | 217 ± 40 | 185 ± 27 | 0.099 |
LDL cholesterol (mg/dL) | 117 ± 37 | 100 ± 26 | 0.327 |
HDL cholesterol (mg/dL) | 79 ± 40 | 63 ± 22 | 0.034 |
Triglycerides (mg/dL) | 115 ± 52 | 111 ± 39 | 0.861 |
Glycaemia (mg/dL) | 99 ± 21 | 88 ± 15 | 0.050 |
Uric acid (mg/dL) | 7.5 ± 7.7 | 4.9 ± 1.4 | 0.374 |
Right cIMT (mm) | 0.91 ± 0.15 | 0.88 ± 0.22 | 0.551 |
Left cIMT (mm) | 0.91 ± 0.15 | 0.86 ± 0.21 | 0.086 |
ABI | 1.01 ± 0.19 | 1.07 ± 0.19 | 0.786 |
Short-Term BPV Markers | Total (n = 23) | ||
---|---|---|---|
Baseline | Follow-Up | p | |
24-h systolic BP (mmHg) | 129 ± 13 | 115 ± 12 | 0.002 |
24-h diastolic BP (mmHg) | 73 ± 15 | 72 ± 9 | 0.329 |
24-h heart rate (beats/min) | 75 ± 12 | 78 ± (9) | 0.073 |
Systolic BP dipping (%) | 7.5 ± 8.0 | 7.7 ± 6.9 | 0.808 |
Diastolic BP dipping (%) | 11.7 ± 9.3 | 12.3 ± 7.8 | 0.837 |
SD of 24-h systolic BP (mmHg) | 13.2 ± 4.8 | 12.2 ± 2.7 | 0.670 |
SD of daytime systolic BP (mmHg) | 12.4 ± 3.4 | 11.6 ± 2.7 | 0.328 |
SD of night-time systolic BP (mmHg) | 10.1 ± 4.0 | 9.0 ± 3.3 | 0.348 |
SD of 24-h diastolic BP (mmHg) | 11.3 ± 2.7 | 10.2 ± 2.3 | 0.152 |
SD of daytime diastolic BP (mmHg) | 10.3 ± 2.9 | 9.4 ± 2.5 | 0.057 |
SD of night-time diastolic BP (mmHg) | 8.4 ± 2.4 | 7.6 ± 2.9 | 0.370 |
SD of 24-h heart rate (beats/min) | 10.9 ± 3.6 | 11.0 ± 4.5 | 0.852 |
SD of daytime heart rate (beats/min) | 10.7 ± 3.7 | 10.9 ± 5.0 | 0.988 |
SD of night-time heart rate (beats/min) | 7.0 ± 2.6 | 6.7 ± 2.9 | 0.399 |
wSD of 24-h systolic BP (mmHg) | 11.6 ± 3.1 | 10.8 ± 2.4 | 0.173 |
wSD of 24-h diastolic BP (mmHg) | 9.7 ± 2.0 | 8.8 ± 2.1 | 0.050 |
ARV of 24-h systolic BP (mmHg) | 8.8 ± 1.6 | 7.6 ± 1.3 | 0.001 |
ARV of 24-h diastolic BP (mmHg) | 7.5 ± 1.6 | 6.9 ± 1.4 | 0.031 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisogni, V.; Petramala, L.; Oliviero, G.; Bonvicini, M.; Mezzadri, M.; Olmati, F.; Concistrè, A.; Saracino, V.; Celi, M.; Tonnarini, G.; et al. Analysis of Short-term Blood Pressure Variability in Pheochromocytoma/Paraganglioma Patients. Cancers 2019, 11, 658. https://doi.org/10.3390/cancers11050658
Bisogni V, Petramala L, Oliviero G, Bonvicini M, Mezzadri M, Olmati F, Concistrè A, Saracino V, Celi M, Tonnarini G, et al. Analysis of Short-term Blood Pressure Variability in Pheochromocytoma/Paraganglioma Patients. Cancers. 2019; 11(5):658. https://doi.org/10.3390/cancers11050658
Chicago/Turabian StyleBisogni, Valeria, Luigi Petramala, Gaia Oliviero, Maria Bonvicini, Martina Mezzadri, Federica Olmati, Antonio Concistrè, Vincenza Saracino, Monia Celi, Gianfranco Tonnarini, and et al. 2019. "Analysis of Short-term Blood Pressure Variability in Pheochromocytoma/Paraganglioma Patients" Cancers 11, no. 5: 658. https://doi.org/10.3390/cancers11050658
APA StyleBisogni, V., Petramala, L., Oliviero, G., Bonvicini, M., Mezzadri, M., Olmati, F., Concistrè, A., Saracino, V., Celi, M., Tonnarini, G., Iannucci, G., De Toma, G., Ciardi, A., La Torre, G., & Letizia, C. (2019). Analysis of Short-term Blood Pressure Variability in Pheochromocytoma/Paraganglioma Patients. Cancers, 11(5), 658. https://doi.org/10.3390/cancers11050658