Expression of PD-1 and PD-L1 in Extramammary Paget Disease: Implications for Immune-Targeted Therapy
Abstract
:1. Introduction
2. Results
2.1. Patient Demographic and Clinical-Pathologic Characteristics
2.2. EMPD Treatment and Outcomes
2.3. Expression of PD-L1 in EMPD and MPD
2.4. Correlation of Density and Composition of Tumor-Associated Immune Infiltrates with Clinical-Pathologic Parameters
3. Discussion
4. Materials and Methods
4.1. Case Selection and Diagnosis
4.2. Immunohistochemistry
4.3. Visual Analysis of IHC Staining
4.4. Automated Image Analysis of Immune Infiltrate and PD-1
4.5. Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McCarter, M.D.; Quan, S.H.; Busam, K.; Paty, P.P.; Wong, D.; Guillem, J.G. Long-term outcome of perianal Paget’s disease. Dis. Colon Rectum 2003, 46, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Chiu, T.W.; Wong, P.S.; Ahmed, K.; Lam, S.C.; Ying, S.Y.; Burd, A. Extramammary Paget’s disease in Chinese males: A 21-year experience. World J. Surg. 2007, 31, 1941–1946. [Google Scholar]
- Goldblum, J.R.; Hart, W.R. Vulvar Paget’s disease: A clinicopathologic and immunohistochemical study of 19 cases. Am. J. Surg. Pathol. 1997, 21, 1178–1187. [Google Scholar] [CrossRef] [PubMed]
- Goldblum, J.R.; Hart, W.R. Perianal Paget’s disease: A histologic and immunohistochemical study of 11 cases with and without associated rectal adenocarcinoma. Am. J. Surg. Pathol. 1998, 22, 170–179. [Google Scholar] [CrossRef]
- Kim, S.J.; Thompson, A.K.; Zubair, A.S.; Otley, C.C.; Arpey, C.J.; Baum, C.L.; Roenigk, R.K.; Lohse, C.M.; Brewer, J.D. Surgical treatment and outcomes of patients with extramammary paget disease: A cohort study. Dermatol. Surg. 2017, 43, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Kyriazanos, I.D.; Kyriazanos, I.D.; Stamos, N.P.; Miliadis, L.; Noussis, G.; Stoidis, C.N. Extra-mammary Paget’s disease of the perianal region: A review of the literature emphasizing the operative management technique. Surg. Oncol. 2011, 20, e61–71. [Google Scholar] [CrossRef] [PubMed]
- Padrnos, L.; Karlin, N.; Halfdanarson, T.R. Mayo clinic cancer center experience of metastatic extramammary paget disease 1998–2012. Rare Tumors 2016, 8, 6804. [Google Scholar] [CrossRef]
- Metcalfe, W.; Anderson, J.; Trinh, V.; Hwu, W.J. Anti-programmed cell death-1 (PD-1) monoclonal antibodies in treating advanced melanoma. Discov. Med. 2015, 19, 393–401. [Google Scholar] [PubMed]
- Romero, D. Nivolumab-an effective second-line treatment for NSCLC. Nat. Rev. Clin. Oncol. 2015, 12, 685. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef] [PubMed]
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 2010, 236, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.H.; Gillett, M.D.; Cheville, J.C.; Lohse, C.M.; Dong, H.; Webster, W.S.; Krejci, K.G.; Lobo, J.R.; Sengupta, S.; Chen, L.; et al. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc. Natl. Acad. Sci. USA 2004, 101, 17174–17179. [Google Scholar] [CrossRef] [Green Version]
- Ghebeh, H.; Mohammed, S.; Al-Omair, A.; Qattant, A.; Lehe, C.; Al-Qudaihi, G.; Elkum, N.; Alshabanah, M.; Amer, S.B.; Tulbah, A.; et al. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: Correlation with important high-risk prognostic factors. Neoplasia 2006, 8, 190–198. [Google Scholar] [CrossRef]
- Wu, K.; Kryczek, I.; Chen, L.; Zou, W.; Welling, T.H. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res. 2009, 69, 8067–8075. [Google Scholar] [CrossRef]
- Kuang, D.M.; Zhao, Q.; Peng, C.; Xu, J.; Zhang, J.P.; Wu, C.; Zheng, L. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med. 2009, 206, 1327–1337. [Google Scholar] [CrossRef] [PubMed]
- Feldmeyer, L.; Hudgens, C.W.; Ray-Lyons, G.; Nagarajan, P.; Aung, P.P.; Curry, J.L.; Torres-Cabala, C.A.; Mino, B.; Rodriguez-Canales, J.; Reuben, A.; et al. Density, distribution, and composition of immune infiltrates correlate with survival in Merkel cell carcinoma. Clin. Cancer Res. 2016, 22, 5553–5563. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Eder, J.P.; Fine, G.D.; Braiteh, F.S.; Loriot, Y.; Cruz, C.; Bellmunt, J.; Burris, H.A.; Petrylak, D.P.; Teng, S.L.; et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014, 515, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Sabatier, R.; Finetti, P.; Mamessier, E.; Adelaide, J.; Chaffanet, M.; Ali, H.R.; Viens, P.; Caldas, C.; Birnbaum, D.; Bertucci, F. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 2015, 6, 5449–5464. [Google Scholar] [CrossRef]
- Soliman, H.; Khalil, F.; Antonia, S. PD-L1 expression is increased in a subset of basal type breast cancer cells. PLoS ONE 2014, 9, e88557. [Google Scholar] [CrossRef] [PubMed]
- Bertucci, F.; Finetti, P.; Birnbaum, D.; Mamessier, E. The PD1/PDL1 axis, a promising therapeutic target in aggressive breast cancers. Oncoimmunology 2016, 5, e1085148. [Google Scholar] [CrossRef] [PubMed]
- Checkpoint Inhibitors in Breast Cancer. 2017. Available online: https://clinicaltrials.gov/ct2/results?term=PD-L1+AND+breast+cancer&pg=1 (accessed on 04 June 2017).
- Karpathiou, G.; Chauleur, C.; Hathroubi, S.; Habougit, C.; Peoc’h, M. Expression of CD3, PD-L1 and CTLA-4 in mammary and extra-mammary Paget disease. Cancer Immunol. Immunother. 2018, 67, 1297–1303. [Google Scholar] [CrossRef]
- FDA Approved PDL1 Kit Instructions. FDA Approved PDL1 Kit Instructions. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf15/P150013c.pdf (accessed on 29 May 2019).
- Grigg, C.; Rizvi, N.A. PD-L1 biomarker testing for non-small cell lung cancer: Truth or fiction? J. Immunother. Cancer 2016, 4, 48. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef]
- Xia, H.; Shen, J.; Hu, F.; Chen, S.; Huang, H.; Xu, Y.; Ma, H. PD-L1 over-expression is associated with a poor prognosis in Asian non-small cell lung cancer patients. Clin. Chim. Acta 2017, 469, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhu, H.; Zhou, Y.; Mao, F.; Lin, Y.; Pan, B.; Zhang, X.; Xu, Q.; Huang, X.; Sun, Q. Prognostic value of PD-L1 in breast cancer: A Meta-analysis. Breast J. 2017, 23, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.X.; Zhao, L.P.; Zhan, S.H.; Geng, C.X.; Xu, L.; Xin, Y.N.; Jiang, X.J. Clinicopathological and prognostic significance of programmed cell death ligand 1 (PD-L1) expression in patients with esophageal squamous cell carcinoma: A meta-analysis. J. Thorac. Dis. 2016, 8, 3197–3204. [Google Scholar] [CrossRef]
- Weissferdt, A.; Fujimoto, J.; Kalhor, N.; Rodriguez, J.; Bassett, R.; Wistuba, I.I.; Moran, C.A. Expression of PD-1 and PD-L1 in thymic epithelial neoplasms. Mod. Pathol. 2017, 30, 826. [Google Scholar] [CrossRef]
- Rimm, D.L.; Han, G.; Taube, J.M.; Eunhee, S.Y.; Bridge, J.A.; Flieder, D.B.; Homer, R.; West, W.W.; Wu, H.; Roden, A.C.; et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol. 2017, 3, 1051–1058. [Google Scholar] [CrossRef]
- Liau, M.M.; Yang, S.S.; Tan, K.B.; Aw, C.W.D. Topical imiquimod in the treatment of extramammary Paget’s disease: A 10 year retrospective analysis in an Asian tertiary centre. Dermatol. Ther. 2016, 29, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.S.; Sherry, T.; Kallen, M.E.; Wong, S.; Drakaki, A. human epidermal growth factor receptor 2 (HER-2/neu)-directed therapy for rare metastatic epithelial tumors with HER-2 amplification. Case Rep. Oncol. 2016, 9, 298–304. [Google Scholar] [CrossRef]
- Barth, P.; Dulaimi Al-Saleem, E.; Edwards, K.W.; Millis, S.Z.; Wong, Y.N.; Geynisman, D.M. Metastatic extramammary paget’s disease of scrotum responds completely to single agent trastuzumab in a hemodialysis patient: case report, molecular profiling and brief review of the literature. Case Rep. Oncol. Med. 2015, 2015, 895151. [Google Scholar] [CrossRef]
- Mengjun, B.; Zheng-Qiang, W.; Tasleem, M.M. Extramammary Paget’s disease of the perianal region: A review of the literature emphasizing management. Dermatol. Surg. 2013, 39, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Funakoshi, T. Metastatic extramammary paget’s disease: Pathogenesis and novel therapeutic approach. Front. Oncol. 2018, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, P.K.; Suh, J.; Fisher, M.B.; Taylor, J.; Nguyen, T.H.; Ivan, D.; Prieto, V.G.; Pagliaro, L.C.; Pettaway, C.A. Penoscrotal extramammary Paget’s disease: The University of Texas, M. D. Anderson cancer center contemporary experience. J. Urol. 2011, 186, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Sul, J.; Blumenthal, G.M.; Jiang, X.; He, K.; Keegan, P.; Pazdur, R. FDA approval summary: Pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist 2016, 21, 643–650. [Google Scholar] [CrossRef] [PubMed]
EMPD (n = 21) | MPD (n = 10) | ||
---|---|---|---|
Characteristic | Value | Characteristic | Value |
Age, years | Age, years | ||
Mean | 67.7 | Mean | 50.5 |
Median | 67.8 | Median | 51.9 |
Min, max | 48.0, 79.0 | Min, max | 22.9, 70.6 |
Sex, n | Tumor type in ipsilateral breast, n | ||
Male | 11 | IDC | 6 |
Female | 10 | ILC | 1 |
Anatomic site, n | DCIS only | 1 | |
Perianal region | 5 | LCIS only | 0 |
Vulva | 6 | DCIS + LCIS | 1 |
Scrotum | 7 | No invasive or intraductal tumor | 1 |
Other | 3 | ER status, n | |
History of other cancer, n | Positive | 5 | |
Present | 10 | Negative | 4 |
Absent | 11 | Not known | 1 |
Local recurrence, n | PR status, n | ||
None | 13 | Positive | 4 |
Single | 2 | Negative | 5 |
Multiple | 5 | Not known | 1 |
Persistent disease | 1 | HER2/neu status, n | |
Metastasis, n | Positive | 5 | |
Yes | 3 | Negative | 3 |
No | 18 | Not known | 2 |
Vital status at last follow-up, n | Vital status at last follow-up, n | ||
Dead | 6 | Dead | 1 |
Alive | 11 | Alive | 3 |
Lost to follow-up | 4 | Lost to follow-up | 6 |
Overall survival, % | 62 | Overall survival, % | 90 |
Disease-specific survival, % | 81 | Disease-specific survival, % | 90 |
Case | PD-L1 in Tumor Cells by Visual Analysis (H-Score) | Density of Marker-Positive Cells in Immune Infiltrate by Image Analysis, Positive Cells/mm2 | PD-L1 in Immune Infiltrate by Visual Analysis (H-Score) | Anatomic Site | Associated Invasive Component | Site of Metastasis | Survival | ||
---|---|---|---|---|---|---|---|---|---|
CD3 | CD8 | PD-1 | |||||||
Intraepithelial disease without invasion | |||||||||
1 | 0 | 1650.3 | 991.4 | 190.0 | 1 | Vulva | Absent | NA | AWOD |
2 | 15 | 1062.1 | 475.1 | 103.6 | 1 | Perianal | Absent | NA | AWOD |
3 | 0 | 678.1 | 255.0 | 185.9 | 2 | Scrotum | Absent | NA | AWOD |
4 | 0 | 2045.8 | 684.2 | 212.0 | 20 | Vulva | Absent | NA | AWOD |
5 | 0 | 908.1 | 509.2 | 32.4 | 0 | Suprapubic skin | Absent | NA | Died of unrelated cause |
6 | 0 | 1484.2 | 1195.8 | 177.0 | 1 | Perianal | Absent | NA | AWOD |
7 | 0 | 481.2 | 294.9 | 115.6 | 0 | Axilla | Absent | NA | Died of unknown cause |
8 | 0 | 288.5 | 121.7 | 40.2 | 0 | Vulva | Absent | NA | Lost to follow-up |
9 | 2 | 1039.2 | 395.6 | 277.5 | 2 | Perianal | Absent | NA | AWD |
10 | 0 | 2114.9 | 1190.5 | 167.3 | 60 | Scrotum | Absent | NA | AWOD |
11 | 0 | 492.7 | 169.6 | 57.1 | 2 | Scrotum | Absent | NA | Died of unknown cause |
12 | 0 | 261.7 | 187.8 | 82.6 | 1 | Perianal | Absent | NA | Lost to follow-up |
13 | 0 | 1970.9 | 1263.0 | 330.4 | 1 | Scrotum | Absent | NA | Lost to follow-up |
14 | 0 | 543.1 | 237.8 | 14.4 | 2 | Scrotum | Absent | NA | AWD |
Invasive disease without metastasis | |||||||||
15 | 0 | 598.7 | 225.7 | 33.5 | 1 | Perianal | Focal dermal invasion | NA | Lost to follow-up |
16 | 0 | No analysis | No analysis | No analysis | 0 | Nose tip | Concurrent invasive adenocarcinoma in dermis of possible eccrine origin | NA | AWOD |
17 | 0 | 1136.4 | 484.8 | 49.0 | 0 | Vulva, perianal, vaginal, ectocervix | Invasive poorly differentiated adenocarcinoma in urinary bladder consistent with origin from EMPD 11 years after initial diagnosis (CK7+, CK20− GCDFP15+) | NA | AWOD |
18 | 0 | 1927.3 | 1207.0 | 251.0 | 2 | Vulva | Dermal invasion present (depth <0.5 mm) | NA | AWD |
Invasive disease with metastasis | |||||||||
19 | 1 | No analysis | No analysis | No analysis | 1 | Scrotum | Dermal and lymphovascular invasion | Lymph nodes, skin, soft tissue, peritoneum, liver, bone | DOD |
20 | 0 | No analysis | No analysis | No analysis | 0 | Scrotum | Dermal invasion and concurrent rectal adenocarcinoma (CK7+, CK20+, CDX2−) | Lymph nodes, liver | DOD |
21 | 0 | 728.5 | 389.3 | 40.5 | 10 | Vulva | Dermal invasion (depth 10 mm) | Lymph nodes, liver | DOD |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauzo, S.H.; Tetzlaff, M.T.; Milton, D.R.; Siroy, A.E.; Nagarajan, P.; Torres-Cabala, C.A.; Ivan, D.; Curry, J.L.; Hudgens, C.W.; Wargo, J.A.; et al. Expression of PD-1 and PD-L1 in Extramammary Paget Disease: Implications for Immune-Targeted Therapy. Cancers 2019, 11, 754. https://doi.org/10.3390/cancers11060754
Mauzo SH, Tetzlaff MT, Milton DR, Siroy AE, Nagarajan P, Torres-Cabala CA, Ivan D, Curry JL, Hudgens CW, Wargo JA, et al. Expression of PD-1 and PD-L1 in Extramammary Paget Disease: Implications for Immune-Targeted Therapy. Cancers. 2019; 11(6):754. https://doi.org/10.3390/cancers11060754
Chicago/Turabian StyleMauzo, Shakuntala H., Michael T. Tetzlaff, Denái R. Milton, Alan E. Siroy, Priyadharsini Nagarajan, Carlos A. Torres-Cabala, Doina Ivan, Jonathan L. Curry, Courtney W. Hudgens, Jennifer A. Wargo, and et al. 2019. "Expression of PD-1 and PD-L1 in Extramammary Paget Disease: Implications for Immune-Targeted Therapy" Cancers 11, no. 6: 754. https://doi.org/10.3390/cancers11060754
APA StyleMauzo, S. H., Tetzlaff, M. T., Milton, D. R., Siroy, A. E., Nagarajan, P., Torres-Cabala, C. A., Ivan, D., Curry, J. L., Hudgens, C. W., Wargo, J. A., Sahin, A. A., Pettaway, C. A., Prieto, V. G., & Aung, P. P. (2019). Expression of PD-1 and PD-L1 in Extramammary Paget Disease: Implications for Immune-Targeted Therapy. Cancers, 11(6), 754. https://doi.org/10.3390/cancers11060754