Utility of Circulating Cell-Free RNA Analysis for the Characterization of Global Transcriptome Profiles of Multiple Myeloma Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Peripheral Blood (PB) Collection and Processing
2.2. exRNA Extraction
2.3. Transcriptome Library Construction and Sequencing
2.4. Analysis of Transcriptome Data
2.5. Functional Analysis
2.6. Identification of SNP and Indel Variations
2.7. Droplet Digital PCR
3. Results
3.1. Characteristics of MM Patients and RNA Profiles
3.2. Overview of the Transcriptome Sequencing
3.3. Dysregulated exRNA in MM Patients
3.4. Potential exRNA Biomarkers for MM Patients
3.5. Gene Variants in MM Patients
3.6. Digital Droplet PCR Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Egan, J.B.; Kortuem, K.M.; Kurdoglu, A.; Izatt, T.; Aldrich, J.; Reiman, R.; Phillips, L.; Baker, A.; Shi, C.X.; Schmidt, J.; et al. Extramedullary myeloma whole genome sequencing reveals novel mutations in Cereblon, proteasome subunit G2 and the glucocorticoid receptor in multi drug resistant disease. Br. J. Haematol. 2013, 161, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Egan, J.B.; Shi, C.X.; Tembe, W.; Christoforides, A.; Kurdoglu, A.; Sinari, S.; Middha, S.; Asmann, Y.; Schmidt, J.; Braggio, E.; et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood 2012, 120, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Chapman, M.A.; Lawrence, M.S.; Keats, J.J.; Cibulskis, K.; Sougnez, C.; Schinzel, A.C.; Harview, C.L.; Brunet, J.P.; Ahmann, G.J.; Adli, M.; et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011, 471, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Lohr, J.G.; Stojanov, P.; Carter, S.L.; Cruz-Gordillo, P.; Lawrence, M.S.; Auclair, D.; Sougnez, C.; Knoechel, B.; Gould, J.; Saksena, G.; et al. Widespread genetic heterogeneity in multiple myeloma: Implications for targeted therapy. Cancer Cell 2014, 25, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Davies, F.E.; Dring, A.M.; Li, C.; Rawstron, A.C.; Shammas, M.A.; O’Connor, S.M.; Fenton, J.A.; Hideshima, T.; Chauhan, D.; Tai, I.T.; et al. Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood 2003, 102, 4504–4511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mithraprabhu, S.; Sirdesai, S.; Chen, M.; Khong, T.; Spencer, A. Circulating Tumour DNA Analysis for Tumour Genome Characterisation and Monitoring Disease Burden in Extramedullary Multiple Myeloma. Int. J. Mol. Sci. 2018, 19, 1858. [Google Scholar] [CrossRef] [PubMed]
- Gahan, P.B.; Swaminathan, R. Circulating nucleic acids in plasma and serum. Recent developments. Ann. N. Y. Acad. Sci. 2008, 1137, 1–6. [Google Scholar] [CrossRef]
- Mandel, P.; Metais, P. Les acides nucleiques du plasma sanguin chez l’homme. Seances Soc. Biol. Ses Fil. 1948, 142, 241–243. [Google Scholar]
- Heitzer, E.; Auer, M.; Hoffmann, E.M.; Pichler, M.; Gasch, C.; Ulz, P.; Lax, S.; Waldispuehl-Geigl, J.; Mauermann, O.; Mohan, S.; et al. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int. J. Cancer 2013, 133, 346–356. [Google Scholar] [CrossRef]
- Murtaza, M.; Dawson, S.J.; Tsui, D.W.; Gale, D.; Forshew, T.; Piskorz, A.M.; Parkinson, C.; Chin, S.F.; Kingsbury, Z.; Wong, A.S.; et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013, 497, 108–112. [Google Scholar] [CrossRef]
- Xu, R.; Rai, A.; Chen, M.; Suwakulsiri, W.; Greening, D.W.; Simpson, R.J. Extracellular vesicles in cancer—Implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 2018, 15, 617–638. [Google Scholar] [CrossRef] [PubMed]
- Manier, S.; Liu, C.J.; Avet-Loiseau, H.; Park, J.; Shi, J.; Campigotto, F.; Salem, K.Z.; Huynh, D.; Glavey, S.V.; Rivotto, B.; et al. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood 2017, 129, 2429–2436. [Google Scholar] [CrossRef] [PubMed]
- Sedlarikova, L.; Bollova, B.; Radova, L.; Brozova, L.; Jarkovsky, J.; Almasi, M.; Penka, M.; Kuglik, P.; Sandecka, V.; Stork, M.; et al. Circulating exosomal long noncoding RNA PRINS-First findings in monoclonal gammopathies. Hematol. Oncol. 2018, 36, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Joosse, S.A.; Muller, V.; Steinbach, B.; Pantel, K.; Schwarzenbach, H. Circulating cell-free cancer-testis MAGE-A RNA, BORIS RNA, let-7b and miR-202 in the blood of patients with breast cancer and benign breast diseases. Br. J. Cancer 2014, 111, 909–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Zhang, J.; Sun, P.; Shang, J. Circulating cell-free human telomerase reverse transcriptase mRNA in plasma and its potential diagnostic and prognostic value for gastric cancer. Int. J. Clin. Oncol. 2013, 18, 478–486. [Google Scholar] [CrossRef] [PubMed]
- March-Villalba, J.A.; Martinez-Jabaloyas, J.M.; Herrero, M.J.; Santamaria, J.; Alino, S.F.; Dasi, F. Cell-free circulating plasma hTERT mRNA is a useful marker for prostate cancer diagnosis and is associated with poor prognosis tumor characteristics. PLoS ONE 2012, 7, e43470. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, X.; Wang, L.; Zheng, G.; Du, L.; Yang, Y.; Dong, Z.; Liu, Y.; Qu, A.; Wang, C. Investigation of cell free BIRC5 mRNA as a serum diagnostic and prognostic biomarker for colorectal cancer. J. Surg. Oncol. 2014, 109, 574–579. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Wang, L.; Du, L.; Wang, S.; Zheng, G.; Li, W.; Zhuang, X.; Zhang, X.; Dong, Z. Detection of circulating Bmi-1 mRNA in plasma and its potential diagnostic and prognostic value for uterine cervical cancer. Int. J. Cancer 2012, 131, 165–172. [Google Scholar] [CrossRef]
- Spornraft, M.; Kirchner, B.; Haase, B.; Benes, V.; Pfaffl, M.W.; Riedmaier, I. Optimization of extraction of circulating RNAs from plasma--enabling small RNA sequencing. PLoS ONE 2014, 9, e107259. [Google Scholar] [CrossRef]
- Zwemer, L.M.; Hui, L.; Wick, H.C.; Bianchi, D.W. RNA-Seq and expression microarray highlight different aspects of the fetal amniotic fluid transcriptome. Prenat. Diagn. 2014, 34, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Koh, W.; Pan, W.; Gawad, C.; Fan, H.C.; Kerchner, G.A.; Wyss-Coray, T.; Blumenfeld, Y.J.; El-Sayed, Y.Y.; Quake, S.R. Noninvasive in vivo monitoring of tissue-specific global gene expression in humans. Proc. Natl. Acad. Sci. USA 2014, 111, 7361–7366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Corral, L.; Corchete, L.A.; Sarasquete, M.E.; Mateos, M.V.; Garcia-Sanz, R.; Ferminan, E.; Lahuerta, J.J.; Blade, J.; Oriol, A.; Teruel, A.I.; et al. Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal gammopathies. Haematologica 2014, 99, 1365–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, F.; Hardin, J.; Kordsmeier, B.; Bumm, K.; Zheng, M.; Tian, E.; Sanderson, R.; Yang, Y.; Wilson, C.; Zangari, M.; et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002, 99, 1745–1757. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.S.; Li, Y.; Mitra, A.K.; Bi, L.; Abyzov, A.; van Wijnen, A.J.; Baughn, L.B.; Van Ness, B.; Rajkumar, V.; Kumar, S.; et al. Molecular signatures of multiple myeloma progression through single cell RNA-Seq. Blood Cancer J. 2019, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Norton, S.E.; Alt, J.R.; Krzyzanowski, G.D.; Williams, T.L.; Fernando, M.R. Stabilization of Cellular RNA in Blood During Storage at Room Temperature: A Comparison of Cell-Free RNA BCT((R)) with K3EDTA Tubes. Mol. Diagn. Ther. 2014, 18, 647–653. [Google Scholar] [CrossRef]
- Qin, J.; Williams, T.L.; Fernando, M.R. A novel blood collection device stabilizes cell-free RNA in blood during sample shipping and storage. BMC Res. Notes 2013, 6, 380. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xu, R.; Ji, H.; Greening, D.W.; Rai, A.; Izumikawa, K.; Ishikawa, H.; Takahashi, N.; Simpson, R.J. Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line. Sci. Rep. 2016, 6, 38397. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018, 7, 1–6. [Google Scholar] [CrossRef]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Li, X.; Zhang, F.; Zhang, C.; Guan, Q.; Cao, X.; Zhu, W.; Zhang, X.; Cheng, Y.; Ou, K.; et al. Circulating lncRNAs associated with occurrence of colorectal cancer progression. Am. J. Cancer Res. 2015, 5, 2258–2265. [Google Scholar] [PubMed]
- Yuan, T.; Huang, X.; Woodcock, M.; Du, M.; Dittmar, R.; Wang, Y.; Tsai, S.; Kohli, M.; Boardman, L.; Patel, T.; et al. Plasma extracellular RNA profiles in healthy and cancer patients. Sci. Rep. 2016, 6, 19413. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, H.; Hoon, D.S.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Chen, M.; Greening, D.W.; He, W.; Rai, A.; Zhang, W.; Simpson, R.J. Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures. PLoS ONE 2014, 9, e110314. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.R.; Jiang, C.; Krzyzanowski, G.D.; Ryan, W.L. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS ONE 2017, 12, e0183915. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, G.J.; Vallender, E.J.; Garrett, M.R.; Challagundla, L.; Overholser, J.C.; Jurjus, G.; Dieter, L.; Syed, M.; Romero, D.G.; Benghuzzi, H.; et al. Altered neuro-inflammatory gene expression in hippocampus in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 82, 177–186. [Google Scholar] [CrossRef]
- Kirk, E.; Chin, L.S.; Li, L. GRIF1 binds Hrs and is a new regulator of endosomal trafficking. J. Cell Sci. 2006, 119, 4689–4701. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Ren, G.; Lu, Y.; Jin, B.; Wang, J.; Chen, X.; Liu, Z.; Li, K.; Nie, Y.; Wang, X.; et al. Identification of TRAK1 (Trafficking protein, kinesin-binding 1) as MGb2-Ag: A novel cancer biomarker. Cancer Lett. 2009, 274, 250–258. [Google Scholar] [CrossRef]
- Cao, Y.; Yu, S.L.; Wang, Y.; Guo, G.Y.; Ding, Q.; An, R.H. MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumour Biol. 2011, 32, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Pichiorri, F.; Suh, S.S.; Ladetto, M.; Kuehl, M.; Palumbo, T.; Drandi, D.; Taccioli, C.; Zanesi, N.; Alder, H.; Hagan, J.P.; et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc. Natl. Acad. Sci. USA 2008, 105, 12885–12890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiranuma, C.; Kawakami, K.; Oyama, K.; Ota, N.; Omura, K.; Watanabe, G. Hypermethylation of the MYOD1 gene is a novel prognostic factor in patients with colorectal cancer. Int. J. Mol. Med. 2004, 13, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Widschwendter, A.; Muller, H.M.; Fiegl, H.; Ivarsson, L.; Wiedemair, A.; Muller-Holzner, E.; Goebel, G.; Marth, C.; Widschwendter, M. DNA methylation in serum and tumors of cervical cancer patients. Clin. Cancer Res. 2004, 10, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Hideshima, T.; Carrasco, D.; Shammas, M.; Auclair, D.; Davies, F.; Mitsiades, N.; Mitsiades, C.; Kim, R.S.; Li, C.; et al. Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood 2004, 103, 1799–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, C.; Park, S.; Lee, E.K.; Yoo, Y.J. Downregulation of ubiquitin level via knockdown of polyubiquitin gene Ubb as potential cancer therapeutic intervention. Sci. Rep. 2013, 3, 2623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Ren, Y.; Zuo, T. Long noncoding RNA LINC00978 promotes cell proliferation and invasion in nonsmall cell lung cancer by inhibiting miR67545p. Mol. Med. Rep. 2018, 18, 4725–4732. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.G.; Pontes, C.; Guino, E.; Navarro, M.; Osorio, A.; Canzian, F.; Moreno, V.; Bellvitge Colorectal Cancer Study, G. Polymorphisms in prostaglandin synthase 2/cyclooxygenase 2 (PTGS2/COX2) and risk of colorectal cancer. Br. J. Cancer 2004, 91, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Langsenlehner, U.; Yazdani-Biuki, B.; Eder, T.; Renner, W.; Wascher, T.C.; Paulweber, B.; Weitzer, W.; Samonigg, H.; Krippl, P. The cyclooxygenase-2 (PTGS2) 8473T>C polymorphism is associated with breast cancer risk. Clin. Cancer Res. 2006, 12, 1392–1394. [Google Scholar] [CrossRef]
- Matsubara, J.; Honda, K.; Ono, M.; Tanaka, Y.; Kobayashi, M.; Jung, G.; Yanagisawa, K.; Sakuma, T.; Nakamori, S.; Sata, N.; et al. Reduced plasma level of CXC chemokine ligand 7 in patients with pancreatic cancer. Cancer Epidemiol. Biomark. Prev. 2011, 20, 160–171. [Google Scholar] [CrossRef]
- Timms, J.F.; Menon, U.; Devetyarov, D.; Tiss, A.; Camuzeaux, S.; McCurrie, K.; Nouretdinov, I.; Burford, B.; Smith, C.; Gentry-Maharaj, A.; et al. Early detection of ovarian cancer in samples pre-diagnosis using CA125 and MALDI-MS peaks. Cancer Genom. Proteom. 2011, 8, 289–305. [Google Scholar]
- Clarke, C.H.; Yip, C.; Badgwell, D.; Fung, E.T.; Coombes, K.R.; Zhang, Z.; Lu, K.H.; Bast, R.C., Jr. Proteomic biomarkers apolipoprotein A1, truncated transthyretin and connective tissue activating protein III enhance the sensitivity of CA125 for detecting early stage epithelial ovarian cancer. Gynecol. Oncol. 2011, 122, 548–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yee, J.; Sadar, M.D.; Sin, D.D.; Kuzyk, M.; Xing, L.; Kondra, J.; McWilliams, A.; Man, S.F.; Lam, S. Connective tissue-activating peptide III: A novel blood biomarker for early lung cancer detection. J. Clin. Oncol. 2009, 27, 2787–2792. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.K.; Kumar, D.; Naik, M.; Dixit, M. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS ONE 2018, 13, e0191377. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Li, E.; Liu, Y.; Xie, W.; Huang, C.; Song, J.; Zhang, W.; Zheng, Y.; Wang, H.; Wang, Q. CTAPIII/CXCL7: A novel biomarker for early diagnosis of lung cancer. Cancer Med. 2018, 7, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Feve, M.; Saliou, J.M.; Zeniou, M.; Lennon, S.; Carapito, C.; Dong, J.; Van Dorsselaer, A.; Junier, M.P.; Chneiweiss, H.; Cianferani, S.; et al. Comparative expression study of the endo-G protein coupled receptor (GPCR) repertoire in human glioblastoma cancer stem-like cells, U87-MG cells and non malignant cells of neural origin unveils new potential therapeutic targets. PLoS ONE 2014, 9, e91519. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.P.; Barros-Silva, J.D.; Vieira, J.; Lisboa, S.; Torres, L.; Correia, C.; Vieira-Coimbra, M.; Martins, A.T.; Jeronimo, C.; Henrique, R.; et al. NCOA2 is a candidate target gene of 8q gain associated with clinically aggressive prostate cancer. Genes Chromosom. Cancer 2016, 55, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Bera, T.K.; Zimonjic, D.B.; Popescu, N.C.; Sathyanarayana, B.K.; Kumar, V.; Lee, B.; Pastan, I. POTE, a highly homologous gene family located on numerous chromosomes and expressed in prostate, ovary, testis, placenta, and prostate cancer. Proc. Natl. Acad. Sci. USA 2002, 99, 16975–16980. [Google Scholar] [CrossRef]
- Hamidi, T.; Algul, H.; Cano, C.E.; Sandi, M.J.; Molejon, M.I.; Riemann, M.; Calvo, E.L.; Lomberk, G.; Dagorn, J.C.; Weih, F.; et al. Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis. J. Clin. Investig. 2012, 122, 2092–2103. [Google Scholar] [CrossRef] [Green Version]
- Ria, R.; Todoerti, K.; Berardi, S.; Coluccia, A.M.; De Luisi, A.; Mattioli, M.; Ronchetti, D.; Morabito, F.; Guarini, A.; Petrucci, M.T.; et al. Gene expression profiling of bone marrow endothelial cells in patients with multiple myeloma. Clin. Cancer Res. 2009, 15, 5369–5378. [Google Scholar] [CrossRef]
- Samur, M.K.; Minvielle, S.; Gulla, A.; Fulciniti, M.; Cleynen, A.; Aktas Samur, A.; Szalat, R.; Shammas, M.; Magrangeas, F.; Tai, Y.T.; et al. Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma. Leukemia 2018, 32, 2626–2635. [Google Scholar] [CrossRef] [PubMed]
- Ronchetti, D.; Agnelli, L.; Pietrelli, A.; Todoerti, K.; Manzoni, M.; Taiana, E.; Neri, A. A compendium of long non-coding RNAs transcriptional fingerprint in multiple myeloma. Sci. Rep. 2018, 8, 6557. [Google Scholar] [CrossRef] [PubMed]
- Benetatos, L.; Dasoula, A.; Hatzimichael, E.; Georgiou, I.; Syrrou, M.; Bourantas, K.L. Promoter hypermethylation of the MEG3 (DLK1/MEG3) imprinted gene in multiple myeloma. Clin. Lymphoma Myeloma 2008, 8, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.F.; Chang, Y.C.; Chang, C.S.; Lin, S.F.; Liu, Y.C.; Hsiao, H.H.; Chang, J.G.; Liu, T.C. MALAT1 long non-coding RNA is overexpressed in multiple myeloma and may serve as a marker to predict disease progression. BMC Cancer 2014, 14, 809. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.B.; He, X.; Huang, Y.F.; Wu, Q.N.; Zhou, Y.C.; Hao, D.J. Long Noncoding RNA CRNDE Promotes Multiple Myeloma Cell Growth by Suppressing miR-451. Oncol. Res. 2017, 25, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Chen, H.; Shen, X.; Wang, X.; Ju, S.; Lu, M.; Cong, H. Serum level of long noncoding RNA H19 as a diagnostic biomarker of multiple myeloma. Clin. Chim. Acta 2018, 480, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.B.; Dong, C.P.; Zhou, G.C.; Lu, S.M.; Luan, Y.; Gu, X.; Liu, L.; Ding, X.F. A potential panel of four-long noncoding RNA signature in prostate cancer predicts biochemical recurrence-free survival and disease-free survival. Int. Urol. Nephrol. 2017, 49, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Grasedieck, S.; Rueß, C.; Pochert, N.; Lux, S.; Schwarzer, A.; Klusmann, J.-H.; Jongen-Lavrencic, M.; Pollack, J.R.; Rouhi, A.; Kuchenbauer, F. Identification of Novel Lncrnas That Predict Survival in AML Patients and Modulate Leukemic Cells. Blood 2018, 132, 3909. [Google Scholar] [CrossRef]
- Zhou, B.; Guo, W.; Sun, C.; Zhang, B.; Zheng, F. Linc00462 promotes pancreatic cancer invasiveness through the miR-665/TGFBR1-TGFBR2/SMAD2/3 pathway. Cell Death Dis. 2018, 9, 706. [Google Scholar] [CrossRef]
- Mithraprabhu, S.; Morley, R.; Khong, T.; Kalff, A.; Bergin, K.; Hocking, J.; Savvidou, I.; Bowen, K.M.; Ramachandran, M.; Choi, K.; et al. Monitoring tumour burden and therapeutic response through analysis of circulating tumour DNA and extracellular RNA in multiple myeloma patients. Leukemia 2019. [Google Scholar] [CrossRef]
- Piskol, R.; Ramaswami, G.; Li, J.B. Reliable identification of genomic variants from RNA-seq data. Am. J. Hum. Genet. 2013, 93, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pasche, B.; Zhang, W.; Chen, K. Association of MUC16 Mutation with Tumor Mutation Load and Outcomes in Patients with Gastric Cancer. JAMA Oncol. 2018, 4, 1691–1698. [Google Scholar] [CrossRef] [PubMed]
- King, R.J.; Yu, F.; Singh, P.K. Genomic alterations in mucins across cancers. Oncotarget 2017, 8, 67152–67168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | Sample | Age | Sex | IG_Type | Cytogenetics |
---|---|---|---|---|---|
Healthy control | HC1 | 61 | F | ||
HC2 | 36 | M | |||
HC3 | 59 | M | |||
HC4 | 65 | M | |||
HC5 | 28 | F | |||
HC6 | 64 | F | |||
HC7 | 28 | M | |||
HC8 | 28 | M | |||
HC9 | 25 | F | |||
HC10 | 25 | M | |||
NDMM | ND1 | 84 | M | ||
ND2 | 75 | F | |||
ND3 | 52 | M | IgA kappa | t(4;14) | |
ND4 | 54 | M | IgA kappa | FISH negative for 17p, t(4;14), t(14;16) | |
ND5 | 65 | F | IgA lambda | t(14;16) | |
RRMM | RR1 | 66 | M | IgG Lambda | High risk +1q |
RR2 | 69 | F | |||
RR3 | 62 | M | IgA kappa | t(4;14) in 94% of cells on FISH | |
RR4 | 60 | M | |||
RR5 | 62 | F | |||
RR6 | 53 | F | IgG kappa 12 g/L | ||
RR7 | 57 | M | Del 16q | ||
RR8 | 64 | M | IgG lambda | ||
RR9 | 71 | F | Kappa Light chains | ||
RR10 | 63 | M | IgG lambda | ||
RR11 | 77 | F | IgG kappa | ||
RR12 | 71 | M | Lambda light chains |
Sample | Clean Reads a | Q20 (%) | Q30 (%) | Mapped Reads b | Percentage (%) | Paired Mapping | Percentage (%) | Genes |
---|---|---|---|---|---|---|---|---|
HC1 | 35514538 | 94.33 | 87.06 | 32335527 | 91.05 | 30805744 | 86.74 | 25298 |
HC2 | 32851123 | 94.46 | 87.49 | 29510065.5 | 89.83 | 28039748 | 85.35 | 26253 |
HC3 | 35037913 | 94.62 | 87.77 | 31689161 | 90.44 | 30111659 | 85.94 | 26193 |
HC4 | 20540654 | 95.99 | 93.73 | 19878330 | 96.78 | 19459041 | 94.73 | 32587 |
HC5 | 20440423 | 96.36 | 94.31 | 19465740 | 95.23 | 19125751 | 93.57 | 37620 |
HC6 | 21051811 | 96.36 | 94.33 | 20066691 | 95.32 | 19697560 | 93.57 | 36927 |
HC7 | 20663077 | 96.44 | 94.44 | 19753850 | 95.60 | 19378872 | 93.79 | 37271 |
HC8 | 21280234 | 96.38 | 94.34 | 20188191.5 | 94.87 | 19770401 | 92.90 | 37180 |
HC9 | 20233979 | 96.37 | 94.33 | 19270979.5 | 95.24 | 18855816 | 93.19 | 37431 |
HC10 | 25312716 | 95.33 | 88.25 | 24087393.5 | 95.16 | 23479329 | 92.76 | 34429 |
ND1 | 28398995 | 95.66 | 89.04 | 26841732.5 | 94.52 | 26201952 | 92.26 | 35206 |
ND2 | 30255712 | 94.45 | 86.67 | 28480977 | 94.13 | 27722552 | 91.63 | 28239 |
ND3 | 30676993 | 95.38 | 88.42 | 28961701 | 94.41 | 28258901 | 92.12 | 33733 |
ND4 | 32996329 | 95.44 | 88.45 | 31421035.5 | 95.23 | 30717044 | 93.09 | 33671 |
ND5 | 29687796 | 95.15 | 88.03 | 27781572.5 | 93.58 | 27023016 | 91.02 | 34465 |
RR1 | 23654835 | 96.18 | 94.07 | 22562264 | 95.38 | 22117174 | 93.50 | 38293 |
RR2 | 34826086 | 95.48 | 89.72 | 31683769.5 | 90.98 | 29855275 | 85.73 | 24750 |
RR3 | 34519866 | 95.27 | 89.64 | 31195727 | 90.37 | 29771168 | 86.24 | 27030 |
RR4 | 19760808 | 96.19 | 94.09 | 18778665.5 | 95.03 | 18400771 | 93.12 | 36728 |
RR5 | 37935946 | 93.83 | 86.53 | 33533599 | 88.40 | 31563842 | 83.20 | 23274 |
RR6 | 21276042 | 95.97 | 93.69 | 20306633.5 | 95.44 | 19920078 | 93.63 | 37483 |
RR7 | 35570784 | 94.94 | 89.04 | 31696004 | 89.11 | 30025680 | 84.41 | 27430 |
RR8 | 21689934 | 96.37 | 94.35 | 20580676.5 | 94.89 | 20153418 | 92.92 | 37363 |
RR9 | 35093968 | 95.31 | 89.64 | 31801951 | 90.62 | 30321993 | 86.40 | 26195 |
RR10 | 36654365 | 94.14 | 87.09 | 33462054 | 91.29 | 31837012 | 86.86 | 23714 |
RR11 | 21643768 | 96.26 | 94.21 | 20526202 | 94.84 | 20149268 | 93.10 | 37348 |
RR12 | 34935598 | 95.30 | 89.67 | 31878267 | 91.25 | 30410198 | 87.05 | 25557 |
dbSNP | Chromosome | Locus | Ref | Alt | Gene | NDMM | RRMM |
---|---|---|---|---|---|---|---|
rs61821060 | chr1 | 203039046 | G | C | PPFIA4 | 5 | 11 |
rs2363468 | chr2 | 208325606 | T | C | PIKFYVE | 4 | 11 |
rs1941635 | chr11 | 118111780 | T | G | TMPRSS4 | 4 | 10 |
rs2172521 | chr12 | 57810500 | T | C | AVIL | 4 | 10 |
rs7199961 | chr16 | 88428999 | G | C | ZNF469 | 4 | 10 |
rs73714227 | chr7 | 100952147 | C | T | MUC3A | 4 | 10 |
rs4728137 | chr7 | 128815713 | C | G | CCDC136 | 4 | 10 |
rs870124 | chr1 | 3411794 | T | C | PRDM16 | 4 | 9 |
rs4951168 | chr1 | 205084091 | C | T | TMEM81 | 4 | 9 |
rs6491707 | chr13 | 102732665 | A | G | CCDC168 | 4 | 9 |
rs35708006 | chr15 | 23441451 | T | C | GOLGA6L2 | 4 | 9 |
rs7197779 | chr16 | 10909070 | A | G | CIITA | 4 | 9 |
rs673918 | chr17 | 77194764 | A | C | SEC14L1 | 4 | 9 |
rs3746887 | chr21 | 39660813 | T | C | B3GALT5 | 4 | 9 |
rs130642 | chr22 | 46281710 | T | C | TTC38 | 4 | 9 |
rs9831516 | chr3 | 69180910 | G | A | FRMD4B | 4 | 9 |
rs2261167 | chr4 | 40808730 | A | G | NSUN7 | 4 | 9 |
rs4728329 | chr7 | 134541075 | A | G | AKR1B10 | 5 | 9 |
rs615474 | chr9 | 35043294 | G | T | C9orf131 | 4 | 9 |
rs2215530 | chr9 | 122724689 | G | A | OR1L4 | 4 | 9 |
rs3748597 | chr1 | 953279 | T | C | NOC2L | 4 | 8 |
rs10776792 | chr1 | 115033402 | A | G | TSHB | 4 | 8 |
rs1144566 | chr1 | 182600491 | T | C | RGS16 | 4 | 8 |
rs28533004 | chr1 | 248650751 | T | A | OR2T27 | 5 | 8 |
rs2653588 | chr11 | 8925474 | A | G | C11orf16 | 5 | 8 |
rs540687 | chr11 | 57379543 | A | G | PRG3 | 5 | 8 |
rs1194099 | chr11 | 65582378 | A | T | EHBP1L1 | 4 | 8 |
rs929949 | chr12 | 27696863 | A | G | REP15 | 4 | 8 |
rs59122400 | chr15 | 23441526 | G | A | GOLGA6L2 | 5 | 8 |
rs8026845 | chr15 | 44674191 | T | C | PATL2 | 4 | 8 |
rs8071623 | chr17 | 58543925 | G | T | C17orf47 | 4 | 8 |
rs8104843 | chr19 | 15087481 | C | G | OR1I1 | 4 | 8 |
rs4806163 | chr19 | 35513204 | A | G | DMKN | 5 | 8 |
rs1059768 | chr20 | 56513348 | A | G | RTFDC1 | 5 | 8 |
rs2931761 | chr3 | 112471290 | G | T | BTLA | 5 | 8 |
rs6831040 | chr4 | 81046034 | C | T | BMP3 | 4 | 8 |
rs699512 | chr7 | 43771165 | G | A | BLVRA | 4 | 8 |
rs1043708507 | chr7 | 100955225 | T | A | MUC3A | 4 | 8 |
rs3118635 | chr9 | 129098622 | G | T | CRAT | 4 | 8 |
rs10864628 | chr1 | 6575171 | A | G | TAS1R1 | 4 | 7 |
rs198400 | chr1 | 11824498 | A | G | CLCN6 | 4 | 7 |
rs10480 | chr1 | 150308112 | T | C | MRPS21 | 4 | 7 |
rs863363 | chr1 | 158579721 | A | G | OR10X1 | 4 | 7 |
rs859398 | chr1 | 175406666 | T | C | TNR | 4 | 7 |
rs2243525 | chr1 | 236543562 | G | C | LGALS8 | 4 | 7 |
rs10736251 | chr10 | 116471848 | G | A | PNLIPRP3 | 4 | 7 |
rs1897519 | chr10 | 116471851 | A | G | PNLIPRP3 | 4 | 7 |
rs7088479 | chr10 | 123746786 | T | C | CPXM2 | 4 | 7 |
rs2255246 | chr10 | 133420037 | A | G | MTG1 | 5 | 7 |
rs564271 | chr11 | 1835943 | T | C | SYT8 | 4 | 7 |
rs10768611 | chr11 | 5151556 | A | G | OR52A1 | 4 | 7 |
rs2682123 | chr11 | 6320454 | C | G | CAVIN3 | 4 | 7 |
rs2958149 | chr12 | 56716008 | A | G | NACA | 4 | 7 |
rs9300758 | chr13 | 102735870 | A | G | CCDC168 | 4 | 7 |
rs9514066 | chr13 | 102875499 | G | C | ERCC5 | 4 | 7 |
rs12896533 | chr14 | 19748139 | T | C | OR4Q3 | 4 | 7 |
rs1280395 | chr15 | 57439137 | A | C | CGNL1 | 5 | 7 |
rs7168069 | chr15 | 68332058 | A | C | ITGA11 | 4 | 7 |
rs4787984 | chr16 | 27761580 | G | A | KIAA0556 | 4 | 7 |
rs9932770 | chr16 | 29697029 | A | G | QPRT | 5 | 7 |
rs235638 | chr16 | 29780400 | G | C | ZG16 | 4 | 7 |
rs4782300 | chr16 | 88431813 | C | T | ZNF469 | 4 | 7 |
rs897420 | chr17 | 41514660 | G | C | KRT15 | 4 | 7 |
rs2429387 | chr17 | 62689654 | G | A | MRC2 | 4 | 7 |
rs1688149 | chr17 | 74866908 | C | T | FDXR | 4 | 7 |
rs820256 | chr17 | 75594749 | T | G | MYO15B | 4 | 7 |
rs2287803 | chr19 | 10001670 | T | C | COL5A3 | 5 | 7 |
rs2285422 | chr19 | 36006456 | C | G | SYNE4 | 4 | 7 |
rs3103057 | chr19 | 56053798 | G | A | NLRP5 | 4 | 7 |
rs2444257 | chr2 | 151465581 | A | T | RIF1 | 4 | 7 |
rs6436669 | chr2 | 227248459 | A | G | COL4A3 | 4 | 7 |
rs1033545 | chr20 | 18315428 | T | A | ZNF133 | 5 | 7 |
rs6076122 | chr20 | 23750857 | A | G | CST1 | 4 | 7 |
rs910148 | chr20 | 62881254 | T | C | DIDO1 | 4 | 7 |
rs464391 | chr21 | 44579776 | G | C | KRTAP10-5 | 5 | 7 |
rs6787916 | chr3 | 52833699 | G | C | MUSTN1 | 4 | 7 |
rs28376231 | chr5 | 177503134 | G | A | DOK3 | 4 | 7 |
rs28463186 | chr7 | 100995575 | A | G | MUC12 | 4 | 7 |
rs6558339 | chr8 | 143249842 | T | C | ZFP41 | 4 | 7 |
rs62547039 | chr9 | 34725745 | T | C | FAM205A | 4 | 7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Mithraprabhu, S.; Ramachandran, M.; Choi, K.; Khong, T.; Spencer, A. Utility of Circulating Cell-Free RNA Analysis for the Characterization of Global Transcriptome Profiles of Multiple Myeloma Patients. Cancers 2019, 11, 887. https://doi.org/10.3390/cancers11060887
Chen M, Mithraprabhu S, Ramachandran M, Choi K, Khong T, Spencer A. Utility of Circulating Cell-Free RNA Analysis for the Characterization of Global Transcriptome Profiles of Multiple Myeloma Patients. Cancers. 2019; 11(6):887. https://doi.org/10.3390/cancers11060887
Chicago/Turabian StyleChen, Maoshan, Sridurga Mithraprabhu, Malarmathy Ramachandran, Kawa Choi, Tiffany Khong, and Andrew Spencer. 2019. "Utility of Circulating Cell-Free RNA Analysis for the Characterization of Global Transcriptome Profiles of Multiple Myeloma Patients" Cancers 11, no. 6: 887. https://doi.org/10.3390/cancers11060887