Optimizing Genetic Workup in Pheochromocytoma and Paraganglioma by Integrating Diagnostic and Research Approaches
Abstract
:1. Introduction
2. Results
2.1. Routine Germline Testing in PPGL Patients Solves 30% of Cases
2.2. Development of a Dedicated PPGL Custom Panel for Germline and Tumor Testing
2.3. Comprehensive Tumor Testing Improves Detection Rate of Underlying Mutations in PPGL-Patients
2.4. Tumor Testing with Our PPGL Custom Panel Can Provide Additional Information about Secondary Somatic Changes
2.5. Identification of Variants in Candidate Genes
3. Discussion
4. Materials and Methods
4.1. Patient Cohort and Genetic Testing Strategy
4.2. Next Generation Sequencing Analysis
4.3. CNV Calling
4.4. Metabolite Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dahia, P.L. Pheochromocytoma and paraganglioma pathogenesis: Learning from genetic heterogeneity. Nat. Rev. Cancer 2014, 14, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Eisenhofer, G.; Klink, B.; Richter, S.; Lenders, J.W.; Robledo, M. Metabologenomics of phaeochromocytoma and paraganglioma: An integrated approach for personalised biochemical and genetic testing. Clin. Biochem. Rev. 2017, 38, 69–100. [Google Scholar] [PubMed]
- Fishbein, L.; Leshchiner, I.; Walter, V.; Danilova, L.; Robertson, A.G.; Johnson, A.R.; Lichtenberg, T.M.; Murray, B.A.; Ghayee, H.K.; Else, T.; et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 2017, 31, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Jochmanova, I.; Pacak, K. Genomic landscape of pheochromocytoma and paraganglioma. Trends Cancer 2018, 4, 6–9. [Google Scholar] [CrossRef]
- Huang, K.L.; Mashl, R.J.; Wu, Y.; Ritter, D.I.; Wang, J.; Oh, C.; Paczkowska, M.; Reynolds, S.; Wyczalkowski, M.A.; Oak, N.; et al. Pathogenic germline variants in 10,389 adult cancers. Cell 2018, 173, 355–370. [Google Scholar] [CrossRef]
- Lenders, J.W.M.; Eisenhofer, G. Update on modern management of pheochromocytoma and paraganglioma. Endocrinol. Metab. 2017, 32, 152–161. [Google Scholar] [CrossRef]
- Bayley, J.P.; Kunst, H.P.; Cascon, A.; Sampietro, M.L.; Gaal, J.; Korpershoek, E.; Hinojar-Gutierrez, A.; Timmers, H.J.; Hoefsloot, L.H.; Hermsen, M.A.; et al. Sdhaf2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 2010, 11, 366–372. [Google Scholar] [CrossRef]
- Qin, Y.; Yao, L.; King, E.E.; Buddavarapu, K.; Lenci, R.E.; Chocron, E.S.; Lechleiter, J.D.; Sass, M.; Aronin, N.; Schiavi, F.; et al. Germline mutations in tmem127 confer susceptibility to pheochromocytoma. Nat. Genet. 2010, 42, 229–233. [Google Scholar] [CrossRef]
- Comino-Mendez, I.; Gracia-Aznarez, F.J.; Schiavi, F.; Landa, I.; Leandro-Garcia, L.J.; Leton, R.; Honrado, E.; Ramos-Medina, R.; Caronia, D.; Pita, G.; et al. Exome sequencing identifies max mutations as a cause of hereditary pheochromocytoma. Nat. Genet. 2011, 43, 663–667. [Google Scholar] [CrossRef]
- Castro-Vega, L.J.; Buffet, A.; De Cubas, A.A.; Cascon, A.; Menara, M.; Khalifa, E.; Amar, L.; Azriel, S.; Bourdeau, I.; Chabre, O.; et al. Germline mutations in fh confer predisposition to malignant pheochromocytomas and paragangliomas. Hum. Mol. Genet. 2014, 23, 2440–2446. [Google Scholar] [CrossRef]
- Clark, G.R.; Sciacovelli, M.; Gaude, E.; Walsh, D.M.; Kirby, G.; Simpson, M.A.; Trembath, R.C.; Berg, J.N.; Woodward, E.R.; Kinning, E.; et al. Germline fh mutations presenting with pheochromocytoma. J. Clin. Endocrinol. Metab. 2014, 99, E2046–E2050. [Google Scholar] [CrossRef] [PubMed]
- Cascon, A.; Comino-Mendez, I.; Curras-Freixes, M.; de Cubas, A.A.; Contreras, L.; Richter, S.; Peitzsch, M.; Mancikova, V.; Inglada-Perez, L.; Perez-Barrios, A.; et al. Whole-exome sequencing identifies mdh2 as a new familial paraganglioma gene. J. Natl. Cancer Inst. 2015, 107. [Google Scholar] [CrossRef] [PubMed]
- Remacha, L.; Comino-Mendez, I.; Richter, S.; Contreras, L.; Curras-Freixes, M.; Pita, G.; Leton, R.; Galarreta, A.; Torres-Perez, R.; Honrado, E.; et al. Targeted exome sequencing of krebs cycle genes reveals candidate cancer-predisposing mutations in pheochromocytomas and paragangliomas. Clin. Cancer Res. 2017, 23, 6315–6324. [Google Scholar] [CrossRef] [PubMed]
- Remacha, L.; Pirman, D.; Mahoney, C.E.; Coloma, J.; Calsina, B.; Curras-Freixes, M.; Leton, R.; Torres-Perez, R.; Richter, S.; Pita, G.; et al. Recurrent germline dlst mutations in individuals with multiple pheochromocytomas and paragangliomas. Am. J. Hum. Genet. 2019, 104, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Yang, C.; Lorenzo, F.; Merino, M.; Fojo, T.; Kebebew, E.; Popovic, V.; Stratakis, C.A.; Prchal, J.T.; Pacak, K. Somatic hif2a gain-of-function mutations in paraganglioma with polycythemia. N. Engl. J. Med. 2012, 367, 922–930. [Google Scholar] [CrossRef]
- Yang, C.; Zhuang, Z.; Fliedner, S.M.; Shankavaram, U.; Sun, M.G.; Bullova, P.; Zhu, R.; Elkahloun, A.G.; Kourlas, P.J.; Merino, M.; et al. Germ-line phd1 and phd2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia. J. Mol. Med. 2015, 93, 93–104. [Google Scholar] [CrossRef]
- Buffet, A.; Smati, S.; Mansuy, L.; Menara, M.; Lebras, M.; Heymann, M.F.; Simian, C.; Favier, J.; Murat, A.; Cariou, B.; et al. Mosaicism in hif2a-related polycythemia-paraganglioma syndrome. J. Clin. Endocrinol. Metab. 2014, 99, E369–E373. [Google Scholar] [CrossRef]
- Toledo, R.A.; Qin, Y.; Cheng, Z.M.; Gao, Q.; Iwata, S.; Silva, G.M.; Prasad, M.L.; Ocal, I.T.; Rao, S.; Aronin, N.; et al. Recurrent mutations of chromatin-remodeling genes and kinase receptors in pheochromocytomas and paragangliomas. Clin. Cancer Res. 2016, 22, 2301–2310. [Google Scholar] [CrossRef]
- Castro-Vega, L.J.; Letouze, E.; Burnichon, N.; Buffet, A.; Disderot, P.H.; Khalifa, E.; Loriot, C.; Elarouci, N.; Morin, A.; Menara, M.; et al. Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat. Commun. 2015, 6, 6044. [Google Scholar] [CrossRef] [Green Version]
- Gaal, J.; Burnichon, N.; Korpershoek, E.; Roncelin, I.; Bertherat, J.; Plouin, P.F.; de Krijger, R.R.; Gimenez-Roqueplo, A.P.; Dinjens, W.N. Isocitrate dehydrogenase mutations are rare in pheochromocytomas and paragangliomas. J. Clin. Endocrinol. Metab. 2010, 95, 1274–1278. [Google Scholar] [CrossRef]
- Richter, S.; Gieldon, L.; Pang, Y.; Peitzsch, M.; Huynh, T.; Leton, R.; Viana, B.; Ercolino, T.; Mangelis, A.; Rapizzi, E.; et al. Metabolome-guided genomics to identify pathogenic variants in isocitrate dehydrogenase, fumarate hydratase, and succinate dehydrogenase genes in pheochromocytoma and paraganglioma. Genet. Med. 2019, 21, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Luchetti, A.; Walsh, D.; Rodger, F.; Clark, G.; Martin, T.; Irving, R.; Sanna, M.; Yao, M.; Robledo, M.; Neumann, H.P.; et al. Profiling of somatic mutations in phaeochromocytoma and paraganglioma by targeted next generation sequencing analysis. Int. J. Endocrinol. 2015, 2015, 138573. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.; Peitzsch, M.; Rapizzi, E.; Lenders, J.W.; Qin, N.; de Cubas, A.A.; Schiavi, F.; Rao, J.U.; Beuschlein, F.; Quinkler, M.; et al. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency. J. Clin. Endocrinol. Metab. 2014, 99, 3903–3911. [Google Scholar] [CrossRef] [PubMed]
- Hackmann, K.; Kuhlee, F.; Betcheva-Krajcir, E.; Kahlert, A.K.; Mackenroth, L.; Klink, B.; Di Donato, N.; Tzschach, A.; Kast, K.; Wimberger, P.; et al. Ready to clone: Cnv detection and breakpoint fine-mapping in breast and ovarian cancer susceptibility genes by high-resolution array cgh. Breast Cancer Res. Treat. 2016, 159, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Schlisio, S.; Kenchappa, R.S.; Vredeveld, L.C.; George, R.E.; Stewart, R.; Greulich, H.; Shahriari, K.; Nguyen, N.V.; Pigny, P.; Dahia, P.L.; et al. The kinesin kif1bbeta acts downstream from egln3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev. 2008, 22, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, F.; Gieldon, L.; Rump, A.; Seifert, M.; Grutzmann, K.; Kruger, A.; Loos, S.; Zeugner, S.; Hackmann, K.; Porrmann, J.; et al. Targeted capture-based ngs is superior to multiplex pcr-based ngs for hereditary brca1 and brca2 gene analysis in ffpe tumor samples. BMC Cancer 2019, 19, 396. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv 2019, 531210. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. Clinvar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. Dbsnp: The ncbi database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef]
- Harsha, B.; Creatore, C.; Kok, C.Y.; Hathaway, C.; Cole, C.G.; Ramshaw, C.C.; Rye, C.E.; Beare, D.M.; Dawson, E.; Boutselakis, H.; et al. Cosmic: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 2018, 47, D941–D947. [Google Scholar]
- Ben Aim, L.; Pigny, P.; Castro-Vega, L.J.; Buffet, A.; Amar, L.; Bertherat, J.; Drui, D.; Guilhem, I.; Baudin, E.; Lussey-Lepoutre, C.; et al. Targeted next-generation sequencing detects rare genetic events in pheochromocytoma and paraganglioma. J. Med Genet. 2019. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, L.; Khare, S.; Wubbenhorst, B.; DeSloover, D.; D’Andrea, K.; Merrill, S.; Cho, N.W.; Greenberg, R.A.; Else, T.; Montone, K.; et al. Whole-exome sequencing identifies somatic atrx mutations in pheochromocytomas and paragangliomas. Nat. Commun. 2015, 6, 6140. [Google Scholar] [CrossRef] [PubMed]
- McWhinney, S.R.; Pasini, B.; Stratakis, C.A. Familial gastrointestinal stromal tumors and germ-line mutations. N. Engl. J. Med. 2007, 357, 1054–1056. [Google Scholar] [CrossRef] [PubMed]
- Gieldon, L.; Masjkur, J.R.; Richter, S.; Darr, R.; Lahera, M.; Aust, D.; Zeugner, S.; Rump, A.; Hackmann, K.; Tzschach, A.; et al. Next-generation panel sequencing identifies nf1 germline mutations in three patients with pheochromocytoma but no clinical diagnosis of neurofibromatosis type 1. Eur. J. Endocrinol. 2018, 178, K1–K9. [Google Scholar] [CrossRef] [PubMed]
- Welander, J.; Soderkvist, P.; Gimm, O. Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr. Relat. Cancer 2011, 18, R253–R276. [Google Scholar] [CrossRef] [Green Version]
- Gimenez-Roqueplo, A.P.; Favier, J.; Rustin, P.; Rieubland, C.; Crespin, M.; Nau, V.; Khau Van Kien, P.; Corvol, P.; Plouin, P.F.; Jeunemaitre, X. Mutations in the sdhb gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 2003, 63, 5615–5621. [Google Scholar]
- Ayala-Ramirez, M.; Feng, L.; Johnson, M.M.; Ejaz, S.; Habra, M.A.; Rich, T.; Busaidy, N.; Cote, G.J.; Perrier, N.; Phan, A.; et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: Primary tumor size and primary tumor location as prognostic indicators. J. Clin. Endocrinol. Metab. 2011, 96, 717–725. [Google Scholar] [CrossRef]
- Jimenez, C. Treatment for patients with malignant pheochromocytomas and paragangliomas: A perspective from the hallmarks of cancer. Front. Endocrinol. 2018, 9, 277. [Google Scholar] [CrossRef]
- Job, S.; Draskovic, I.; Burnichon, N.; Buffet, A.; Cros, J.; Lepine, C.; Venisse, A.; Robidel, E.; Verkarre, V.; Meatchi, T.; et al. Telomerase activation and atrx mutations are independent risk factors for metastatic pheochromocytoma and paraganglioma. Clin. Cancer Res. 2019, 25, 760–770. [Google Scholar] [CrossRef]
- Kantorovich, V.; Pacak, K. New insights on the pathogenesis of paraganglioma and pheochromocytoma. F1000Research 2018, 7. [Google Scholar] [CrossRef]
- Richter, S.; Klink, B.; Nacke, B.; de Cubas, A.A.; Mangelis, A.; Rapizzi, E.; Meinhardt, M.; Skondra, C.; Mannelli, M.; Robledo, M.; et al. Epigenetic mutation of the succinate dehydrogenase c promoter in a patient with two paragangliomas. J. Clin. Endocrinol. Metab. 2016, 101, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, C.; Faust, U.; Sturm, M.; Hackmann, K.; Grundmann, K.; Harmuth, F.; Bosse, K.; Kehrer, M.; Benkert, T.; Klink, B.; et al. Hboc multi-gene panel testing: Comparison of two sequencing centers. Breast Cancer Res. Treat. 2015, 152, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Blick, D.; Das, S.; Gastier-Foster, J.; Grody, WW.; Hedge, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines fot the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. 2017. Available online: http://www.r-project.org/ (accessed on 11 March 2019).
- Povysil, G.; Tzika, A.; Vogt, J.; Haunschmid, V.; Messiaen, L.; Zschocke, J.; Klambauer, G.; Hochreiter, S.; Wimmer, K. panelcn.MOPS: Copy-number detection in targeted NGS panel data for clinical diagnostics. Hum. Mutat. 2017, 38, 889–897. [Google Scholar] [CrossRef] [PubMed]
ID | Diagnosis | Solitary/Multiple | AD/Gender | Family History | Gene | Nucleotide Change | Amino Acid Change | S:F Ratio in Tumor Tissue |
---|---|---|---|---|---|---|---|---|
ID45 | PHEO | unknown | 30/f | unknown | FH | c.434C > G | p.(Ser145*) | 0.14 |
ID11 | PHEO | solitary | 59/m | unknown | FH | c.1431_1433dupAAA | p.(Lys477dup) | n.a. |
ID32 | PHEO | multiple | 39/f | 1 melanoma (AO 35) | NF1 | c.6084+1G > A | p.? | n.a. |
ID52 | PHEO | multiple | 47/f | inconspicuous | RET | c.1901G > T | p.(Cys634Phe) | 5.5 |
ID56 | HNP | unknown | 23/m | unknown | SDHA | c.553_554insA | p.(Ala186fs) | n.a. |
ID62 | PGL | solitary | 37/f | inconspicuous | SDHA | c.1338delA | p.(His447fs) | n.a. |
ID35 | PGL/HNP | multiple | 52/f | 1 melanoma (AO 48) | SDHAF2 | c.232G > A | p.(Gly78Arg) | 217.3 |
ID3 | HNP | solitary | 17/m | inconspicuous | SDHB CHEK2 | c.649C > T c.1100delC | p.(Arg217Cys) p.(Thr367fs) | 24.1 |
ID42 | PGL | solitary | 51/m | cancers (AO > 50) | SDHB | c.287-3 C > G | p.? | 1472.7 |
ID4 | PGL/HNP | multiple | 23/f | cancers (AO > 50) | SDHB | deletion exon 3 | n.a. | |
ID55 | HNP | unknown | 26/f | unknown | SDHB | c.806delT | p.(Met269fs) | n.a. |
ID86 | PGL | solitary | 33/m | unknown | SDHB | c.649C > T | p.(Arg217Cys) | n.a. |
ID19 | HNP | solitary | 36/f | cancers (AO > 50) | SDHB | c.725G > A | p.(Arg242His) | 5908.3 |
ID63 | PGL | solitary | 48/m | cancers (AO > 50) | SDHC | c.397C > T | p.(Arg133*) | 45.4 |
ID48 | HNP | solitary | 69/f | inconspicuous | SDHC | c.43C > T | p.(Arg15*) | n.a. |
ID43 | PHEO | solitary | 50/m | cancers (AO > 50) | SDHC | c.379C > T | p.(His127Tyr) | 795.5 |
ID34 | HNP | solitary | 34/m | 2 PGLs | SDHD | c.53-2A > G | p.? | 278.3 |
ID38 | HNP | solitary | 47/f | 1 PGL | SDHD | c.49C > T | p.(Arg17*) | 920.6 |
ID59 | HNP | unknown | 68/f | unknown | TMEM127 | c.465_466insACTTG | p.(Ala156fs) | n.a. |
Diagnosis | AD/Gender | Gene | Nucleotide Change | Amino Acid Change | VAF (Tumor) | LOH | Somatic Status | Germline Testing * | S:F Ratio | |
---|---|---|---|---|---|---|---|---|---|---|
ID80 | PHEO | 65/m | ATRX | c.1441G > T | p.(Glu481*) | 5.4% | no | likely somatic | no | 46.2 |
ID82 | PHEO | 31/f | FH | c.700A > G | p.(Thr234Ala) | 82.0% | yes | germline | yes (targeted) | 0.4 |
ID41 | PHEO | 37/m | FH | c.816_836del | p.(Ala273_Val279del) | 92.3% | yes | germline | yes (targeted) | 0.3 |
ID68 | PHEO | 66/f | HRAS | c.182A > G | p.(Gln61Arg) | 56.8% | no | somatic | yes | 66.3 |
ID1 | PHEO | 52/f | HRAS | c.182A > G | p.(Gln61Arg) | 72.0% | somatic | yes | 17.7 | |
ID60 | PHEO | 27/f | HRAS | c.37G > C | p.Gly13Arg | 26.0% | no | somatic | no | 12.8 |
ID75 | HNP | 53/f | IDH2 | c.514A > G | p.Arg172Gly | 24.5% | no | somatic | yes (targeted) | 5.3 |
ID73 | PHEO | 56/f | NF1 | c.1540C > T | p.(Gln514*) | 62.1% | unknown | no | 16.6 | |
ID79 | PHEO | 58/f | NF1 | c.7798_7799insA | p.(Ser2601fs) | 83.2% | yes | unknown | no | 47.5 |
ID91 | PHEO | 50/m | NF1 | c.205-1G > T | p.? | 39.9% | no | unknown | no | unknown |
ID92 | PHEO | 73/f | NF1 NF1 | c.1318C > T c.7549C > T | p.(Arg440*) p.(Arg2517*) | 15.9% 33.2% | no no | likely somatic unknown | no | unknown unknown |
ID51 | PGL | 56/m | SDHB | c.183T > G | p.(Tyr61*) | 80.0% | yes | somatic | yes (targeted) | 5178.2 |
ID42 | PGL | 51/m | SDHB | c.287-3C > G | p.? | 85.4% | yes | germline | yes | 1472.7 |
ID71 | HNP | 49/m | SDHB | c.724C > T | p.(Arg242Cys) | 16.4% | no | likely somatic | no | 24.7 |
ID43 | PHEO | 50/m | SDHC ATRX | c.379C > T c.2817del | p.(His127Tyr) p.(Ala940fs) | 46.6% 65.8% | no | germline likely somatic | yes | 795.5 |
ID69 | HNP | 27/f | SDHD | c.3G > T | p.(Met1Ile) | 18.2% | no | somatic | yes | 405.9 |
ID24 | PGL | 21/m | SDHD | c.337_340del | p.(Asp113fs) | 41.5% | somatic | yes | 1756.8 | |
ID72 | PHEO | 66/f | TP53 ATRX | c.817C > T c.4744_4745insA | p.(Arg273Cys) p.(Thr1582fs) | 74.1% 61.2% | somatic unknown | yes | 5.7 | |
ID67 | PGL | 31/f | VHL | c.193T > G | p.(Ser65Ala) | 8.5% | no | somatic | yes | 24.1 |
ID66 | PHEO | 13/m | VHL | c.193T > G | p.(Ser65Ala) | 17.4% | no | somatic | yes | 21.4 |
ID78 | PHEO | 47/f | VHL | c.500G > A | p.(Arg167Gln) | 49.6% | no | unknown | no | 17.4 |
ID | Gene | Nucleotide Change | Amino Acid Change | VAF (Tumor) | gnomAD het/hom | SIFT | PolyPhen | COSMIC | dbSNP | Pathogenic Variants |
---|---|---|---|---|---|---|---|---|---|---|
ID61 | ATRX | c.157A > C | p.(Asn53His) | 25.2% | 0/0 | tolerated | probably damaging | - | - | no |
ID78 | FGFR1 | c.2104C > A | p.(Pro702Thr) | 49.6% | 0/0 | damaging | probably damaging | 1 × lung | - | yes (VHL) |
ID69 | FH | c.593C > T | p.(Ala198Val) | 7.3% | 0/0 | damaging | probably damaging | - | - | yes (SDHD) |
ID68 | GPT | c.628G > A | p.(Glu210Lys) | 46.0% | 0/0 | damaging | probably damaging | 1 × large intestine | rs1366336459 | yes (HRAS) |
ID79 | HIST1H3B | c.131C > A | p.(Pro44Gln) | 52.3% | 0/0 | damaging | n.a. | - | - | yes (NF1) |
ID41 | OGDHL | c.1340A > G | p.(Tyr447Cys) | 51.1% | 32/0 | damaging | probably damaging | - | rs148307090 | yes (FH) |
ID82 | PCK2 | c.463C > T | p.(Arg155Cys) | 50.9% | 30/0 | damaging | probably damaging | - | rs141787425 | yes (FH) |
ID71 | PDHB | c.520G > A | p.(Val174Met) | 47.7% | 1/0 | damaging | probably damaging | - | rs760966357 | yes (SDHB) |
ID88 | TET1 | c.382G > C | p.(Val128Leu) | 26.1% | 2/0 | tolerated | benign | - | rs142008363 | no |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gieldon, L.; William, D.; Hackmann, K.; Jahn, W.; Jahn, A.; Wagner, J.; Rump, A.; Bechmann, N.; Nölting, S.; Knösel, T.; et al. Optimizing Genetic Workup in Pheochromocytoma and Paraganglioma by Integrating Diagnostic and Research Approaches. Cancers 2019, 11, 809. https://doi.org/10.3390/cancers11060809
Gieldon L, William D, Hackmann K, Jahn W, Jahn A, Wagner J, Rump A, Bechmann N, Nölting S, Knösel T, et al. Optimizing Genetic Workup in Pheochromocytoma and Paraganglioma by Integrating Diagnostic and Research Approaches. Cancers. 2019; 11(6):809. https://doi.org/10.3390/cancers11060809
Chicago/Turabian StyleGieldon, Laura, Doreen William, Karl Hackmann, Winnie Jahn, Arne Jahn, Johannes Wagner, Andreas Rump, Nicole Bechmann, Svenja Nölting, Thomas Knösel, and et al. 2019. "Optimizing Genetic Workup in Pheochromocytoma and Paraganglioma by Integrating Diagnostic and Research Approaches" Cancers 11, no. 6: 809. https://doi.org/10.3390/cancers11060809
APA StyleGieldon, L., William, D., Hackmann, K., Jahn, W., Jahn, A., Wagner, J., Rump, A., Bechmann, N., Nölting, S., Knösel, T., Gudziol, V., Constantinescu, G., Masjkur, J., Beuschlein, F., Timmers, H. J., Canu, L., Pacak, K., Robledo, M., Aust, D., ... Klink, B. (2019). Optimizing Genetic Workup in Pheochromocytoma and Paraganglioma by Integrating Diagnostic and Research Approaches. Cancers, 11(6), 809. https://doi.org/10.3390/cancers11060809