Next Article in Journal
ADAM17: An Emerging Therapeutic Target for Lung Cancer
Next Article in Special Issue
Simultaneous Multi-Organ Metastases from Chemo-Resistant Triple-Negative Breast Cancer Are Prevented by Interfering with WNT-Signaling
Previous Article in Journal
Fluorescence-Guided Surgery for Hepatoblastoma with Indocyanine Green
Previous Article in Special Issue
A Role for the WNT Co-Receptor LRP6 in Pathogenesis and Therapy of Epithelial Cancers
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Wnt Signaling Pathways in Keratinocyte Carcinomas

de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
*
Author to whom correspondence should be addressed.
Authors contributed equally.
Cancers 2019, 11(9), 1216; https://doi.org/10.3390/cancers11091216
Submission received: 20 July 2019 / Revised: 17 August 2019 / Accepted: 19 August 2019 / Published: 21 August 2019
(This article belongs to the Special Issue Targeting Wnt Signaling in Cancer)

Abstract

:
The skin functions as a barrier between the organism and the surrounding environment. Direct exposure to external stimuli and the accumulation of genetic mutations may lead to abnormal cell growth, irreversible tissue damage and potentially favor skin malignancy. Skin homeostasis is coordinated by an intricate signaling network, and its dysregulation has been implicated in the development of skin cancers. Wnt signaling is one such regulatory pathway orchestrating skin development, homeostasis, and stem cell activation. Aberrant regulation of Wnt signaling cascades not only gives rise to tumor initiation, progression and invasion, but also maintains cancer stem cells which contribute to tumor recurrence. In this review, we summarize recent studies highlighting functional evidence of Wnt-related oncology in keratinocyte carcinomas, as well as discussing preclinical and clinical approaches that target oncogenic Wnt signaling to treat cancers. Our review provides valuable insight into the significance of Wnt signaling for future interventions against keratinocyte carcinomas.

1. Introduction

The skin is the largest organ and functions as a protective barrier for the host to prevent fluid loss and regulate body temperature. It also harbors vasculature and sensory organs that transduce changes in temperature and pressure. The skin is composed of two major layers, the epidermis and dermis, forming the outer and inner layers, respectively. The epidermis includes the stratified epithelium, referred to as the interfollicular epidermis (IFE), and skin appendages, including the hair follicle, sebaceous gland, and sweat gland. The IFE and the hair follicle undergo regeneration throughout life. Constant exposure to mutagens, i.e., ultraviolet (UV) light and chemicals, can induce genetic mutations and hyperproliferation of epidermal cells, both of which eventually contribute to the formation of skin cancer. Two major types of non-melanoma skin cancer (NMSC) commonly found in patients are basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), which together account for more than 95% of total NMSC [1]. As BCC and SCC share lineage with epidermal keratinocytes, they are specifically referred as keratinocyte carcinomas [2,3]. Although the risk of death from keratinocyte carcinomas is moderate, it increases considerably if patients are immunocompromised. Thus, identifying the drivers that induce skin tumors and understanding the molecular mechanisms responsible for tumor progression and maintenance is critical for biomarker discovery in diagnosis, prognosis, and therapy monitoring.
Several signaling pathways that have been shown to play vital roles in development of the skin epithelium are also implicated in the progression of keratinocyte carcinoma, including hedgehog (Hh), transforming growth factor β (TGFβ), mitogen-activated protein kinase (MAPK/ERK) and Wnt signaling [4,5,6,7]. Among them, Wnt signaling is of particularly interest due to its complexity in intracellular signaling cascades triggered by differential Wnt ligand-receptor combinations. Divergent roles of Wnt signaling have been discovered in multiple mammalian tissues during development and homeostasis of adult tissues. Canonical Wnt/β-catenin signaling is a major regulatory pathway that governs developmental processes as well as regulating maintenance and differentiation of adult stem cells (SCs) [8,9,10]. In this review, we summarize recent studies where the role of Wnt signaling in regulating tumor initiation and progression of keratinocyte carcinoma has been identified.

2. Wnt Signaling Pathways

Wnt signaling pathways govern a multitude of cellular functions including cell proliferation, differentiation, fate specification, migration and polarity [11,12,13]. As such, Wnt signaling regulation is decisive and its aberrant activity can lead to developmental defects or various pathogenesis, including cancer [10,14].
Wnt signal transduction is initiated upon the binding of Wnt ligands to cell surface receptors of the Frizzled (Fzd) family. Upon binding, Fzd can associate with other co-receptors, such as low-density lipoprotein-related protein (LRP5/6) or tyrosine kinase receptors (PTK7, ROR, RYK), to activate Dishevelled (Dvl) and then trigger diverse signaling cascades [15,16,17,18]. Wnt signaling is generally classified into β-catenin-dependent canonical (referred as Wnt/β-catenin signaling) and β-catenin-independent non-canonical pathways (Figure 1).
The activation of canonical Wnt signaling is characterized by β-catenin-dependent transcriptional activity. In the absence of Wnt ligand, cytosolic β-catenin is captured and phosphorylated by the destruction complex, composed of Axin, adenomatous polyposis coli (APC), casein kinase 1 (CK1), and glycogen synthase kinase 3β (GSK3β) [19,20,21]. Captured β-catenin is subsequently bound by β-transducin repeat-containing protein (β-TrCP), which mediates ubiquitylation and proteasomal degradation of β-catenin. Upon Wnt-receptor interaction, the destruction complex is inhibited, which in turn stabilizes cytosolic β-catenin. Stabilized β-catenin enters the nucleus, and then interacts with members of the T-cell factor (TCF)/lymphoid enhancer factor (LEF) family to trigger the transcription of Wnt target genes, e.g., Axin2, c-Myc, and Ccnd1 [22,23].
Non-canonical Wnt signaling transduces signals independent of β-catenin, and can be divided into Wnt/Calcium (Ca2+) and Wnt/planar cell polarity (PCP) pathways [24,25,26]. In the Wnt/Ca2+ pathway, Wnt-Fzd interaction leads to the activation of phospholipase C and increases the concentrations of inositol 1,4,5-triphosphate (IP3) and 1,2 diacylglycerol (DAG). IP3 interacts with intracellular calcium channels to release Ca2+ ions, leading to the activation of calcium-dependent kinases, such as protein kinase C (PKC), Ca2+-calmodulin dependent kinase II (CAMKII), or Ca2+-dependent phosphatase calcineurin (CaN) [27,28,29]. PKC has been shown to activate the small GTPase Cdc42 [30] while CAMKII phosphorylates TGFβ-activated kinase 1 (TAK1), which in turn induces Nemo-like kinase (NLK) activation, which inhibits the transcriptional activity of Wnt/β-catenin signaling [31]. In parallel, CaN dephosphorylates nuclear factor of activated T-cells (NFAT) family proteins and causes their nuclear translocation, allowing transcriptional regulation of their target genes [32]. Activation of the Wnt/Ca2+ pathway triggers a wide-range of cellular processes, including actin cytoskeleton remodeling and cell motility [33]. For the Wnt/PCP pathway, the binding of Wnt ligands to their receptors activates Rho-family small GTPases, including RhoA and Rac, and their downstream effectors, Rho-associated protein kinase (ROCK), the actin-binding protein Filamin A and c-Jun N-terminal protein kinase (JNK) [34,35]. Among of these, activated JNK further triggers transcriptional activation of activating protein-1 (AP-1) family of transcription factors [36]. As AP-1 proteins also act as downstream effectors of several signaling pathways, e.g., RAS pathway [37,38], the cross-interaction of Wnt signaling with other pathways may occur in a context-dependent manner.
The transduction of Wnt signals depends not only on which ligand is present, but also on which receptor(s) and cognate receptor(s) are expressed in the cell. As such, a single Wnt protein can trigger a combination of multiple signaling cascades that might work together as a dynamic signaling network [39].

3. Wnt Signaling in Skin Homeostasis and Regeneration

The adult skin epidermis is composed of the IFE, hair follicles, sebaceous glands and eccrine sweat glands. Cellular processes including homeostatic maintenance and post-damage regeneration are ensured by the multipotent epidermal SC populations located in both the basal layer of IFE and in the hair follicle [40].
The IFE is continuously being regenerated by cells within the basal layer, which proliferate and give rise to cells that migrate outwards and differentiate into suprabasal keratinocytes, and then terminally differentiate into cornified envelope cells. The control of basal cell proliferation within the IFE is tightly regulated by Wnt/β-catenin signaling [41,42]. Absence of Wnt/β-catenin signaling in the embryonic IFE results in hyperproliferation, which is caused either by degeneration of HFs or by other intertwined factors, such as impairment of skin barrier integrity and inflammation [41,43]. By contrast, when Wnt/β-catenin signaling is suppressed in basal cells of non-hairy epidermis, the epidermis exhibits severe hypoproliferation [42,44].
In mammalian skin, mature HFs undergo regeneration by progressing through cyclical phases of growth (anagen), degeneration (catagen), and rest (telogen). This long-lasting regeneration is fueled by hair follicle stem cells (HFSCs). The activation of HFSCs is tuned by a balance of bone morphogenetic proteins (BMP) and Wnt signals coming from their niche cells [45]. During telogen, HFSCs remain quiescent as they reside in the niche where inhibitory signals, e.g., BMP6 and fibroblast growth factors 18 (FGF18), and Wnt antagonists, e.g., secreted frizzled receptor protein 1 (SFRP1), Wnt inhibitory factor 1 (WIF1), and Dickkopf-related protein 3 (Dkk3), are present at high levels [46,47]. At the end of telogen, BMP signals from the niche are reduced, which allows HFSCs to transduce Wnt/β-catenin signaling and thereby promote anagen entry [48]. The importance of Wnt/β-catenin signaling in HF regeneration is supported by genetic studies showing that transient ectopic activation of β-catenin in adult epidermis is sufficient to induce new hair growth [49], and deletion of β-catenin in HFSCs results in impairment of HF regeneration [44,50,51].
Beyond the role of Wnt signaling in the normal regeneration cycle of the hair follicle, Wnt signaling also plays a role in the acute response to injury. Upon injury, the adult skin epidermis undergoes a wound healing process which occurs in four overlapping phases: disruption of homeostasis, inflammation, re-epithelialization, and tissue remodeling [52]. Gene expression profiling of wounds and carcinomas indicates significant similarities between the tumor development and wound healing processes. Indeed, a malignant tumor is considered as an overhealing wound, in which permanent tissue injury induces chronic inflammation causing the development of cancer [53,54]. It has been shown that Wnt signaling participates in the process of wound healing from the control of inflammation to mobilization of SCs within the wound site [55,56].
In summary, epidermal SCs undergo self-renewal and differentiation to regenerate the skin epidermis during homeostasis and upon injury. A growing body of evidence shows that tumor growth is driven by a population of tumor cells presenting SC-like characteristics, such as self-renewal and slow-cycling properties [57]. Thus, SC populations in different skin compartments would have served as origins of different skin malignancies. This rationale will be elaborated further in the next section.

4. Wnt Signaling in Keratinocyte Carcinomas

While genetic mutations are major factors for the development of keratinocyte carcinoma, disrupted signaling pathways have emerged as necessary cofactors. Disruption of HF homeostasis may lead to hair loss disorders, such as alopecia universalis, or uncontrolled HF proliferation, which may cause follicle-based tumors [58]. Notably, aberrant activation of Wnt/β-catenin signaling is considered as one of the main driving elements causing developmental defects and tumorigenesis [14]. The constitutive expression of stabilized β-catenin in skin epidermis (K14-∆Nβ-catenin) causes the development of pilomatricomas or trichofolliculomas [59,60]. In contrast, depletion of β-catenin in carcinogen-induced SCCs results in tumor regression [61], indicating the essential role of β-catenin-dependent signaling in tumorigenesis. Genome-wide RNA-interference (RNAi) screening in the developing skin epidermis has reinforced the notion that β-catenin contributes to oncogenic growth [62]. Furthermore, in addition to the TCF/LEF transcription factor, nuclear β-catenin can also bind to the vitamin D receptor (VDR), which was shown to play a role in HF maintenance [63,64]. Inhibition of β-catenin-dependent transcriptional activity by overexpressing N-terminally truncated Lef1 in mouse epidermis (K14-∆NLef1) leads to the development of sebaceous gland (SG) tumors [65,66]. Interestingly, activation of β-catenin signaling (K14-∆Nβ-cateninER) in the absence of VDR causes development of tumors resembling BCCs [67]. These findings suggest that skin tumor types are specified by the interaction between β-catenin and its transcriptional effectors. Moreover, oncogenic activation of β-catenin in different epidermal SC populations results in distinct tumor types [68], implicating skin tumor heterogeneity. In addition to canonical Wnt signaling, non-canonical Wnt signaling is also implicated in epithelial-to-mesenchymal transition (EMT), a process involved in tumor metastasis and chemo-repulsion [69,70]. In the following sections, we focus on BCC and SCC, and discuss the implications of the Wnt signaling pathways in tumor formation and progression of these tumors.

4.1. Basal Cell Carcinoma (BCC)

BCC is the most common skin tumor in humans. The main etiological factors provoking the development of BCCs are UV radiation, ionizing radiation, arsenic exposure, as well as traumatic injury or burn [71,72]. Other factors, such as wounding, can increase the risk of BCC development and malignancy in humans and mice [73,74]. It is noteworthy that BCCs are readily treated by means of various surgical methods at an early stage [75], and in some exceptional cases, BCC is reported to undergo self-regression [76,77,78]. However, once these lesions progress from BCC in situ to an advanced state, they are no longer amenable to surgery or radiation therapy. In even more rare cases, the tumor cells spread to distant sites (metastatic BCC). Although metastatic rate (<0.1%) and mortality caused by BCC is low, it may create substantial damage to skin tissue or morbidity if neglected for prolonged periods [79,80,81].
BCCs can be clinically and histologically categorized into several encompassing nodular, micronodular, superficial, infiltrative, morpheiform, and mixture variants. Thus, BCC is generally characterized based on the structure of tumor cells similar to the basal cells of the normal epidermis, however, their molecular characteristics are more related to embryonic hair follicle progenitors [82]. Recently, a new molecular classification was introduced apart from clinical and histopathological classifications. Based on the genomic profiling, BCCs are divided into three subtypes: 1) classical BCCs, which are closely associated with the Wnt and Hh signaling pathways; 2) normal-like BCCs, notably displaying an active fatty acid metabolism; and lastly 3) SCC-like BCCs, relying on immune-response and oxidative stress-related genes [83]. Here, we mainly focus on classical BCCs.
There is extensive evidence that the origin of BCC pathogenesis is predominantly triggered by dysregulation of the Hh pathway [84,85]. This could be attributable to aberrant genetic alterations that inactivate Patched 1 (PTCH1) or Suppressor of Fused (SUFU), constitutively activate Smoothened (SMO), or lead to overexpression of Glioma associated oncogene homolog 1 (GLI1) [4,72,86]. In the absence of Hh, Ptch acts to prevent activity of Smo. When Hh binds to and inhibits Ptch, Smo is activated to release inhibition of Gli by SuFu and kinesin family member 7 (Kif7), thus allowing Gli to enter the nucleus and initiate transcriptional activation of genes that regulate cell survival, cell cycle regulation and angiogenesis (Figure 2) [87,88,89]. Uncontrollable activation of Hh signaling prominently promotes tumorigenesis in sporadic and inherited BCCs. Based on recent genomic analysis, loss of PTCH1 and gain of SMO were described as causative mutant Hh pathway genes, accounting for 90% of human BCCs [72,90]. Mouse models of BCC genesis mainly rely on the repression of Patch1 or overexpression of Gli1/2. For example, mice overexpressing Gli1 in skin epidermis (K5-Gli1) develop several types of skin tumors, primarily hair follicle-derived tumors and BCCs [91], whereas Gli2 overexpression (K5-Gli2) only causes the formation of BCCs [92]. Thus, alterations in the expression of Hh signaling components may lead to the development of different tumor types. Moreover, the original cell populations in skin epidermis expressing excess Hh signaling also determine the phenotype of developed BCCs. For instance, over-activation of Gli2 in IFE gives rise to superficial BCC-like tumors, whereas HFSCs overexpressing Gli2 develop nodular BCC-like tumors [93]. Apart from IFE and HFs, innervated progenitors within mechanosensory niches were shown to be another plausible cell population that contributes to the development of BCCs [94].
The development and progression of tumors are orchestrated by a network of intricate signaling pathways. In addition to Hh signaling, ample scientific evidence indicates that the Wnt/β-catenin signaling pathway participates in tumorigenesis of BCCs. Of note, constitutive expression of Wnt mediators, e.g., Wnt1, 2, 5A, 11, 13, and 16 and β-catenin, facilitates the progression of BCCs [95,96]. As reported previously, nearly 30% of human BCC samples exhibited an accumulation of β-catenin in the nucleus [97,98], and nuclear β-catenin in BCCs mainly resides at the tumor periphery [99]. In addition, BCCs which exhibit nuclear β-catenin display significantly higher proliferation rates [100]. Along this line, 25% of BCC samples contain the missense mutations in the third exon of the β-catenin gene [101], which is considered as a notable characteristic of hair follicle-related skin carcinoma [60,102]. Mutations in exon 3 of CTNNB1 (the gene encoding for β-catenin), particularly at Ser 33, 37 and Thr 41, perturb the phosphorylation sites for GSK3β, which leads to stabilization of β-catenin and in turn elevates Wnt/β-catenin signaling in favor the event of tumorigenesis [102,103]. As mentioned earlier, activation of β-catenin in the absence of VDR in mouse epidermis results in the development of undifferentiated tumors resembling BCCs [67]. Moreover, transcriptional profiling of adult epidermis expressing constitutively active SmoM2 shows that adult tumor-initiating cells are reprogramed into an embryonic hair follicle progenitor-like fate, in which Wnt/β-catenin signaling is highly activated. Depletion of β-catenin in adult epidermis expressing SmoM2 prevents embryonic reprograming and skin tumorigenesis [82]. Indeed, during skin development, β-catenin-dependent signaling directs the embryonic ectoderm to a HF-like fate [104,105], and over-activated β-catenin induces de novo HFs in adult epidermis [59]. Hence, β-catenin represents as a cardinal target in BCC arising from a HF-related origin.
Crosstalk between Hh and Wnt signaling pathways have been recently implicated in the pathogenesis of BCCs. Several genomic studies have indicated that genes encoding for components involved in both Hh and Wnt signaling are commonly altered in human BCCs [99,106]. It was shown that SuFu negatively regulates β-catenin signaling [107] and acts as a common regulator of Hh and Wnt signaling during Xenopus development [108]. Simultaneous inactivation of SuFu and Kif7 in adult epidermis results in the formation of BCCs that display increased nuclear β-catenin [109], reinforcing negative regulation of SuFu in β-catenin-dependent signaling. Moreover, overexpression of human GLI1 in frog epidermis induces BCC-like epidermal tumors which show specific upregulation of Wnt genes [96]. During epithelial transformation, Gli1 is able to induce the translocation of cytoplasmic β-catenin to the nucleus through modulation of E-cadherin [110]. Most recently, transcriptional profile of residual BCCs, which survive after treatment with Hh signaling inhibitor, reveals that Wnt signaling modulates cell identity of residual BCCs which may contribute to tumor relapse [111]. As a summary, in addition to the Hh pathway, dysregulation of Wnt/β-catenin signaling seems to be common during BCC development.

4.2. Squamous Cell Carcinoma (SCC)

SCC is recognized based on the tumor lesion composed of both proliferative basal cell and differentiated squamous cell layers. Epithelia arising from different parts of the body may develop different types of SCCs, including cutaneous SCC (cSCC), lung SCC (lSCC), and head and neck SCC (HNSCC). Each type of SCC has characteristics that can be distinguished by multidimensional genome-wide analyses [112]. One of the unique features for cSCC and HNSCC is their high degree of cellular heterogeneity [113,114,115]. As lSCC and HNSCC have been extensively discussed elsewhere [116,117,118], we mainly focus on cSCC in this review.
The incidence of cSCC is increasing remarkably each year due to a string of causative risk factors, including UV light from sun exposure, human papilloma virus (HPV) infection, chronic injury, arsenic exposure, immunosuppression, and inflammation [113,119]. Among these, UV light exposure is considered the most important accounting for 80–90% of identified cSCCs [120]. These prevailing factors promote the transformation of precancerous lesions, AK, to SCC in situ, invasive cSCC, and eventually metastatic SCC, as a consequence of multistep carcinogenesis. The malignancy of cSCC is favored by the accumulation of genetic and epigenetic alterations, viral pathogenesis, non-coding RNAs and dysregulation of signaling pathways [121]. The prognostic biomarkers of cSCCs can be determined by genetic, epigenetic, transcriptomic or proteomic analysis. These analyses provide invaluable information that hold the key for the selection of therapeutic intervention and for establishing comprehensive molecular landscapes of cSCC as future diagnostic biomarkers. The high rate of mortality and morbidity remains as a major concern attributed to the late diagnosis, ineffective treatment, relapse, and metastasis.
The main mutations of human cSCC are found in TP53, CDKN2A, RAS, PTEN, EGFR, and genes encoding for NOTCH receptors [121,122,123]. Around 75% of human cSCCs contain loss-of-function mutations in NOTCH1 or NOTCH2 [124]. In addition to the genes mentioned above, mutations of the telomerase reverse transcriptase (TERT) promoter are also found commonly in both human SCCs and BCCs [125,126]. Decades ago, in order to mimic SCC development in mice, a two-stage chemical carcinogenesis protocol, involving a single application of 7,12-Dimethylbenzanthracene (DMBA) followed by a repeated treatment with 12-O-Tetradecanoylphorbol-13-acetate (TPA), was exploited in murine models. DMBA administration causes the formation of DNA adducts, and successive treatment with TPA leads to sustained hyperplasia [127,128]. It is known that treatment with DMBA/TPA creates an accumulation of mutations in several critical genes, notably in H-Ras (A182T) [129], and provokes the progression of papilloma to malignant tumor, e.g., cSCC. Genetic alterations in genes encoding for RAS family members have been identified in a significant proportion of human tumors. More recently a genetic mouse model carrying oncogenic K-Ras(G12D) was widely utilized to study the process of tumorigenesis [130,131]. In adult epidermis, K-Ras(G12D) activation under the control of cell type-specific promoters allowed the origin for SCC formation to be defined. For instance, in combination with Tp53 deletion, K-Ras(G12D) activation in IFE basal cells or HFSCs, but not in transient amplifying HF matrix cells, led to the development of SCCs [131]. Although transformation by oncogenic RAS is an important event, RAS mutations only account for approximately 8–20% of human SCCs [122,132]. Additional mutations in tumor suppressor genes, e.g., TP53 or TP63 [6,133,134,135], are required to drive the malignancy of SCCs.
As previously described for BCCs, the cellular origin of SCCs affects the phenotype of the tumor. For instance, SCCs derived from the IFE are well-differentiated, whereas SCCs developing from the HFSCs frequently undergo EMT [136]. In addition to cell origin, the status of the originating cell also impacts on tumor formation. It has been shown that quiescent HFSCs are refractory to initiating tumors driven by activation of K-RAS(G12D) and Tp53 depletion [137]. Other than gene mutations, dysregulation of signaling pathways has also been implicated in mouse skin tumorigenesis [138]. In mouse SCCs, dysregulation of the PI3K/AKT signaling pathway, known to regulate a wide-range cellular functions, such as cell proliferation and apoptosis [139,140], is commonly found in RAS-induced tumors derived from HFSCs [6].
Dysregulation of Wnt signaling, including Wnt/β-catenin and β-catenin-independent Wnt/Ca2+ signaling, emerges as a major cause of cSCC development and progression [61,122,141]. Genetic alterations in Wnt-related ligands, receptors or mediators were identified in human cSCCs using various genomic profiling approaches. The first comparative genomic hybridization analysis indicated amplification of chromosome arms 7q, 8q, 11q, and 17q, which containing WNT and FZD genes, in cSCCs [142]. This finding was reinforced by microarray analysis revealing that WNT5A and FZD6 are both upregulated as unique gene signatures in human cSCCs [141,143]. Recently, genomic profiling of 122 human cSCC samples identified clinically relevant genomic alterations (CRGAs) showing that the key mutations in cSCCs not only include truncations of TP53 (85.2%), CDKN2A (61.5%), and NOTCH1 (42.6%), but also alterations in Wnt-related genes, LRP1B (22.1%) and APC (8.2%) [122]. In addition, another genomic study of cSCC supports the previous genomic profiling studies in which Wnt signaling was one of the common mutated pathways in human cSCCs [123].
The potential role of Wnt antagonists, SFRPs and Dkks, in tumorigenesis has drawn interest. Several lines of studies indicated that SFRP1, which destabilizes β-catenin by interfering with Wnt-Fzd interactions, was downregulated in human SCC samples [141]. Accordingly, hypermethylation of several SFRP genes, including SFRP1, 2, 4, and 5, have been identified in cSCC tumors and recognized as critical prognostic determinants for cSCCs [144]. Although hypermethylated SFRP genes could have caused hyper-activation of Wnt signaling that might contribute to cSCC, mechanisms of how SFRPs modulate skin cancer pathogenesis will require further investigation. In addition to SFRPs, Dkk proteins, known as negative regulators of canonical Wnt signaling, could also potentially serve as bona fide tumor suppressors. Accompanied by elevated β-catenin expression levels, downregulation of Dkk1 was seen in human cSCCs [145]. A decrease in Dkk3 expression was also detected in cSCCs. Overexpression of Dkk3 in SCC cells significantly reduced proliferation and migration [146], suggesting that Dkk3 has inhibitory effects on SCC development.
Aberrant accumulation of β-catenin protein or its presence in the nucleus in tumor cells is a common characteristic of SCCs [61,101,145,147,148]. Wnt/β-catenin signaling plays dual roles in both regulating normal SC self-renewal and maintenance and in cancer stem cells (CSCs). As discussed previously, depletion of β-catenin in carcinogen-induced SCCs halts tumor progression and eventually results in tumor regression, suggesting roles in maintenance of cutaneous CSCs [61]. This paradigm is in agreement with the idea that CSC-like properties in cSCC could be induced by aberrant expression of microRNA (miRNA) by activated canonical Wnt signaling [149]. Furthermore, it has been shown that tumor volume in a xenograft model of human cSCCs could be dampened upon β-catenin knockdown [62], underscoring the causal relationship between β-catenin and cell proliferation of cSCCs. These notions were based on a number of earlier studies showing that activation of β-catenin signaling, either by impairment of Notch [150], inactivation of Presenilin 1 [151] or activation of ROCK [152] caused an increase in the expression of cyclin D1 subsequently led to hyperproliferation (Figure 3). Conversely, aberrant expression of genes involved in cell cycle control can trigger the onset of skin tumorigenesis through activation of Wnt/β-catenin signaling. The cyclin-dependent kinase inhibitor 2A and 2B (CDNK2AB) locus, genes encoding for tumor suppressors p16 (INK4A), p14 (ARF), and p15 (INK4B) that inhibit cell cycle progression, is frequently lost in wide-range of tumors. A recent study indicated that loss of CDKN2ab allows development of SCC in the presence of active Wnt7b in a 129P2 mouse background [153]. Cell division cycle 20 (CDC20), another crucial cell cycle regulatory molecule, is commonly increased in cSCCs. Downregulation of CDC20 inhibits Wnt/β-catenin signaling, thereby suppressing the proliferation of cSCC cells and promoting apoptosis [154]. Taken together, these studies highlight the importance of Wnt signaling in regulating tumor cell proliferation and maintaining CSC phenotypes, both of which promote the SCC progression and aggressiveness.
Apart from β-catenin, TCF7L1 (also known as TCF3), a binding partner for β-catenin, is known to contribute to tumor prevalence and progression in the pathogenesis of several cancers [155,156]. Motif-based analysis of human and mouse tissues identified TCF7L1 as one of the transcription factors whose targets are prominently altered during the progression from normal skin to SCCs [157]. A recent study provided evidence for a tumor-promoting role of TCF7L1 in skin. Overexpression of TCF7L1 increased tumor incidence, promoted tumor growth, and enhanced migration independent of β-catenin [158]. In addition to TCF7L1, Wnt genes are also commonly dysregulated in diverse tumor cells, including prostate, ovarian, colon, and skin cancers [159,160,161,162]. Upregulation of Wnt5a is clearly observed in human cSCC. Wnt5a is of major importance in maintaining the tumor phenotype in human SCCs [143,162,163], implying that Wnt5a serves as an oncogenic driver in skin cancer. It was reported that oncogenic signals mediated by Wnt5a were acquired via activation of PKCα and STAT3 phosphorylation, but not through Wnt/β-catenin pathway [163]. As mentioned above, immunosuppressed organ transplant recipients are more prone to SCCs [164]. One plausible factor is the elevated risk of HPV infection among immunosuppressed populations as compared to the immunocompetent patients [165]. Interestingly, vaccination against HPV successfully reduces the incidence of SCC in immunocompetent patients [166]. One study demonstrated that the presence of HPV induces the development of skin carcinomas in mice upon exposure to UV or wounding [167]. In addition, transcriptome analysis of HPV-driven mouse cSCCs indicated that transcripts encoding for Wnt ligands and Porcupine, a protein required for Wnt secretion, were highly upregulated in cSCCs. Inhibition of Porcupine by a small molecule inhibitor reduced the initiation and progression of HPV-driven cSCC [168].
In addition to cSCC maintenance and progression, β-catenin has an impact on tumor metastasis via EMT, in which E-cadherin-bound β-catenin is released from cell membranes and an increased pool of cytoplasmic β-catenin may enter the nucleus to trigger β-catenin-dependent signaling [169,170,171]. This notion is supported by studies showing that suppression of E-cadherin expression accelerates SCC progression by increasing invasion [172,173]. Besides canonical Wnt signaling, non-canonical Wnt ligand and receptor, Wnt5a, and ROR2, were shown to be required for Snail-mediated EMT and invasive properties of cancer cells [162]. In agreement, upregulated Wnt5 at the leading edge of SCCs suggests the contribution of Wnt5a-dependent signaling to tissue invasion by SCCs [174]. Together, these analyses and findings provide insights into the contribution of Wnt signaling to cSCC pathogenesis.

5. Potential Therapeutic Targeting of Wnt Signaling

Targeting the Wnt signaling pathway is recognized as a potential therapeutic approach to treat various cancers. Currently, several preclinical and clinical trials on compounds targeting Wnt signaling are in progress. The conventional treatments for localized keratinocyte carcinomas include surgical excision, Mohs surgery, cryotherapy, curettage and electrodessication, topical treatment, photodynamic therapy, radiation therapy and chemotherapy individually or in combination [140,175,176,177]. For BCCs, surgery or topical application of Imiquimod is a first-line treatment for low risk superficial BCCs, leading to histological clearance in 80% of cases [178]. Patients with secondary BCCs also see benefits from topical Imiquimoid treatment [179,180]. As for high risk or metastatic BCCs, the Smo inhibitor Vismodegib, is more suitable for targeting the Hh signaling pathway with a 58% response rate among patients [175,181]. It has been shown that Vismodegib treatment caused tumor resurgence on BCC patients [182] which was likely due to the dormancy of residual BCCs. A recent study showed that dual inhibition of Hh and Wnt signaling by combination of Vismodegib and Wnt inhibitor (anti-Lrp6 antibody) reduced the residual BCC burden and facilitated differentiation [111]. Another study indicated that the tumor relapse was attributed to the dormancy of Lgr5+ cells and revealed that targeting Lgr5+ cells by inhibition of Wnt signaling (Wnt inhibitors, Lgk974) in combination with Vismodegib treatment resulted in regression of BCCs [183]. This opens the door to future possibilities of clinical trials focusing on the cross-interaction between signaling pathways, e.g., Hh and Wnt signaling.
For cSCCs patients, the primary treatments are surgical excision, Mohs surgery and/or adjuvant radiation therapy. Radiation therapy followed by adjuvant chemotherapy is recommended for metastatic cSCCs [184,185]. The current therapeutic strategies, such as surgical excision and topical treatment, are sufficient for non-aggressive keratinocyte carcinomas. However, patients developing metastatic BCCs or cSCCs, have a poor outcome on current therapeutic treatments. Given the importance of Wnt signaling in driving cSCC development, Wnt antagonists and Wnt-related mediators mentioned above are potential therapeutic targets to treat cSCCs (Table 1). Porcupine is an enzyme which facilitates the posttranslational acylation of Wnt and consequently leads to secretion of Wnt ligands [186]. Thus, it is conceivable that inhibition of Porcupine will hamper the secretion of Wnt ligands, which in turn would inhibit activation of Wnt signaling. A number of potent Porcupine inhibitors have been developed, including Wnt-c59, IWP, LGK974, and ETC-159, and some are currently in phase I/II clinical trials. As an example, LGK974 was exploited to target Wnt-driven human HNSCC [187], as well as to impair HPV-driven cSCC initiation and progression [168]. Another potential Wnt signaling target is Tankyrase, an enzyme that is crucial component for the synthesis of Axin. Several small molecule inhibitors targeting Tankyrase, e.g., IWR and XAV939, have been designed to stabilize the production of Axin, which facilitates the degradation of β-catenin and eventually reduces activation of Wnt/β-catenin signaling [188,189]. In addition, aberrant expression of β-catenin is considered as an indicator of malignancies. Targeting β-catenin signaling may be of interest as it potentially eliminates CSCs and consequently eradicates SCCs. Hence, small molecule inhibitors of β-catenin, such as ICG-001 and PRI-724, have been developed in order to interfere with the recruitment of β-catenin by its coactivator, CREB-binding protein (CBP) [190]. Moreover, Wnt antagonists, such as Dkks, could be potential targets given their involvement in modulating skin cancer pathogenesis. Increasing the secretion of Dkks, e.g., Dkk3, could be an option due to their tumor suppressor roles as mentioned above. A preclinical study reported that adenoviral vector expressing Dkk3 reduced the growth of tumors by inducing apoptosis in a prostate cancer model [191], and currently this approach is in phase I/II clinical trials (National Clinical Trial (NCT) 01931046).
Despite of the advanced treatments available for cSCCs, these treatments may gradually lose durable responses or cause a number of side effects, and tumors may relapse or become resistant to treatment [192]. Also, there are limited therapeutic approaches and sparse information about systemic therapies in combating metastatic cSCCs according to the latest National Comprehensive Cancer Network guidelines. Systemic therapies, including chemotherapy, immunotherapy, hormone therapy, and targeted drugs, alone or in combination have been used for cSCC clearance. However, it was reported that the recurrence rate was higher than in the combination regimen than single agent therapy [193]. In addition, a phase III clinical trial revealed that the combination of chemotherapy with targeted drugs improved progression-free survival, but not the overall survival in SCC patients [194].
Owing to the involvement of Wnt signaling in diverse cellular functions across different normal tissues, treatments targeting Wnt signaling might affect healthy tissues or organs. For instance, porcupine inhibitors, e.g., LGK974 and Wnt-c59, might negatively impact on bone volume and strength [195]. It was also shown that inhibition of Tankyrase activity might perturb bone homeostasis and cause bone loss [196]. Nevertheless, strategies interfering with β-catenin-CBP interaction or inducing DKK3 expression so far have no reported detrimental effects. It is thus worth further investigating the exploitation of Wnt antagonists as future cSCC interventions. In summary, the development of inhibitors targeting oncogenic Wnt signaling essential for tumor initiation and progression is a potential treatment for keratinocyte carcinomas.

6. Conclusions

In this review, we emphasize the crucial roles of Wnt signaling in different aspects of keratinocyte carcinoma development, including their participation in tumor initiation, progression, invasion, and metastasis. Canonical Wnt signaling is essential for keratinocyte carcinoma initiation and progression by enhancing tumor cell proliferation and regulating the maintenance of CSCs. On the other hand, non-canonical Wnt signaling is necessary for regulating the process of tumor invasion and metastasis. Despite the availability of various analyses to screen the mutations or biomarkers for these cancers, it is plausible that due to heterogeneity some tumors might escape detection due to factors from the tumor microenvironment and existing quiescent CSC populations. Future investigations should focus not only on the intricate molecular communications within tumors, but also on extrinsic factors from stromal cells, including fibroblasts and immune cells, as well as identification of CSCs. In view of the complexity of multiple signaling coordinating skin tumorigenesis, it will be of utmost importance to better understand and dissect the cross-interactions of Wnt signaling with other oncogenic pathways. This would allow the development of new effective therapeutic interventions to eradicate Wnt signaling-related malignancies.

Author Contributions

Writing—original draft preparation, C.M.R.L., C.K.C. and A.V.; writing—review and editing, C.M.R.L., C.K.C. and W.-H.L.; supervision and funding acquisition, W.-H.L.

Funding

C.M.R.L. and A.V. are supported by FRIA fellowship from the Fonds de la Recherche Scientifique (FNRS) and a Patrimoine fellowship from Université catholique de Louvain. C.K.C. is supported by the Fondation Contre le Cancer. W.-H.L. is an independent investigator of FNRS. This work was supported by grants to W.-H.L. from FNRS (PDR-T.0078.16), Fonds Joseph Maisin, and Fondation Contre le Cancer (FAF-F/2016/792).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Leiter, U.; Eigentler, T.; Garbe, C. Epidemiology of Skin Cancer. In Sunlight, Vitamin D and Skin Cancer; Springer: New York, NY, USA, 2014; pp. 120–140. [Google Scholar] [CrossRef]
  2. Karimkhani, C.; Boyers, L.N.; Dellavalle, R.P.; Weinstock, M.A. It’s time for “keratinocyte carcinoma” to replace the term “nonmelanoma skin cancer”. J. Am. Acad. Dermatol. 2015, 72, 186–187. [Google Scholar] [CrossRef] [PubMed]
  3. Nehal, K.S.; Bichakjian, C.K. Update on Keratinocyte Carcinomas. N. Engl. J. Med. 2018, 379, 363–374. [Google Scholar] [CrossRef] [PubMed]
  4. Dahmane, N.; Lee, J.; Robins, P.; Heller, P.; Ruiz i Altaba, A. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 1997, 389, 876–881. [Google Scholar] [CrossRef] [PubMed]
  5. Cui, W.; Fowlis, D.J.; Bryson, S.; Duffie, E.; Ireland, H.; Balmain, A.; Akhurst, R.J. TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996, 86, 531–542. [Google Scholar] [CrossRef]
  6. White, A.C.; Tran, K.; Khuu, J.; Dang, C.; Cui, Y.; Binder, S.W.; Lowry, W.E. Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 2011, 108, 7425–7430. [Google Scholar] [CrossRef] [Green Version]
  7. Watt, F.; Collins, C. Role of β-catenin in Epidermal Stem Cell Expansion, Lineage Selection, and Cancer. Cold Spring Harb. Symp. Quant. Biol. 2008, 73, 503–512. [Google Scholar] [CrossRef] [PubMed]
  8. Holland, J.D.; Klaus, A.; Garratt, A.N.; Birchmeier, W.; Klaus-Bergmann, A. Wnt signaling in stem and cancer stem cells. Curr. Opin. Cell Biol. 2013, 25, 254–264. [Google Scholar] [CrossRef]
  9. Van Amerongen, R.; Nusse, R. Towards an integrated view of Wnt signaling in development. Development 2009, 136, 3205–3214. [Google Scholar] [CrossRef] [Green Version]
  10. Nusse, R.; Clevers, H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017, 169, 985–999. [Google Scholar] [CrossRef]
  11. Grigoryan, T.; Wend, P.; Klaus, A.; Birchmeier, W. Deciphering the function of canonical Wnt signals in development and disease: Conditional loss- and gain-of-function mutations of β-catenin in mice. Genes Dev. 2008, 22, 2308–2341. [Google Scholar] [CrossRef]
  12. Seifert, J.R.K.; Mlodzik, M. Frizzled/PCP signalling: A conserved mechanism regulating cell polarity and directed motility. Nat. Rev. Genet. 2007, 8, 126–138. [Google Scholar] [CrossRef] [PubMed]
  13. Veltri, A.; Lang, C.; Lien, W.H. Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells. Stem Cells 2018, 36, 22–35. [Google Scholar] [CrossRef] [PubMed]
  14. Klaus, A.; Birchmeier, W.; Klaus-Bergmann, A. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer 2008, 8, 387–398. [Google Scholar] [CrossRef] [PubMed]
  15. Green, J.; Nusse, R.; van Amerongen, R. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb. Perspect. Biol. 2014, 6. [Google Scholar] [CrossRef] [PubMed]
  16. Macdonald, B.T.; He, X. Frizzled and LRP5/6 Receptors for Wnt/β-Catenin Signaling. Cold Spring Harb. Perspect. Biol. 2012, 4, a007880. [Google Scholar] [CrossRef] [PubMed]
  17. Puppo, F.; Thome, V.; Lhoumeau, A.C.; Cibois, M.; Gangar, A.; Lembo, F.; Belotti, E.; Marchetto, S.; Lecine, P.; Prebet, T.; et al. Protein tyrosine kinase 7 has a conserved role in Wnt/beta-catenin canonical signalling. EMBO Rep. 2011, 12, 43–49. [Google Scholar] [CrossRef] [PubMed]
  18. Tamai, K.; Semenov, M.; Kato, Y.; Spokony, R.; Liu, C.; Katsuyama, Y.; Hess, F.; He, X.; Tamai, K.; Semenov, M.; et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 2000, 407, 530–535. [Google Scholar] [CrossRef] [PubMed]
  19. Liu, C.; Li, Y.; Semenov, M.; Han, C.; Baeg, G.H.; Tan, Y.; Zhang, Z.; Lin, X.; He, X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002, 108, 837–847. [Google Scholar] [CrossRef]
  20. Lee, E.; Salic, A.; Krüger, R.; Heinrich, R.; Kirschner, M.W. The Roles of APC and Axin Derived from Experimental and Theoretical Analysis of the Wnt Pathway. PLoS Biol. 2003, 1, e10. [Google Scholar] [CrossRef]
  21. Stamos, J.L.; Weis, W.I. The beta-catenin destruction complex. Cold Spring Harb. Perspect. Biol. 2013, 5, a007898. [Google Scholar] [CrossRef]
  22. Hagen, T.; Sethi, J.K.; Foxwell, N.; Vidal-Puig, A. Signalling activity of beta-catenin targeted to different subcellular compartments. Biochem. J. 2004, 379, 471–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Behrens, J.; von Kries, J.P.; Kuhl, M.; Bruhn, L.; Wedlich, D.; Grosschedl, R.; Birchmeier, W. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 1996, 382, 638–642. [Google Scholar] [CrossRef] [PubMed]
  24. Veeman, M.T.; Axelrod, J.D.; Moon, R.T. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev. Cell 2003, 5, 367–377. [Google Scholar] [CrossRef]
  25. Kuhl, M.; Sheldahl, L.C.; Park, M.; Miller, J.R.; Moon, R.T. The Wnt/Ca2+ pathway: A new vertebrate Wnt signaling pathway takes shape. Trends Genet. 2000, 16, 279–283. [Google Scholar] [CrossRef]
  26. Katoh, M. WNT/PCP signaling pathway and human cancer (review). Oncol. Rep. 2005, 14, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
  27. Ahumada, A.; Slusarski, D.C.; Liu, X.; Moon, R.T.; Malbon, C.C.; Wang, H.-Y. Signaling of Rat Frizzled-2 through Phosphodiesterase and Cyclic GMP. Science 2002, 298, 2006–2010. [Google Scholar] [CrossRef] [PubMed]
  28. Sheldahl, L.C.; Slusarski, D.C.; Pandur, P.; Miller, J.R.; Kuhl, M.; Moon, R.T. Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J. Cell Biol. 2003, 161, 769–777. [Google Scholar] [CrossRef] [PubMed]
  29. Slusarski, D.C.; Corces, V.G.; Moon, R.T. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 1997, 390, 410–413. [Google Scholar] [CrossRef]
  30. Schlessinger, K.; McManus, E.J.; Hall, A. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J. Cell Biol. 2007, 178, 355–361. [Google Scholar] [CrossRef] [PubMed]
  31. Ishitani, T.; Kishida, S.; Hyodo-Miura, J.; Ueno, N.; Yasuda, J.; Waterman, M.; Shibuya, H.; Moon, R.T.; Ninomiya-Tsuji, J.; Matsumoto, K. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol. Cell. Biol. 2003, 23, 131–139. [Google Scholar] [CrossRef]
  32. Murphy, L.L.S.; Hughes, C.C.W. Endothelial cells stimulate T cell NFAT nuclear translocation in the presence of cyclosporin A: Involvement of the wnt/glycogen synthase kinase-3 beta pathway. J. Immunol. 2002, 169, 3717–3725. [Google Scholar] [CrossRef] [PubMed]
  33. Wang, Q.; Symes, A.J.; Kane, C.A.; Freeman, A.; Nariculam, J.; Munson, P.; Thrasivoulou, C.; Masters, J.R.; Ahmed, A. A novel role for Wnt/Ca2+ signaling in actin cytoskeleton remodeling and cell motility in prostate cancer. PLoS ONE 2010, 5, e10456. [Google Scholar] [CrossRef] [PubMed]
  34. Yamanaka, H.; Moriguchi, T.; Masuyama, N.; Kusakabe, M.; Hanafusa, H.; Takada, R.; Takada, S.; Nishida, E. JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Rep. 2002, 3, 69–75. [Google Scholar] [CrossRef] [PubMed]
  35. Nomachi, A.; Nishita, M.; Inaba, D.; Enomoto, M.; Hamasaki, M.; Minami, Y. Receptor Tyrosine Kinase Ror2 Mediates Wnt5a-induced Polarized Cell Migration by Activating c-Jun N-terminal Kinase via Actin-binding Protein Filamin A. J. Biol. Chem. 2008, 283, 27973–27981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Oishi, I.; Suzuki, H.; Onishi, N.; Takada, R.; Kani, S.; Ohkawara, B.; Koshida, I.; Suzuki, K.; Yamada, G.; Schwabe, G.C.; et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 2003, 8, 645–654. [Google Scholar] [CrossRef] [PubMed]
  37. Pulverer, B.J.; Kyriakis, J.M.; Avruch, J.; Nikolakaki, E.; Woodgett, J.R. Phosphorylation of c-jun mediated by MAP kinases. Nature 1991, 353, 670–674. [Google Scholar] [CrossRef] [PubMed]
  38. Smeal, T.; Binétruy, B.; Mercola, D.A.; Birrer, M.; Karin, M. Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 1991, 354, 494–496. [Google Scholar] [CrossRef] [PubMed]
  39. Cadigan, K.M.; Liu, Y.I. Wnt signaling: Complexity at the surface. J. Cell Sci. 2006, 119, 395–402. [Google Scholar] [CrossRef] [PubMed]
  40. Fuchs, E. Scratching the surface of skin development. Nature 2007, 445, 834–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  41. Huelsken, J.; Vogel, R.; Erdmann, B.; Cotsarelis, G.; Birchmeier, W. Beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001, 105, 533–545. [Google Scholar] [CrossRef]
  42. Lim, X.; Tan, S.H.; Koh, W.L.C.; Chau, R.M.W.; Yan, K.S.; Kuo, C.J.; Van Amerongen, R.; Klein, A.M.; Nusse, R. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science 2013, 342, 1226–1230. [Google Scholar] [CrossRef] [PubMed]
  43. Augustin, I.; Gross, J.; Baumann, D.; Korn, C.; Kerr, G.; Grigoryan, T.; Mauch, C.; Birchmeier, W.; Boutros, M. Loss of epidermal Evi/Wls results in a phenotype resembling psoriasiform dermatitis. J. Exp. Med. 2013, 210, 1761–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. Choi, Y.S.; Zhang, Y.; Xu, M.; Yang, Y.; Ito, M.; Peng, T.; Cui, Z.; Nagy, A.; Hadjantonakis, A.-K.; Lang, R.A.; et al. Distinct functions for Wnt/β-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 2013, 13, 720–733. [Google Scholar] [CrossRef]
  45. Hsu, Y.-C.; Li, L.; Fuchs, E. Emerging interactions between skin stem cells and their niches. Nat. Med. 2014, 20, 847–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  46. Hsu, Y.-C.; Pasolli, H.A.; Fuchs, E. Dynamics between Stem Cells, Niche and Progeny in the Hair Follicle. Cell 2011, 144, 92–105. [Google Scholar] [CrossRef]
  47. Plikus, M.V.; Mayer, J.A.; De La Cruz, D.; Baker, R.E.; Maini, P.K.; Maxson, R.; Chuong, C.-M. Cyclic dermal BMP signaling regulates stem cell activation during hair regeneration. Nature 2008, 451, 340–344. [Google Scholar] [CrossRef]
  48. Kandyba, E.; Leung, Y.; Chen, Y.-B.; Widelitz, R.; Chuong, C.-M.; Kobielak, K. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. Proc. Natl. Acad. Sci. USA 2013, 110, 1351–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  49. Celso, C.L.; Prowse, D.M.; Watt, F.M. Transient activation of β-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 2004, 131, 1787–1799. [Google Scholar] [CrossRef]
  50. Lien, W.-H.; Polak, L.; Lin, M.; Lay, K.; Zheng, D.; Fuchs, E. In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nat. Cell Biol. 2014, 16, 179–190. [Google Scholar] [CrossRef] [Green Version]
  51. Myung, P.S.; Takeo, M.; Ito, M.; Atit, R.P. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J. Investig. Dermatol. 2013, 133, 31–41. [Google Scholar] [CrossRef]
  52. Li, Y.; Zhang, J.; Yue, J.; Gou, X.; Wu, X. Epidermal Stem Cells in Skin Wound Healing. Adv. Wound Care 2017, 6, 297–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Antonio, N.; Bønnelykke-Behrndtz, M.L.; Ward, L.C.; Collin, J.; Christensen, I.J.; Steiniche, T.; Schmidt, H.; Feng, Y.; Martin, P. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J. 2015, 34, 2219–2236. [Google Scholar] [CrossRef]
  54. Balkwill, F.; Mantovani, A.; Balkwill, F. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
  55. Houschyar, K.S.; Momeni, A.; Pyles, M.N.; Maan, Z.N.; Whittam, A.J.; Siemers, F. Wnt Signaling During Cutaneous Wound Healing. Organogenesis 2015. [Google Scholar] [CrossRef]
  56. Zhang, D.; Gu, L.; Liu, L.; Wang, C.; Sun, B.; Li, Z.; Sung, C. Effect of Wnt signaling pathway on wound healing. Biochem. Biophys. Res. Commun. 2009, 378, 149–151. [Google Scholar] [CrossRef] [PubMed]
  57. Al-Hajj, M.; Clarke, M.F. Self-renewal and solid tumor stem cells. Oncogene 2004, 23, 7274–7282. [Google Scholar] [CrossRef] [Green Version]
  58. Liu, S.; Zhang, H.; Duan, E. Epidermal Development in Mammals: Key Regulators, Signals from Beneath, and Stem Cells. Int. J. Mol. Sci. 2013, 14, 10869–10895. [Google Scholar] [CrossRef]
  59. Gat, U.; Dasgupta, R.; Degenstein, L.; Fuchs, E. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 1998, 95, 605–614. [Google Scholar] [CrossRef]
  60. Chan, E.; Gat, U.; McNiff, J.M.; Fuchs, E.; Chan, E.F. A common human skin tumour is caused by activating mutations in β-catenin. Nat. Genet. 1999, 21, 410–413. [Google Scholar] [CrossRef] [PubMed]
  61. Malanchi, I.; Peinado, H.; Kassen, D.; Hussenet, T.; Metzger, D.; Chambon, P.; Huber, M.; Hohl, D.; Cano, A.; Birchmeier, W.; et al. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 2008, 452, 650–653. [Google Scholar] [CrossRef]
  62. Beronja, S.; Janki, P.; Heller, E.; Lien, W.-H.; Keyes, B.E.; Oshimori, N.; Fuchs, E. RNAi screens in mice identify physiological regulators of oncogenic growth. Nature 2013, 501, 185–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Shah, S.; Islam, M.N.; Dakshanamurthy, S.; Rizvi, I.; Rao, M.; Herrell, R.; Zinser, G.; Valrance, M.; Aranda, A.; Moras, D.; et al. The Molecular Basis of Vitamin D Receptor and β-Catenin Crossregulation. Mol. Cell 2006, 21, 799–809. [Google Scholar] [CrossRef]
  64. Watt, F.M.; Celso, C.L.; Silva-Vargas, V. Epidermal stem cells: An update. Curr. Opin. Genet. Dev. 2006, 16, 518–524. [Google Scholar] [CrossRef] [PubMed]
  65. Niemann, C.; Owens, D.M.; Hülsken, J.; Birchmeier, W.; Watt, F.M. Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 2002, 129, 95–109. [Google Scholar] [PubMed]
  66. Niemann, C.; Owens, D.M.; Schettina, P.; Watt, F.M. Dual Role of Inactivating Lef1 Mutations in Epidermis: Tumor Promotion and Specification of Tumor Type. Cancer Res. 2007, 67, 2916–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  67. Palmer, H.G.; Anjos-Afonso, F.; Carmeliet, G.; Takeda, H.; Watt, F.M. The Vitamin D Receptor Is a Wnt Effector that Controls Hair Follicle Differentiation and Specifies Tumor Type in Adult Epidermis. PLoS ONE 2008, 3, e1483. [Google Scholar] [CrossRef] [PubMed]
  68. Kretzschmar, K.; Weber, C.; Driskell, R.R.; Calonje, E.; Watt, F.M. Compartmentalized Epidermal Activation of β-Catenin Differentially Affects Lineage Reprogramming and Underlies Tumor Heterogeneity. Cell Rep. 2016, 14, 269–281. [Google Scholar] [CrossRef]
  69. Gujral, T.S.; Chan, M.; Peshkin, L.; Sorger, P.K.; Kirschner, M.W.; MacBeath, G. A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell 2014, 159, 844–856. [Google Scholar] [CrossRef]
  70. Galluzzi, L.; Spranger, S.; Fuchs, E.; López-Soto, A. WNT Signaling in Cancer Immunosurveillance. Trends Cell Biol. 2019, 29, 44–65. [Google Scholar] [CrossRef]
  71. Rubin, A.I.; Chen, E.H.; Ratner, D. Basal-cell carcinoma. N. Engl. J. Med. 2005, 353, 2262–2269. [Google Scholar] [CrossRef]
  72. Epstein, E.H. Basal cell carcinomas: Attack of the hedgehog. Nat. Rev. Cancer 2008, 8, 743–754. [Google Scholar] [CrossRef] [PubMed]
  73. Kasper, M.; Jaks, V.; Are, A.; Bergström, Å.; Schwäger, A.; Svärd, J.; Teglund, S.; Barker, N.; Toftgård, R. Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc. Natl. Acad. Sci. USA 2011, 108, 4099–4104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  74. Wong, S.Y.; Reiter, J.F. Wounding mobilizes hair follicle stem cells to form tumors. Proc. Natl. Acad. Sci. USA 2011, 108, 4093–4098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  75. Puig, S.; Berrocal, A. Management of high-risk and advanced basal cell carcinoma. Clin. Transl. Oncol. 2015, 17, 497–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  76. Curson, C.; Weedon, D. Spontaneous Regression in Basal Cell Carcinomas. J. Cutan. Pathol. 1979, 6, 432–437. [Google Scholar] [CrossRef] [PubMed]
  77. Gupta, M.; Puri, P.; Kamal, A.; Nelson, M.E. Complete spontaneous regression of a basal cell carcinoma. Eye 2003, 17, 262–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  78. Fujimura, T.; Kakizaki, A.; Kambayashi, Y.; Aiba, S. Basal Cell Carcinoma with Spontaneous Regression: A Case Report and Immunohistochemical Study. Case Rep. Dermatol. 2012, 4, 125–132. [Google Scholar] [CrossRef] [PubMed]
  79. Von Domarus, H.; Stevens, P.J. Metastatic basal cell carcinoma. Report of five cases and review of 170 cases in the literature. J. Am. Acad. Dermatol. 1984, 10, 1043–1060. [Google Scholar] [CrossRef]
  80. Tilli, C.; Van Steensel, M.; Krekels, G.; Neumann, H.; Ramaekers, F. Molecular aetiology and pathogenesis of basal cell carcinoma. Br. J. Dermatol. 2005, 152, 1108–1124. [Google Scholar] [CrossRef] [Green Version]
  81. Dourmishev, L.A.; Rusinova, D.; Botev, I. Clinical variants, stages, and management of basal cell carcinoma. Indian Dermatol. Online J. 2013, 4, 12–17. [Google Scholar] [CrossRef]
  82. Youssef, K.K.; Lapouge, G.; Bouvrée, K.; Rorive, S.; Brohée, S.; Appelstein, O.; Larsimont, J.-C.; Sukumaran, V.; Van De Sande, B.; Pucci, D.; et al. Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation. Nat. Cell Biol. 2012, 14, 1282–1294. [Google Scholar] [CrossRef] [PubMed]
  83. Jee, B.A.; Lim, H.; Kwon, S.M.; Jo, Y.; Park, M.C.; Lee, I.J.; Woo, H.G. Molecular classification of basal cell carcinoma of skin by gene expression profiling. Mol. Carcinog. 2015, 54, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
  84. Rubin, L.L.; De Sauvage, F.J. Targeting the Hedgehog pathway in cancer. Nat. Rev. Drug Discov. 2006, 5, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
  85. Daya-Grosjean, L.; Couvé-Privat, S. Sonic hedgehog signaling in basal cell carcinomas. Cancer Lett. 2005, 225, 181–192. [Google Scholar] [CrossRef] [PubMed]
  86. Reifenberger, J.; Wolter, M.; Knobbe, C.B.; Kohler, B.; Schönicke, A.; Scharwächter, C.; Kumar, K.; Blaschke, B.; Ruzicka, T.; Reifenberger, G. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br. J. Dermatol. 2005, 152, 43–51. [Google Scholar] [CrossRef] [PubMed]
  87. Duman-Scheel, M.; Weng, L.; Xin, S.; Du, W. Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature 2002, 417, 299–304. [Google Scholar] [CrossRef]
  88. Bigelow, R.L.; Chari, N.S.; Unden, A.B.; Spurgers, K.B.; Lee, S.; Roop, D.R.; Toftgard, R.; McDonnell, T.J. Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J. Biol. Chem. 2004, 279, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
  89. Pola, R.; Ling, L.E.; Silver, M.; Corbley, M.J.; Kearney, M.; Pepinsky, R.B.; Shapiro, R.; Taylor, F.R.; Baker, D.P.; Asahara, T.; et al. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat. Med. 2001, 7, 706–711. [Google Scholar] [CrossRef]
  90. Bonilla, X.; Parmentier, L.; King, B.; Bezrukov, F.; Kaya, G.; Zoete, V.; Seplyarskiy, V.B.; Sharpe, H.J.; McKee, T.; Letourneau, A.; et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat. Genet. 2016, 48, 398–406. [Google Scholar] [CrossRef]
  91. Nilsson, M.; Undèn, A.B.; Krause, D.; Malmqwist, U.; Raza, K.; Zaphiropoulos, P.G.; Toftgård, R. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc. Natl. Acad. Sci. USA 2000, 97, 3438–3443. [Google Scholar] [CrossRef]
  92. Grachtchouk, M.; Mo, R.; Yu, S.; Zhang, X.; Sasaki, H.; Hui, C.-C.; Dlugosz, A.A. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat. Genet. 2000, 24, 216–217. [Google Scholar] [CrossRef] [PubMed]
  93. Grachtchouk, M.; Pero, J.; Yang, S.H.; Ermilov, A.N.; Michael, L.E.; Wang, A.; Wilbert, D.; Patel, R.M.; Ferris, J.; Diener, J.; et al. Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations. J. Clin. Investig. 2011, 121, 1768–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Peterson, S.C.; Eberl, M.; Vagnozzi, A.N.; Belkadi, A.; Veniaminova, N.A.; Verhaegen, M.E.; Bichakjian, C.K.; Ward, N.L.; Dlugosz, A.A.; Wong, S.Y. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 2015, 16, 400–412. [Google Scholar] [CrossRef] [PubMed]
  95. Muzio, L.L.; Pannone, G.; Staibano, S.; Mignogna, M.D.; Grieco, M.; Ramires, P.; Romito, A.M.; De Rosa, G.; Piattelli, A. WNT-1 expression in basal cell carcinoma of head and neck. An immunohistochemical and confocal study with regard to the intracellular distribution of beta-catenin. Anticancer Res. 2002, 22, 565–576. [Google Scholar] [PubMed]
  96. Mullor, J.L.; Dahmane, N.; Sun, T.; Ruiz i Altaba, A. Wnt signals are targets and mediators of Gli function. Curr. Biol. 2001, 11, 769–773. [Google Scholar] [CrossRef] [Green Version]
  97. Yamazaki, F.; Aragane, Y.; Tezuka, T.; Kawada, A. Immunohistochemical detection for nuclear beta-catenin in sporadic basal cell carcinoma. Br. J. Dermatol. 2001, 145, 771–777. [Google Scholar] [CrossRef]
  98. El-Bahrawy, M.; El-Masry, N.; Alison, M.; Poulsom, R.; Fallowfield, M. Expression of beta-catenin in basal cell carcinoma. Br. J. Dermatol. 2003, 148, 964–970. [Google Scholar] [CrossRef] [PubMed]
  99. Brinkhuizen, T.; Hurk, K.V.D.; Winnepenninckx, V.J.L.; De Hoon, J.P.; Van Marion, A.M.; Veeck, J.; Van Engeland, M.; Van Steensel, M.A.M. Epigenetic Changes in Basal Cell Carcinoma Affect SHH and WNT Signaling Components. PLoS ONE 2012, 7, e51710. [Google Scholar] [CrossRef]
  100. Saldanha, G.; Ghura, V.; Potter, L.; Fletcher, A. Nuclear beta-catenin in basal cell carcinoma correlates with increased proliferation. Br. J. Dermatol. 2004, 151, 157–164. [Google Scholar] [CrossRef]
  101. Doglioni, C.; Piccinin, S.; Demontis, S.; Cangi, M.G.; Pecciarini, L.; Chiarelli, C.; Armellin, M.; Vukosavljevic, T.; Boiocchi, M.; Maestro, R. Alterations of beta-catenin pathway in non-melanoma skin tumors: Loss of alpha-ABC nuclear reactivity correlates with the presence of beta-catenin gene mutation. Am. J. Pathol. 2003, 163, 2277–2287. [Google Scholar] [CrossRef]
  102. Kajino, Y.; Yamaguchi, A.; Hashimoto, N.; Matsuura, A.; Sato, N.; Kikuchi, K. Beta-Catenin gene mutation in human hair follicle-related tumors. Pathol. Int. 2001, 51, 543–548. [Google Scholar] [CrossRef] [PubMed]
  103. Gao, C.; Wang, Y.; Broaddus, R.; Sun, L.; Xue, F.; Zhang, W. Exon 3 mutations of CTNNB1 drive tumorigenesis: A review. Oncotarget 2018, 9, 5492–5508. [Google Scholar] [CrossRef] [PubMed]
  104. Zhang, Y.; Andl, T.; Yang, S.H.; Teta, M.; Liu, F.; Seykora, J.T.; Tobias, J.W.; Piccolo, S.; Schmidt-Ullrich, R.; Nagy, A.; et al. Activation of beta-catenin signaling programs embryonic epidermis to hair follicle fate. Development 2008, 135, 2161–2172. [Google Scholar] [CrossRef] [PubMed]
  105. Järvinen, E.; Birchmeier, W.; Taketo, M.M.; Mikkola, M.L.; Thesleff, I.; Närhi, K. Sustained epithelial-catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation. Development 2008, 135, 1019–1028. [Google Scholar]
  106. Asplund, A.; Björklund, M.G.; Sundquist, C.; Strömberg, S.; Edlund, K.; Ostman, A.; Nilsson, P.; Pontén, F.; Lundeberg, J. Expression profiling of microdissected cell populations selected from basal cells in normal epidermis and basal cell carcinoma. Br. J. Dermatol. 2008, 158, 527–538. [Google Scholar] [CrossRef]
  107. Meng, X.; Poon, R.; Zhang, X.; Cheah, A.; Ding, Q.; Hui, C.-C.; Alman, B. Suppressor of Fused Negatively Regulates β-Catenin Signaling. J. Boil. Chem. 2001, 276, 40113–40119. [Google Scholar] [CrossRef]
  108. Min, T.H.; Kriebel, M.; Hou, S.; Pera, E.M. The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. Dev. Boil. 2011, 358, 262–276. [Google Scholar] [CrossRef] [Green Version]
  109. Li, Z.J.; Nieuwenhuis, E.; Nien, W.; Zhang, X.; Zhang, J.; Puviindran, V.; Wainwright, B.J.; Kim, P.C.W.; Hui, C.-C. Kif7 regulates Gli2 through Sufu-dependent and -independent functions during skin development and tumorigenesis. Development 2012, 139, 4152–4161. [Google Scholar] [CrossRef] [Green Version]
  110. Li, X.; Deng, W.; Lobo-Ruppert, S.M.; Ruppert, J.M. Gli1 acts through Snail and E-cadherin to promote nuclear signaling by β-catenin. Oncogene 2007, 26, 4489–4498. [Google Scholar] [CrossRef]
  111. Biehs, B.; Dijkgraaf, G.J.P.; Piskol, R.; Alicke, B.; Boumahdi, S.; Peale, F.; Gould, S.E.; De Sauvage, F.J. A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition. Nature 2018, 562, 429. [Google Scholar] [CrossRef]
  112. Gibb, E.A.; Enfield, K.S.; Tsui, I.F.; Chari, R.; Lam, S.; Alvarez, C.E.; Lam, W.L. Deciphering squamous cell carcinoma using multidimensional genomic approaches. J. Skin Cancer 2011, 2011, 541405. [Google Scholar] [CrossRef]
  113. Alam, M.; Ratner, D. Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2001, 344, 975–983. [Google Scholar] [CrossRef]
  114. South, A.P.; Purdie, K.J.; Watt, S.A.; Haldenby, S.; Breems, N.D.; Dimon, M.; Arron, S.T.; Kluk, M.J.; Aster, J.C.; McHugh, A.; et al. NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis. J. Investig. Dermatol. 2014, 134, 2630–2638. [Google Scholar] [CrossRef]
  115. Sánchez-Danés, A.; Blanpain, C. Deciphering the cells of origin of squamous cell carcinomas. Nat. Rev. Cancer 2018, 18, 549–561. [Google Scholar] [CrossRef] [PubMed]
  116. Alamoud, K.; Kukuruzinska, M. Emerging Insights into Wnt/β-catenin Signaling in Head and Neck Cancer. J. Dent. Res. 2018, 97, 665–673. [Google Scholar] [CrossRef]
  117. Noguti, J.; De Moura, C.F.G.; Hossaka, T.A.; Franco, M.; Oshima, C.T.F.; Dedivitis, R.A.; Ribeiro, D.A. The role of canonical WNT signaling pathway in oral carcinogenesis: A comprehensive review. Anticancer. Res. 2012, 32, 873–878. [Google Scholar]
  118. Rapp, J.; Jaromi, L.; Kvell, K.; Miskei, G.; Pongracz, J.E. WNT signaling—Lung cancer is no exception. Respir. Res. 2017, 18, 167. [Google Scholar] [CrossRef] [PubMed]
  119. Dotto, G.P.; Rustgi, A.K. Squamous cell cancers: A unified perspective on biology and genetics. Cancer Cell 2016, 29, 622–637. [Google Scholar] [CrossRef]
  120. Rigel, D.S. Cutaneous ultraviolet exposure and its relationship to the development of skin cancer. J. Am. Acad. Dermatol. 2008, 58, S129–S132. [Google Scholar] [CrossRef] [PubMed]
  121. Tufaro, A.P.; Chuang, J.C.-M.; Prasad, N.; Chuang, A.; Chuang, T.C.; Fischer, A.C. Molecular Markers in Cutaneous Squamous Cell Carcinoma. Int. J. Surg. Oncol. 2011, 2011, 1–5. [Google Scholar] [CrossRef]
  122. Al-Rohil, R.N.; Tarasen, A.J.; Carlson, J.A.; Wang, K.; Johnson, A.; Yelensky, R.; Lipson, D.; Elvin, J.A.; Vergilio, J.A.; Ali, S.M.; et al. Evaluation of 122 advanced-stage cutaneous squamous cell carcinomas by comprehensive genomic profiling opens the door for new routes to targeted therapies. Cancer 2016, 122, 249–257. [Google Scholar] [CrossRef] [PubMed]
  123. Inman, G.J.; Wang, J.; Nagano, A.; Alexandrov, L.B.; Purdie, K.J.; Taylor, R.G.; Sherwood, V.; Thomson, J.; Hogan, S.; Spender, L.C.; et al. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat. Commun. 2018, 9, 3667. [Google Scholar] [CrossRef] [PubMed]
  124. Wang, N.J.; Sanborn, Z.; Arnett, K.L.; Bayston, L.J.; Liao, W.; Proby, C.M.; Leigh, I.M.; Collisson, E.A.; Gordon, P.B.; Jakkula, L.; et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 2011, 108, 17761–17766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  125. Griewank, K.G.; Murali, R.; Schilling, B.; Schimming, T.; Möller, I.; Moll, I.; Schwamborn, M.; Sucker, A.; Zimmer, L.; Schadendorf, D.; et al. TERT Promoter Mutations Are Frequent in Cutaneous Basal Cell Carcinoma and Squamous Cell Carcinoma. PLoS ONE 2013, 8, e80354. [Google Scholar] [CrossRef] [PubMed]
  126. Scott, G.A.; Laughlin, T.S.; Rothberg, P.G. Mutations of the TERT promoter are common in basal cell carcinoma and squamous cell carcinoma. Mod. Pathol. 2014, 27, 516–523. [Google Scholar] [CrossRef] [PubMed]
  127. McCreery, M.Q.; Balmain, A. Chemical Carcinogenesis Models of Cancer: Back to the Future. Annu. Rev. Cancer Boil. 2017, 1, 295–312. [Google Scholar] [CrossRef]
  128. Bigger, C.A.; Sawicki, J.T.; Blake, D.M.; Raymond, L.G.; Dipple, A. Products of binding of 7,12-dimethylbenz(a)anthracene to DNA in mouse skin. Cancer Res. 1983, 43, 5647–5651. [Google Scholar] [PubMed]
  129. Nelson, M.A.; Futscher, B.W.; Kinsella, T.; Wymer, J.; Bowden, G.T. Detection of mutant Ha-ras genes in chemically initiated mouse skin epidermis before the development of benign tumors. Proc. Natl. Acad. Sci. USA 1992, 89, 6398–6402. [Google Scholar] [CrossRef] [PubMed]
  130. O’Hagan, R.C.; Heyer, J. KRAS Mouse Models: Modeling Cancer Harboring KRAS Mutations. Genes Cancer 2011, 2, 335–343. [Google Scholar] [CrossRef] [PubMed]
  131. Lapouge, G.; Youssef, K.K.; Vokaer, B.; Achouri, Y.; Michaux, C.; Sotiropoulou, P.A.; Blanpain, C. Identifying the cellular origin of squamous skin tumors. Proc. Natl. Acad. Sci. USA 2011, 108, 7431–7436. [Google Scholar] [CrossRef] [Green Version]
  132. Boukamp, P. Non-melanoma skin cancer: What drives tumor development and progression? Carcinogenesis 2005, 26, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
  133. Brash, D.E.; Ziegler, A.; Jonason, A.S.; Simon, J.A.; Kunala, S.; Leffell, D.J. Sunlight and sunburn in human skin cancer: p53, apoptosis, and tumor promotion. J. Investig. Dermatol. Symp. Proc. 1996, 1, 136–142. [Google Scholar] [PubMed]
  134. Di Como, C.J.; Urist, M.J.; Babayan, I.; Drobnjak, M.; Hedvat, C.V.; Teruya-Feldstein, J.; Pohar, K.; Hoos, A.; Cordon-Cardo, C. p63 expression profiles in human normal and tumor tissues. Clin. Cancer Res. 2002, 8, 494–501. [Google Scholar] [PubMed]
  135. Ratushny, V.; Gober, M.D.; Hick, R.; Ridky, T.W.; Seykora, J.T. From keratinocyte to cancer: The pathogenesis and modeling of cutaneous squamous cell carcinoma. J. Clin. Investig. 2012, 122, 464–472. [Google Scholar] [CrossRef] [PubMed]
  136. Latil, M.; Nassar, D.; Beck, B.; Boumahdi, S.; Wang, L.; Brisebarre, A.; Dubois, C.; Nkusi, E.; Lenglez, S.; Checinska, A.; et al. Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition. Cell Stem Cell 2017, 20, 191–204.e5. [Google Scholar] [CrossRef] [PubMed]
  137. White, A.C.; Khuu, J.K.; Dang, C.Y.; Hu, J.; Tran, K.V.; Liu, A.; Gomez, S.; Zhang, Z.; Yi, R.; Scumpia, P.; et al. Stem cell quiescence acts as a tumour suppressor in squamous tumours. Nat. Cell Biol. 2014, 16, 99–107. [Google Scholar] [CrossRef]
  138. Segrelles, C.; Ruiz, S.; Pérez, P.; Murga, C.; Santos, M.; Budunova, I.V.; Martínez, J.; Larcher, F.; Slaga, T.J.; Gutkind, J.S.; et al. Functional roles of Akt signaling in mouse skin tumorigenesis. Oncogene 2002, 21, 53–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  139. Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat. Rev. Cancer 2002, 2, 489–501. [Google Scholar] [CrossRef] [PubMed]
  140. Claerhout, S.; Verschooten, L.; Van Kelst, S.; De Vos, R.; Proby, C.; Agostinis, P.; Garmyn, M. Concomitant inhibition of AKT and autophagy is required for efficient cisplatin-induced apoptosis of metastatic skin carcinoma. Int. J. Cancer 2010, 127, 2790–2803. [Google Scholar] [CrossRef] [PubMed]
  141. Ra, S.H.; Li, X.; Binder, S. Molecular discrimination of cutaneous squamous cell carcinoma from actinic keratosis and normal skin. Mod. Pathol. 2011, 24, 963–973. [Google Scholar] [CrossRef]
  142. Popp, S.; Waltering, S.; Herbst, C.; Moll, I.; Boukamp, P. UV-B-type mutations and chromosomal imbalances indicate common pathways for the development of Merkel and skin squamous cell carcinomas. Int. J. Cancer 2002, 99, 352–360. [Google Scholar] [CrossRef]
  143. Haider, A.S.; Peters, S.B.; Kaporis, H.; Cardinale, I.; Fei, J.; Ott, J.; Blumenberg, M.; Bowcock, A.M.; Krueger, J.G.; Carucci, J.A.; et al. Genomic Analysis Defines a Cancer-Specific Gene Expression Signature for Human Squamous Cell Carcinoma and Distinguishes Malignant Hyperproliferation from Benign Hyperplasia. J. Investig. Dermatol. 2006, 126, 869–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  144. Liang, J.; Kang, X.; Halifu, Y.; Zeng, X.; Jin, T.; Zhang, M.; Luo, D.; Ding, Y.; Zhou, Y.; Yakeya, B.; et al. Secreted frizzled-related protein promotors are hypermethylated in cutaneous squamous carcinoma compared with normal epidermis. BMC Cancer 2015, 15, 58. [Google Scholar] [CrossRef] [PubMed]
  145. He, X.; Li, S.; Luo, X.; Hu, D.; Cai, T.; Huang, K.; Zhou, W.; Chen, J. Expression of DKK1 and beta-catenin in epidermal neoplasms and their correlation. Int. J. Clin. Exp. Med. 2015, 8, 18843–18848. [Google Scholar] [PubMed]
  146. Shin, J.-M.; Choi, D.-K.; Kang, H.-Y.; Sohn, K.-C.; Lee, Y.; Kim, C.D.; Lee, J.-H.; Park, B.C. The expression pattern and functional role of REIC/Dkk-3 in the development of cutaneous squamous cell carcinoma. J. Dermatol. Sci. 2016, 84, 88–96. [Google Scholar] [CrossRef] [PubMed]
  147. Lan, Y.J.; Chen, H.; Chen, J.Q.; Lei, Q.H.; Zheng, M.; Shao, Z.R. Immunolocalization of vimentin, keratin 17, Ki-67, involucrin, beta-catenin and E-cadherin in cutaneous squamous cell carcinoma. Pathol. Oncol. Res. 2014, 20, 263–266. [Google Scholar] [CrossRef] [PubMed]
  148. Papadavid, E.; Pignatelli, M.; Zakynthinos, S.; Krausz, T.; Chu, A.C. Abnormal immunoreactivity of the E-cadherin/catenin (α-, β-, and γ-) complex in premalignant and malignant non-melanocytic skin tumours. J. Pathol. 2002, 196, 154–162. [Google Scholar] [CrossRef]
  149. Bai, X.; Zhou, Y.; Chen, P.; Yang, M.; Xu, J. MicroRNA-142-5p induces cancer stem cell-like properties of cutaneous squamous cell carcinoma via inhibiting PTEN. J. Cell Biochem. 2018, 119, 2179–2188. [Google Scholar] [CrossRef]
  150. Proweller, A.; Tu, L.; Lepore, J.J.; Cheng, L.; Lu, M.M.; Seykora, J.; Millar, S.E.; Pear, W.S.; Parmacek, M.S. Impaired Notch Signaling Promotes De novo Squamous Cell Carcinoma Formation. Cancer Res. 2006, 66, 7438–7444. [Google Scholar] [CrossRef]
  151. Xia, X.; Qian, S.; Soriano, S.; Wu, Y.; Fletcher, A.M.; Wang, X.-J.; Koo, E.H.; Wu, X.; Zheng, H. Loss of presenilin 1 is associated with enhanced β-catenin signaling and skin tumorigenesis. Proc. Natl. Acad. Sci. USA 2001, 98, 10863–10868. [Google Scholar] [CrossRef]
  152. Samuel, M.S.; Lopez, J.I.; McGhee, E.J.; Croft, D.R.; Strachan, D.; Timpson, P.; Munro, J.; Schröder, E.; Zhou, J.; Brunton, V.G.; et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce interfollicular epidermal hyperplasia and tumor growth. Cancer Cell 2011, 19, 776–791. [Google Scholar] [CrossRef] [PubMed]
  153. Krimpenfort, P.; Snoek, M.; Lambooij, J.-P.; Song, J.-Y.; Van Der Weide, R.; Bhaskaran, R.; Teunissen, H.; Adams, D.J.; De Wit, E.; Berns, A. A natural WNT signaling variant potently synergizes with Cdkn2ab loss in skin carcinogenesis. Nat. Commun. 2019, 10, 1425. [Google Scholar] [CrossRef] [PubMed]
  154. Chu, Z.; Zhang, X.; Li, Q.; Hu, G.; Lian, C.G.; Geng, S. CDC20 contributes to the development of human cutaneous squamous cell carcinoma through the Wnt/β-catenin signaling pathway. Int. J. Oncol. 2019, 54, 1534–1544. [Google Scholar] [CrossRef]
  155. Murphy, M.; Chatterjee, S.S.; Jain, S.; Katari, M.; Dasgupta, R. TCF7L1 Modulates Colorectal Cancer Growth by Inhibiting Expression of the Tumor-Suppressor Gene EPHB3. Sci. Rep. 2016, 6, 28299. [Google Scholar] [CrossRef] [Green Version]
  156. Zhang, B.; Wu, J.; Cai, Y.; Luo, M.; Wang, B.; Gu, Y. TCF7L1 indicates prognosis and promotes proliferation through activation of Keap1/NRF2 in gastric cancer. Acta Biochim. Biophys. Sin. 2019, 51, 375–385. [Google Scholar] [CrossRef]
  157. Chitsazzadeh, V.; Coarfa, C.; Drummond, J.A.; Nguyen, T.; Joseph, A.; Chilukuri, S.; Charpiot, E.; Adelmann, C.H.; Ching, G.; Nguyen, T.N.; et al. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nat. Commun. 2016, 7, 12601. [Google Scholar] [CrossRef]
  158. Ku, A.T.; Shaver, T.M.; Rao, A.S.; Howard, J.M.; Rodriguez, C.N.; Miao, Q.; Garcia, G.; Le, D.; Yang, D.; Borowiak, M.; et al. TCF7L1 promotes skin tumorigenesis independently of β-catenin through induction of LCN2. eLife 2017, 6, 6. [Google Scholar] [CrossRef]
  159. Ricken, A.; Lochhead, P.; Kontogiannea, M.; Farookhi, R. Wnt Signaling in the Ovary: Identification and Compartmentalized Expression of wnt-2, wnt-2b, and Frizzled-4 mRNAs. Endocrinology 2002, 143, 2741–2749. [Google Scholar] [CrossRef] [PubMed]
  160. Bakker, E.R.; Das, A.M.; Helvensteijn, W.; Franken, P.F.; Swagemakers, S.; Van Der Valk, M.A.; Hagen, T.L.T.; Kuipers, E.J.; Van Veelen, W.; Smits, R. Wnt5a promotes human colon cancer cell migration and invasion but does not augment intestinal tumorigenesis in Apc 1638N mice. Carcinogenesis 2013, 34, 2629–2638. [Google Scholar] [CrossRef] [Green Version]
  161. Sandsmark, E.; Hansen, A.F.; Selnaes, K.M.; Bertilsson, H.; Bofin, A.M.; Wright, A.J.; Viset, T.; Richardsen, E.; Drablos, F.; Bathen, T.F.; et al. A novel non-canonical Wnt signature for prostate cancer aggressiveness. Oncotarget 2017, 8, 9572–9586. [Google Scholar] [CrossRef]
  162. Ren, D.; Minami, Y.; Nishita, M. Critical role of Wnt5a-Ror2 signaling in motility and invasiveness of carcinoma cells following Snail-mediated epithelial-mesenchymal transition. Genes Cells 2011, 16, 304–315. [Google Scholar] [CrossRef]
  163. Kang, M.-I.; Baker, A.R.; Dextras, C.R.; Cabarcas, S.M.; Young, M.R.; Colburn, N.H. Targeting of Noncanonical Wnt5a Signaling by AP-1 Blocker Dominant-Negative Jun When It Inhibits Skin Carcinogenesis. Genes Cancer 2012, 3, 37–50. [Google Scholar] [CrossRef]
  164. Connolly, K.; Manders, P.; Earls, P.; Epstein, R.J. Papillomavirus-associated squamous skin cancers following transplant immunosuppression: One Notch closer to control. Cancer Treat. Rev. 2014, 40, 205–214. [Google Scholar] [CrossRef]
  165. Harwood, C.A.; Surentheran, T.; McGregor, J.M.; Spink, P.J.; Leigh, I.M.; Breuer, J.; Proby, C.M. Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. J. Med Virol. 2000, 61, 289–297. [Google Scholar] [CrossRef]
  166. Nichols, A.J.; Allen, A.H.; Shareef, S.; Badiavas, E.V.; Kirsner, R.S.; Ioannides, T. Association of Human Papillomavirus Vaccine with the Development of Keratinocyte Carcinomas. JAMA Dermatol. 2017, 153, 571–574. [Google Scholar] [CrossRef]
  167. Marcuzzi, G.P.; Hufbauer, M.; Kasper, H.U.; Weissenborn, S.J.; Smola, S.; Pfister, H. Spontaneous tumour development in human papillomavirus type 8 E6 transgenic mice and rapid induction by UV-light exposure and wounding. J. Gen. Virol. 2009, 90, 2855–2864. [Google Scholar] [CrossRef]
  168. Zimmerli, D.; Cecconi, V.; Valenta, T.; Hausmann, G.; Cantu, C.; Restivo, G.; Hafner, J.; Basler, K.; Broek, M.V.D. WNT ligands control initiation and progression of human papillomavirus-driven squamous cell carcinoma. Oncogene 2018, 37, 3753–3762. [Google Scholar] [CrossRef]
  169. Grünert, S.; Jechlinger, M.; Beug, H.; Gruenert, S. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat. Rev. Mol. Cell Boil. 2003, 4, 657–665. [Google Scholar] [CrossRef]
  170. Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Boil. 2019, 20, 69–84. [Google Scholar] [CrossRef]
  171. Gonzalez, D.M.; Medici, D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal. 2014, 7, re8. [Google Scholar] [CrossRef]
  172. Margulis, A.; Zhang, W.; Alt-Holland, A.; Crawford, H.C.; Fusenig, N.E.; Garlick, J.A. E-cadherin Suppression Accelerates Squamous Cell Carcinoma Progression in Three-Dimensional, Human Tissue Constructs. Cancer Res. 2005, 65, 1783–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  173. Heuberger, J.; Birchmeier, W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb. Perspect. Biol. 2010, 2, a002915. [Google Scholar] [CrossRef] [PubMed]
  174. Pourreyron, C.; Reilly, L.; Proby, C.; Panteleyev, A.; Fleming, C.; McLean, K.; South, A.P.; Foerster, J. Wnt5a Is Strongly Expressed at the Leading Edge in Non-Melanoma Skin Cancer, Forming Active Gradients, while Canonical Wnt Signalling Is Repressed. PLoS ONE 2012, 7, e31827. [Google Scholar] [CrossRef] [PubMed]
  175. Fahradyan, A.; Howell, A.C.; Wolfswinkel, E.M.; Tsuha, M.; Sheth, P.; Wong, A.K. Updates on the Management of Non-Melanoma Skin Cancer (NMSC). Healthcare 2017, 5, 82. [Google Scholar] [CrossRef] [PubMed]
  176. Kirby, J.S.; Miller, C.J. Intralesional chemotherapy for nonmelanoma skin cancer: A practical review. J. Am. Acad. Dermatol. 2010, 63, 689–702. [Google Scholar] [CrossRef] [PubMed]
  177. Wiznia, L.E.; Federman, D.G. Treatment of Basal Cell Carcinoma in the Elderly: What Nondermatologists Need to Know. Am. J. Med. 2016, 129, 655–660. [Google Scholar] [CrossRef]
  178. Schulze, H.; Cribier, B.; Requena, L.; Reifenberger, J.; Ferrándiz, C.; Diez, A.G.; Tebbs, V.; McRae, S. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: Results from a randomized vehicle-controlled phase III study in Europe. Br. J. Dermatol. 2005, 152, 939–947. [Google Scholar] [CrossRef] [PubMed]
  179. Stockfleth, E.; Ulrich, C.; Hauschild, A.; Lischner, S.; Meyer, T.; Christophers, E. Successful treatment of basal cell carcinomas in a nevoid basal cell carcinoma syndrome with topical 5% imiquimod. Eur. J. Dermatol. 2002, 12, 569–572. [Google Scholar]
  180. Ferreres, J.; Macaya, A.; Jucglà, A.; Muniesa, C.; Prats, C.; Peyrí, J. Hundreds of basal cell carcinomas in a Gorlin-Goltz syndrome patient cured with imiquimod 5% cream. J. Eur. Acad. Dermatol. Venereol. 2006, 20, 877–878. [Google Scholar] [CrossRef]
  181. Sekulic, A.; Migden, M.R.; Oro, A.E.; Dirix, L.; Lewis, K.D.; Hainsworth, J.D.; Solomon, J.A.; Yoo, S.; Arron, S.T.; Friedlander, P.A.; et al. Efficacy and Safety of Vismodegib in Advanced Basal-Cell Carcinoma. N. Engl. J. Med. 2012, 366, 2171–2179. [Google Scholar] [CrossRef]
  182. Wolfe, C.M.; Green, H.W.; Cognetta, A.B.; Hatfield, K.H. Basal Cell Carcinoma Rebound After Cessation of Vismodegib in a Nevoid Basal Cell Carcinoma Syndrome Patient. Dermatol. Surg. 2012, 38, 1863–1866. [Google Scholar] [CrossRef]
  183. Sánchez-Danés, A.; Larsimont, J.-C.; Liagre, M.; Muñoz-Couselo, E.; Lapouge, G.; Brisebarre, A.; Dubois, C.; Suppa, M.; Sukumaran, V.; Del Marmol, V.; et al. A slow-cycling LGR5 tumour population mediates basal cell carcinoma relapse after therapy. Nature 2018, 562, 434. [Google Scholar]
  184. Iwai, H.; Yukawa, H.; Nagata, M.; Inoue, T.; Omae, M.; Yamashita, T. Preoperative concurrent chemoradiotherapy versus pre- and postoperative radiotherapy for advanced hypopharyngeal carcinoma: A single-center study. Auris Nasus Larynx 2008, 35, 235–241. [Google Scholar] [CrossRef]
  185. Alam, M.; Armstrong, A.; Baum, C.; Bordeaux, J.S.; Brown, M.; Busam, K.J.; Eisen, D.B.; Iyengar, V.; Lober, C.; Margolis, D.J.; et al. Guidelines of care for the management of cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 2018, 78, 560–578. [Google Scholar] [Green Version]
  186. Takada, R.; Satomi, Y.; Kurata, T.; Ueno, N.; Norioka, S.; Kondoh, H.; Takao, T.; Takada, S. Monounsaturated Fatty Acid Modification of Wnt Protein: Its Role in Wnt Secretion. Dev. Cell 2006, 11, 791–801. [Google Scholar] [CrossRef] [Green Version]
  187. Liu, J.; Pan, S.; Hsieh, M.H.; Ng, N.; Sun, F.; Wang, T.; Kasibhatla, S.; Schuller, A.G.; Li, A.G.; Cheng, D.; et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc. Natl. Acad. Sci. USA 2013, 110, 20224–20229. [Google Scholar] [CrossRef] [Green Version]
  188. Kulak, O.; Chen, H.; Holohan, B.; Wu, X.; He, H.; Borek, D.; Otwinowski, Z.; Yamaguchi, K.; Garofalo, L.A.; Ma, Z.; et al. Disruption of Wnt/β-Catenin Signaling and Telomeric Shortening Are Inextricable Consequences of Tankyrase Inhibition in Human Cells. Mol. Cell. Boil. 2015, 35, 2425–2435. [Google Scholar] [CrossRef] [PubMed]
  189. Huang, S.-M.A.; Mishina, Y.M.; Liu, S.; Cheung, A.; Stegmeier, F.; Michaud, G.A.; Charlat, O.; Wiellette, E.; Zhang, Y.; Wiessner, S.; et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009, 461, 614–620. [Google Scholar] [CrossRef] [PubMed]
  190. Wend, P.; Fang, L.; Zhu, Q.; Schipper, J.H.; Loddenkemper, C.; Kosel, F.; Brinkmann, V.; Eckert, K.; Hindersin, S.; Holland, J.D.; et al. Wnt/β-catenin signalling induces MLL to create epigenetic changes in salivary gland tumours. EMBO J. 2013, 32, 1977–1989. [Google Scholar] [CrossRef]
  191. Kumon, H.; Ariyoshi, Y.; Sasaki, K.; Sadahira, T.; Araki, M.; Ebara, S.; Yanai, H.; Watanabe, M.; Nasu, Y. Adenovirus vector carrying REIC/DKK-3 gene: Neoadjuvant intraprostatic injection for high-risk localized prostate cancer undergoing radical prostatectomy. Cancer Gene Ther. 2016, 23, 400–409. [Google Scholar] [CrossRef]
  192. Behshad, R.; Garcia-Zuazaga, J.; Bordeaux, J. Systemic treatment of locally advanced nonmetastatic cutaneous squamous cell carcinoma: A review of the literature. Br. J. Dermatol. 2011, 165, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
  193. Stratigos, A.; Garbe, C.; Lebbé, C.; Malvehy, J.; Del Marmol, V.; Pehamberger, H.; Peris, K.; Becker, J.C.; Zalaudek, I.; Saiag, P.; et al. Diagnosis and treatment of invasive squamous cell carcinoma of the skin: European consensus-based interdisciplinary guideline. Eur. J. Cancer 2015, 51, 1989–2007. [Google Scholar] [CrossRef]
  194. Vermorken, J.B.; Stöhlmacher-Williams, J.; Davidenko, I.; Licitra, L.; Winquist, E.; Villanueva, C.; Foa, P.; Rottey, S.; Skladowski, K.; Tahara, M.; et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): An open-label phase 3 randomised trial. Lancet Oncol. 2013, 14, 697–710. [Google Scholar] [CrossRef]
  195. Funck-Brentano, T.; Nilsson, K.H.; Brommage, R.; Henning, P.; Lerner, U.H.; Koskela, A.; Tuukkanen, J.; Cohen-Solal, M.; Movérare-Skrtic, S.; Ohlsson, C. Porcupine inhibitors impair trabecular and cortical bone mass and strength in mice. J. Endocrinol. 2018, 238, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  196. Mukai, T.; Fujita, S.; Morita, Y. Tankyrase (PARP5) Inhibition Induces Bone Loss through Accumulation of Its Substrate SH3BP2. Cells 2019, 8, 195. [Google Scholar] [CrossRef]
  197. Cheng, Y.; Phoon, Y.P.; Jin, X.; Chong, S.Y.S.; Ip, J.C.Y.; Wong, B.W.Y.; Lung, M.L. Wnt-C59 arrests stemness and suppresses growth of nasopharyngeal carcinoma in mice by inhibiting the Wnt pathway in the tumor microenvironment. Oncotarget 2015, 6, 14428–14439. [Google Scholar] [CrossRef] [Green Version]
  198. Jamieson, C.; Sharma, M.; Henderson, B.R. Targeting the β-catenin nuclear transport pathway in cancer. Semin. Cancer Boil. 2014, 27, 20–29. [Google Scholar] [CrossRef] [PubMed]
  199. Emami, K.H.; Nguyen, C.; Ma, H.; Kim, D.H.; Jeong, K.W.; Eguchi, M.; Moon, R.T.; Teo, J.L.; Kim, H.Y.; Moon, S.H.; et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc. Natl. Acad. Sci. USA 2004, 101, 12682–12687. [Google Scholar] [CrossRef] [PubMed]
  200. Mullighan, C.G.; Zhang, J.; Kasper, L.H.; Lerach, S.; Payne-Turner, D.; Phillips, L.A.; Heatley, S.L.; Holmfeldt, L.; Collins-Underwood, J.R.; Ma, J.; et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 2011, 471, 235–239. [Google Scholar] [CrossRef] [Green Version]
Figure 1. Overview of Wnt signaling pathways. This schematic diagram illustrates simplified canonical (β-catenin-dependent) and non-canonical (β-catenin-independent) Wnt signaling pathways. In the absence of Wnt, β-catenin is targeted by a destructive complex, composed of Axin, CK1α, APC, and GSK3β, for degradation. Upon Wnt binding to the receptor, recruited Dvl inhibits the degradation complex, which in turn stabilizes β-catenin. Stabilized β-catenin accumulates in the cytoplasm and then enters the nucleus where it acts as a transcriptional co-activator for TCF/LEF transcription factors to activate Wnt target genes. The transcriptional activation mediated by β-catenin can be suppressed by NLK, which is activated through non-canonical Wnt pathways. Non-canonical Wnt signaling is divided into Wnt/Ca2+ and Wnt/PCP pathways. Wnt/Ca2+ signaling is characterized by the release of intracellular Ca2+ via activation of PLCγ converting PIP2 into IP3 and DAG, thus activating CaN, CaMKII or PKC. For Wnt/PCP pathways, Wnt ligand-receptor interaction activates small GTPases Rho or Rac, allowing cytoskeletal reorganization and modulating downstream JNK signaling. AP-1, activating protein-1; APC, adenomatous polyposis coli; CaMKII, Ca2+/calmodulin-dependent protein kinase II; CaN, calcineurin; CK1α, casein kinase 1α; DAG, diacylglycerol; Dkk, dickkopf proteins; Dvl, dishevelled; Fzd, Frizzled; GSK3β, glycogen synthase kinase 3β; IP3, inositol 1,4,5-triphosphate; JNK, c-Jun N-terminal kinase; TCF/LEF, T-cell factor/lymphoid-enhancing factor; LRP5/6, lipoprotein receptor-related protein 5/6; NFAT, nuclear factor of activated T-cells; NLK, nemo-like kinase; PCP, planar cell polarity; PIP2, phosphatidylinositol 4,5-bisphosphate; PKC, protein kinase C; PLCγ, phospholipase C γ; PTK7, tyrosine-protein kinase-like 7; ROCK, Rho-associated kinase; ROR, receptor tyrosine kinase-like orphan receptor; RYK, receptor-like tyrosine kinase; SFRP, secreted frizzled-related proteins; WIF, Wnt inhibitory factor.
Figure 1. Overview of Wnt signaling pathways. This schematic diagram illustrates simplified canonical (β-catenin-dependent) and non-canonical (β-catenin-independent) Wnt signaling pathways. In the absence of Wnt, β-catenin is targeted by a destructive complex, composed of Axin, CK1α, APC, and GSK3β, for degradation. Upon Wnt binding to the receptor, recruited Dvl inhibits the degradation complex, which in turn stabilizes β-catenin. Stabilized β-catenin accumulates in the cytoplasm and then enters the nucleus where it acts as a transcriptional co-activator for TCF/LEF transcription factors to activate Wnt target genes. The transcriptional activation mediated by β-catenin can be suppressed by NLK, which is activated through non-canonical Wnt pathways. Non-canonical Wnt signaling is divided into Wnt/Ca2+ and Wnt/PCP pathways. Wnt/Ca2+ signaling is characterized by the release of intracellular Ca2+ via activation of PLCγ converting PIP2 into IP3 and DAG, thus activating CaN, CaMKII or PKC. For Wnt/PCP pathways, Wnt ligand-receptor interaction activates small GTPases Rho or Rac, allowing cytoskeletal reorganization and modulating downstream JNK signaling. AP-1, activating protein-1; APC, adenomatous polyposis coli; CaMKII, Ca2+/calmodulin-dependent protein kinase II; CaN, calcineurin; CK1α, casein kinase 1α; DAG, diacylglycerol; Dkk, dickkopf proteins; Dvl, dishevelled; Fzd, Frizzled; GSK3β, glycogen synthase kinase 3β; IP3, inositol 1,4,5-triphosphate; JNK, c-Jun N-terminal kinase; TCF/LEF, T-cell factor/lymphoid-enhancing factor; LRP5/6, lipoprotein receptor-related protein 5/6; NFAT, nuclear factor of activated T-cells; NLK, nemo-like kinase; PCP, planar cell polarity; PIP2, phosphatidylinositol 4,5-bisphosphate; PKC, protein kinase C; PLCγ, phospholipase C γ; PTK7, tyrosine-protein kinase-like 7; ROCK, Rho-associated kinase; ROR, receptor tyrosine kinase-like orphan receptor; RYK, receptor-like tyrosine kinase; SFRP, secreted frizzled-related proteins; WIF, Wnt inhibitory factor.
Cancers 11 01216 g001
Figure 2. Crosstalk of signaling pathways in the pathogenesis of BCC. The main driver of BCC development is the dysregulation of Hedgehog signaling and Wnt/β-catenin signaling whereby the PTCH, SMO, SUFU, and CTNNB1 (a gene encoding for β-catenin) are frequently mutated in human BCCs. Mutated Ptch loses its grip on Smo that subsequently leads to its activation. Aberrant activation of Smo releases inhibition of Gli from SuFu and Kif7, thus allowing nuclear translocation of Gli. Aberrant Gli activity induces the expression of genes that regulate the cell cycle, cell survival and development of BCC. In addition, Gli induces Snail leading to the inhibition of E-cadherin, which in turn results in the accumulation of free β-catenin and its translocation to the nucleus. Alternatively, inactivation of SuFu and Kif7 leads to the accumulation and nuclear translocation of stabilized β-catenin which in turn facilitates BCC genesis. BCC, basal cell carcinoma; Gli, Glioma associated oncogenic homolog; Kif7, kinesin family member 7; Ptch, Patched; Smo, Smoothened; SuFu, Suppressor of Fused.
Figure 2. Crosstalk of signaling pathways in the pathogenesis of BCC. The main driver of BCC development is the dysregulation of Hedgehog signaling and Wnt/β-catenin signaling whereby the PTCH, SMO, SUFU, and CTNNB1 (a gene encoding for β-catenin) are frequently mutated in human BCCs. Mutated Ptch loses its grip on Smo that subsequently leads to its activation. Aberrant activation of Smo releases inhibition of Gli from SuFu and Kif7, thus allowing nuclear translocation of Gli. Aberrant Gli activity induces the expression of genes that regulate the cell cycle, cell survival and development of BCC. In addition, Gli induces Snail leading to the inhibition of E-cadherin, which in turn results in the accumulation of free β-catenin and its translocation to the nucleus. Alternatively, inactivation of SuFu and Kif7 leads to the accumulation and nuclear translocation of stabilized β-catenin which in turn facilitates BCC genesis. BCC, basal cell carcinoma; Gli, Glioma associated oncogenic homolog; Kif7, kinesin family member 7; Ptch, Patched; Smo, Smoothened; SuFu, Suppressor of Fused.
Cancers 11 01216 g002
Figure 3. Wnt signaling pathways in cSCC. Canonical and non-canonical Wnt signaling participates in the maintenance of CSC, tumor progression, migration and EMT. Reduction of SFRPs and Dkks leads to activation of canonical Wnt signaling. Porcupine, an enzyme from the ER is needed for post-translational modification of Wnts to enable their transport and secretion. Other intricate factors, e.g., loss of E-cadherin or Presenillin-1, inhibition of Notch signaling and ROCK activation could modulate β-catenin signaling and activate genes involved in several cellular processes, including cell proliferation and CSC maintenance. For non-canonical Wnt signaling, interaction between Wnt5a and ROR2 facilitates EMT and invasive properties of cancer cells. Wnt5a is also required to activate PKCα and for STAT3 phosphorylation leading to tumorigenesis. ER, Endoplasmic reticulum; PKCα, protein kinase Cα; ROR2, receptor tyrosine kinase-like orphan receptor 2; STAT3, signal transducer and activator of transcription 3.
Figure 3. Wnt signaling pathways in cSCC. Canonical and non-canonical Wnt signaling participates in the maintenance of CSC, tumor progression, migration and EMT. Reduction of SFRPs and Dkks leads to activation of canonical Wnt signaling. Porcupine, an enzyme from the ER is needed for post-translational modification of Wnts to enable their transport and secretion. Other intricate factors, e.g., loss of E-cadherin or Presenillin-1, inhibition of Notch signaling and ROCK activation could modulate β-catenin signaling and activate genes involved in several cellular processes, including cell proliferation and CSC maintenance. For non-canonical Wnt signaling, interaction between Wnt5a and ROR2 facilitates EMT and invasive properties of cancer cells. Wnt5a is also required to activate PKCα and for STAT3 phosphorylation leading to tumorigenesis. ER, Endoplasmic reticulum; PKCα, protein kinase Cα; ROR2, receptor tyrosine kinase-like orphan receptor 2; STAT3, signal transducer and activator of transcription 3.
Cancers 11 01216 g003
Table 1. Potential Inhibitors Targeting the Wnt Signaling Pathway in Preclinical and Clinical Trials.
Table 1. Potential Inhibitors Targeting the Wnt Signaling Pathway in Preclinical and Clinical Trials.
CompoundTargetClinical Trial NumberTrial PhaseReference
Lgk974PorcupineNCT01351103
NCT02278133
I
I
[168]
IWPPorcupine-Preclinical
Wnt-c59Porcupine-Preclinical[197]
ETC-159PorcupineNCT02521844I
XAV939Tankyrase-Preclinical[198]
IWRTankyrase--[188]
ICG-001β-catenin-CBP interaction-Preclinical[199]
PRI-724β-catenin-CBP interactionNCT 01606579
NCT 01302405
I/II[200]
E7386β-catenin-CBP interactionNCT03833700
NCT03264664
I

Share and Cite

MDPI and ACS Style

Lang, C.M.R.; Chan, C.K.; Veltri, A.; Lien, W.-H. Wnt Signaling Pathways in Keratinocyte Carcinomas. Cancers 2019, 11, 1216. https://doi.org/10.3390/cancers11091216

AMA Style

Lang CMR, Chan CK, Veltri A, Lien W-H. Wnt Signaling Pathways in Keratinocyte Carcinomas. Cancers. 2019; 11(9):1216. https://doi.org/10.3390/cancers11091216

Chicago/Turabian Style

Lang, Christopher M. R., Chim Kei Chan, Anthony Veltri, and Wen-Hui Lien. 2019. "Wnt Signaling Pathways in Keratinocyte Carcinomas" Cancers 11, no. 9: 1216. https://doi.org/10.3390/cancers11091216

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop