CD123 as a Therapeutic Target in the Treatment of Hematological Malignancies
Abstract
:1. Introduction
1.1. Acute Myeloid Leukemia
1.2. Interleukin-3 and Interleukin-3 Receptor
1.3. CD123 Is Overexpressed in Many Hematological Malignancies
2. Therapeutic CD123 Targeting
2.1. SL-401 (Tagraxofusp)
2.2. CSL362 (Taclotuzumab)
2.3. IMGN632: A CD123-Targeting Antibody Drug-Conjugate
2.4. Bispecific CD123 Monoclonal Antibodies
2.5. Chimeric Antigen Receptor (CAR) T Cell Therapy Targeting CD123
3. Conclusions
Funding
Conflicts of Interest
References
- Dohner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute myeloid leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef] [PubMed]
- Hartman, L.; Metzler, K.H. Clonal hematopoiesis and preleukemia–Genetics, biology, and clinical implications. Genes Chromosom. Cancer 2019. [Google Scholar] [CrossRef] [PubMed]
- Valent, P.; Kern, W.; Hoermann, G.; Feenstra, J.M.; Sotlar, K.; Pfeilstocker, M. Clonal hematopoiesis with oncogenic potential (CHOP): Separation from CHIP and roads to AML. Int. J. Mol. Sci. 2019, 20, 789. [Google Scholar] [CrossRef] [PubMed]
- Lindsley, R.C.; Mar, B.G.; Mazzola, E.; Grauman, P.V.; Shareef, S.; Allen, S.L.; Pigneux, A.; Wetzler, M.; Stuart, R.K.; Erba, H.P.; et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 2015, 125, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Dohner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Buchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, M.R.; Tallman, M.S.; Abboud, C.N.; Altman, J.K.; Appelbaum, F.R.; Arber, D.A. Acute myeloid leukemia, version 3.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2017, 15, 926–957. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiede, J.; Borowitz, M.J.; Le Beau, M.M. The 2016 revision in the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 1391–2405. [Google Scholar] [CrossRef]
- Bullinger, L.; Dohner, K.; Dohner, H. Genomics of acute myeloid leukemia diagnosis and pathways. J. Clin. Oncol. 2017, 35, 934–946. [Google Scholar] [CrossRef]
- Moarii, M.; Papaemmanuil, E. Classification and risk assessment in AML: Integrating cytogenetics and molecular profiling. Hematol. Am. Soc. Hematol. Educ. Program 2017, 2017, 37–44. [Google Scholar] [CrossRef]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Welch, J.S.; Ley, T.J.; Link, D.C.; Miller, C.A.; Larson, D.E.; Koboldt, D.C.; Wartman, L.D.; Lamprecht, T.L.; Liu, F.; Xia, J.; et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012, 150, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Ley, T.J.; Larson, D.E.; Miller, C.A.; Koboldt, D.C.; Welch, J.S.; RFitchey, J.K.; Young, M.A.; Lamprecht, T.; McLellan, M.D.; et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012, 481, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Shlush, L.I.; Mitchell, A.; Heisler, L.; Abelson, S.; Ng, S.W.K.; Trotman-Grant, A.; Medeiros, J.J.F.; Rao-Bhatia, A.; Jaciw-Zurakowsky, I.; Marke, R.; et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 2017, 547, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Zeijlemaker, W.; Grob, T.; Meijler, R.; Hanekamp, D.; Kelder, A.; Carbaat-Ham, J.C.; Oussoren-Brockoff, Y.; Snel, A.N.; Veldhuizen, D.; Scholten, W.J.; et al. CD34+CD38− leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia 2019, 33, 1102–1112. [Google Scholar] [CrossRef] [PubMed]
- Duployez, N.; Marceau-Renaut, A.; Villenet, C.; Petit, A.; Rousseau, A.; Ng, S.W.K.; Paquet, A.; Gonzalez, Z.; Bertholomy, A.; Lepretre, F.; et al. The stem cell-associated gene expression signature allows risk stratification in pediatric acute myeloid leukemia. Leukemia 2019, 33, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Yassin, M.; Agage, N.; Yassin, A.A.; van Galen, P.; Kugler, E.; Bernstein, B.E.; Koren-Michowitz, M.; Canaani, J.; Nagler, A.; Lechman, E.R.; et al. A novel method for detecting the cellular stemness state in normal and leukemic human hematopoietic cells can predict disease outcome and drug sensitivity. Leukemia 2019, 33, 2061–2077. [Google Scholar] [CrossRef] [PubMed]
- Potter, N.; Mizaki-Moud, F.; Ermini, L.; Titley, J.; Mijaraghavan, G.; Papaemmanuil, E.; Campbell, P.; Gribben, J.; Taussig, D.; Graeves, M. Single cell analysis of clonal architecture in acute myeloid leukemia. Leukemia 2019. [Google Scholar] [CrossRef] [PubMed]
- Christen, F.; Hover, K.; Yoshida, K.; Hou, H.A.; Waldhueter, N.; Heuser, M.; Hills, R.K.; Chan, W.; Hablesreiter, R.; Blau, O.; et al. Genomic landscape and clonal evolution of acute myeloid leukemia with t (8;21): An international study on 331 patients. Blood 2019, 133, 1140–1161. [Google Scholar] [CrossRef]
- Itzykson, R.; Duployez, N.; Fasan, A.; Decool, G.; Marceau-Renaut, A.; Meggendorfer, M.; Jourdan, E.; Petit, A.; Lupillone, H.; Micol, J.B.; et al. Clonal interference of signaling mutations worsens prognostic in core-binding factor acute myeloid leukemia. Blood 2018, 132, 187–196. [Google Scholar] [CrossRef]
- Greif, P.A.; Hartmann, L.; Vosberg, S.; Stief, S.M.; Mattes, R.; Hellmann, I.; Metzeler, K.H.; Herold, T.; Bamapoulos, S.A.; Kerbs, P.; et al. Evolution of cytogenetically normal acute myeloid leukemia during therapy and relapse: An exome sequencing study of 50 patients. Clin. Cancer Res. 2018, 24, 1716–1726. [Google Scholar] [CrossRef]
- Cocciardi, S.; Dolnik, A.; Kapp-Schwoeren, S.; Rucker, F.G.; Lux, S.; Blatte, T.J.; Skambraks, S.; Kronke, J.; Heidel, F.H.; Schnoder, T.M.; et al. Clonal evolution patterns in acute myeloid leukemia with NPM1 mutation. Nat. Commun. 2019, 10, 2031. [Google Scholar] [CrossRef] [PubMed]
- Loberg, M.A.; Bell, R.K.; Goodwin, L.O.; Eudy, E.; Miles, L.A.; SanMiguel, J.M.; Young, K.; Bergstrom, D.E.; Levine, R.L.; Schneider, R.K.; et al. Sequentially inducible mouse models reveal that Npm1 mutation causes malignant transformation of Dnmt3a-mutant clonal hematopoiesis. Leukemia 2019, 33, 1635–1649. [Google Scholar] [CrossRef] [PubMed]
- MacMahon, C.M.; Ferng, T.; Canaani, J.; Wang, E.S.; Morrissette, J.J.D.; Eastburn, D.J.; Pellegrino, M.; Durruthy-Durruthy, R.; Watt, C.D.; Asthana, S.; et al. Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia. Cancer Discov. 2019, 9, 1050–1063. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, J.J.; Blaise, D. Hematopoietic stem cell transplantation for patients with AML in first complete remission. Blood 2016, 127, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Rautenberg, C.; Germing, U.; Haas, R.; Kobbe, G.; Schroeder, T. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: Prevention, detection, and treatment. Int. J. Mol. Sci. 2019, 20, 228. [Google Scholar] [CrossRef] [PubMed]
- Zeiser, R.; Vago, L. Mechanisms of immune escape after allogeneic hematopoietic cell transplantation. Blood 2019, 133, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, M.; Pfeifer, M.; Emmerich, F.; Bertz, H.; Finke, J. Genome-wide profiling in AML patients relapsing after allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 2011, 17, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- Quek, L.; Ferguson, P.; Metzner, M.; Ahmed, I.; Kennedy, A.; Garnett, C.; Jeffries, S.; Walter, C.; Piechocki, K.; Timbs, A.; et al. Mutational analysis of disease relapse in patients allografted for acute myeloid leukemia. Blood Adv. 2016, 1, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Vosberg, S.; Hartmann, L.; Metzeler, K.H.; Kostandin, N.P.; Schneider, S.; Varadharajan, A.; Hauser, A.; Krebs, S.; Blum, H.; Bohlander, S.K.; et al. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation is associated with gain of WT1 alterations and high mutation load. Haematologica 2018, 103, e581–e584. [Google Scholar] [CrossRef]
- Christopher, M.J.; Petti, A.A.; Rettig, M.P.; Miller, C.A.; Chendamarai, E.; Duncavage, E.J.; Klco, J.M.; Helton, N.M.; O’Laughlin, M.; Fronick, C.C.; et al. Immune escape of relapsed AML cells after allogeneic transplantation. N. Engl. J. Med. 2018, 379, 2330–2341. [Google Scholar] [CrossRef]
- Taffalori, C.; Zito, L.; Gambacorta, V.; Riba, M.; Oliveira, G.; Bucci, G.; Barcella, M.; Spinelli, O.; Greco, R.; Crucitti, L.; et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat Med. 2019, 25, 603–611. [Google Scholar] [CrossRef]
- Jan, M.; Leventhal, M.J.; Morgan, E.A.; Wengrad, J.C.; Nag, A.; Drinau, S.D.; Wollison, B.M.; Ducan, M.D.; Thorner, A.R.; Leppanen, S.; et al. Recurrent genetic HLA loss in HLA relapsed after matched unrelated allogeneic hematopoietic cell transplantation. Blood Adv. 2019, 3, 2199–2204. [Google Scholar] [CrossRef]
- Noviello, M.; Manfredi, F.; Ruggiero, E.; Perini, T.; Oliveira, G.; Cortesi, F.; De Simone, P.; Toffalori, C.; Gambacorta, V.; Greco, R.; et al. Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. Nat Commun. 2019, 10, 1065. [Google Scholar] [CrossRef]
- Frick, M.; Chan, W.; Arends, C.M.; Hablesreiter, R.; Halik, A.; Huner, M.; Michonneau, D.; Blau, D.; Hoyer, K.; Christen, F.; et al. Role of donor clonal hematopoiesis in allogeneic hematopoietic stem cell transplantation. J. Clin. Oncol. 2019, 37, 375–385. [Google Scholar] [CrossRef]
- Jacoby, M.A.; Duncavage, E.J.; Cheng, G.S.; Miller, C.A.; Shao, J.; Elliott, K.; Robinson, J.; Fulton, R.S.; Fronick, C.C.; O’Laughlin, M.; et al. Subclones dominate at MDS progression following allogeneic hematopoietic cell transplant. JCI Insight 2018, 3, 98962. [Google Scholar] [CrossRef]
- Yilmaz, M.; Wang, F.; Loghavi, S.; Bueso-Ramos, C.; Gumbs, C.; Little, L.; Song, X.; Zhang, J.; Kaudia, T.; Barthakur, G.; et al. Late relapse in acute myeloid leukemia (AML): Clonal evolution of therapy-related leukemia? Blood Cancer J. 2019, 9, 7. [Google Scholar] [CrossRef]
- Makishima, H.; Yoshizato, T.; Yoshida, K.; Sekeres, M.A.; Radivioyevitch, T.; Suzuki, H.; Przychodzen, B.; Nagata, Y.; Meggendorfer, M.; Sanada, M.; et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat. Genet. 2017, 49, 204–212. [Google Scholar] [CrossRef]
- Chen, J.; Khao, Y.R.; Sun, D.; Todorova, T.; Reynolds, D.; Narayanagari, S.R.; Montagna, C.; Will, B.; Verma, A.; Steidl, U. Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat. Med. 2019, 25, 103–110. [Google Scholar] [CrossRef]
- Broughton, S.; Dhagat, U.; Hercus, T.R.; Nero, T.; Grinbaldeston, M.; Bonder, C.; Lopez, A.F.; Parker, M.W. The GM-CSF/IL-3/IL-5 cytokine receptor family: From ligand recognition to initiation of signaling. Immunol. Rev. 2012, 250, 277–302. [Google Scholar] [CrossRef]
- Hercus, T.R.; Dhagak, U.; Kan, W.; Broughton, S.; Nero, T.; Perugini, M.; Sandow, J.J.; D’Andrea, R.J.; Ekert, P.G.; Hughes, T.; et al. Signaling of the βc family of cytokines. Cytokine Growth Factor Rev. 2013, 24, 189–201. [Google Scholar] [CrossRef]
- Hercus, T.R.; Broughton, S.; Ekert, P.; Ramshaw, H.; Perugini, M.; Grinbalsdeston, M.; Woodcock, J.M.; Thomas, D.; Pitson, S.; Hughes, T.; et al. The GM-CSF receptor family: Mechanism of activation and implications for disease. Growth Factors 2012, 30, 63–75. [Google Scholar] [CrossRef]
- Broughton, S.; Hercus, T.R.; Nero, T.L.; Kan, W.L.; Barry, E.F.; Dottore, M. A dual role for the N-terminal domain of the IL-3 receptor in cell signaling. Nat. Commun. 2018, 9, 386. [Google Scholar] [CrossRef]
- Ihle, J.N. Interleukin-3 and hematopoiesis. Chem. Immunol. 1992, 51, 65–106. [Google Scholar]
- Broughton, S.; Nero, T.L.; Dhogat, U.; Kan, W.L.; Hercus, T.R.; Tvogorov, D.; Lopez, A.F.; Parker, M.W. The βc receptor family-structural insights and their functional implications. Cytokine 2015, 74, 247–258. [Google Scholar] [CrossRef]
- Nishinakamura, R.; Miyajima, A.; Mee, P.J.; Tybulewicz, V.L.; Hurray, R. Hematopoiesis in mice lacking the entire granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5 functions. Blood 1996, 88, 2458–2464. [Google Scholar]
- Brizzi, M.F.; Garbarino, G.; Rossi, P.R.; Pagliardi, G.L.; Arduino, C.; Avanzi, G.C.; Pegoraro, L. Interleukin-3 stimulates proliferation and triggers endothelial leukocyte adhesion molecule 1 gene activation of human endothelial cells. J. Clin. Investig. 1993, 91, 2887–2892. [Google Scholar] [CrossRef]
- Testa, U.; Pelosi, E.; Frankel, A. CD123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomark. Res. 2014, 2, 4. [Google Scholar] [CrossRef]
- Jordan, C.T.; Upchurch, D.; Szilvassy, S.J.; Guzman, M.L.; Howard, D.S.; Pettigrew, A.L.; Meyerrose, T.; Rossi, R.; Grimes, B.; Rizzieri, D.A.; et al. The interleukin-3 receptor alpha is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000, 14, 1777–1784. [Google Scholar] [CrossRef]
- Munoz, L.; Nomdedu, J.F.; Lopez, O.; Comier, M.J.; Bellido, M.; Aventin, A.; Brunet, S.; Sierra, J. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica 2001, 86, 1261–1269. [Google Scholar]
- Testa, U.; Riccioni, R.; Coccia, E.; Stellacci, E.; Samoggia, P.; Latagliata, R.; Mariani, G.; Rossini, A.; Battistini, A.; Lo-Coco, F.; et al. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity and poor prognosis. Blood 2002, 100, 2980–2988. [Google Scholar] [CrossRef]
- Wittwer, N.L.; Brumatti, G.; Marchant, C.; Sandow, J.J.; Pudney, M.K.; Dottore, M.; D’Andrea, R.J.; Lopez, A.F.; Ekert, P.G.; Ramshaw, H.S. High CD123 levels enhance proliferation is response to IL-3, but reduce chemotaxis by downregulating CXCR4 expression. Blood Adv. 2017, 1, 1067–1079. [Google Scholar]
- Arai, N.; Homma, M.; Abe, M.; Baba, Y.; Murai, S.; Watanuki, M.; Kawaguchi, Y.; Fujiwara, S.; Kabasawa, N.; Tsukamoto, H.; et al. Impact of CD123 expression, analyzed by immunohistochemistry, on clinical outcomes in patients with acute myeloid leukemia. Int. J. Hematol. 2019, 109, 539–544. [Google Scholar] [CrossRef]
- Testa, U.; Riccioni, R.; Diverio, D.; Rossini, A.; Lo-Coco, F.; Peschle, C. Interleukin-3 receptor in acute leukemia. Leukemia 2004, 18, 219–226. [Google Scholar] [CrossRef]
- Riccioni, R.; Diverio, D.; Riti, V.; Buffolino, S.; Mariani, G.; Boe, A.; Cedrone, M.; Ototne, T.; Foà, R.; Testa, U. Interleukin (IL)-3/granulocyte macrophage-colony stimulating factor /IL-5 receptor alpha and beta chains are preferentially expressed in acute myeloid leukemias with mutated FMS-related tyrosine 3 kinase receptor. Br. J. Haematol. 2009, 144, 376–387. [Google Scholar] [CrossRef]
- Riccioni, R.; Pelosi, E.; Riti, V.; Castelli, G.; Lo-Coco, F.; Testa, U. Immunophenotypic features of acute myeloid leukemia patients exhibiting high Flt3 expression not associated with mutations. Br. J. Haematol. 2011, 153, 33–42. [Google Scholar] [CrossRef]
- Rollins-Raval, M.; Pillai, R.; Mitsuhashi-Warita, T.; Metha, R.; Boyadzsin, M.; Djokic, M.; Roth, C. CD123 immunohistochemical expression in acute myeloid leukemia is associated with underlying FLT3-ITD and NPM1 mutations. Appl. Immunohistochem. Mol. Morphol. 2013, 21, 212–217. [Google Scholar] [CrossRef]
- Brass, A.; de Haas, V.; van Stigt, A.; Jongen-Lovrencic, M.; Beverloo, H.B.; de Mervelde, J.G.; Zwaan, C.M.; van Dongen, J.; Leusen, J.; van der Velden, V. CD123 expression levels in 846 acute leukemia patients based on standardized immunophenotyping. Cytom. Part B Clin. Cytom. 2019, 96, 142–143. [Google Scholar] [CrossRef]
- Al-Mawali, A.; Gillis, D.; Lewis, I. Immunoprofiling of leukemic stem cells CD34+/CD38−/CD123+ delineate FLT3/ITD-positive clones. J. Hematol. Oncol. 2016, 9, 61. [Google Scholar] [CrossRef]
- Angelini, D.F.; Ottone, T.; Guerrera, G.; Lavorgna, S.; Cittadini, M.; Buccisano, F.; De Bardi, M.; Gargano, F.; Maurillo, L.; Divona, M.; et al. A leukemia-associated CD34/CD123/CD25/CD99+ immunophenotype identifies FLT3-mutated clones in acute myeloid leukemia. Clin. Cancer Res. 2015, 21, 3977–3985. [Google Scholar] [CrossRef]
- Ehninger, A.; Kramer, M.; Rollig, C.; Thiede, C.; Bornhauser, M.; von Bonin, M.; Wermke, M.; Feldmann, A.; Bachmann, M.; Ehninger, G.; et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J. 2014, 4, e218. [Google Scholar] [CrossRef]
- Weinberg, O.K.; Hasserjian, R.P.; Baraban, E.; Ok, C.Y.; Geyer, J.T.; Phillip, J.; Kurzer, J.H.; Rogers, H.J.; Nardi, V.; Stone, R.M.; et al. Clinical, immunophenotypic, and genomic findings of acute undifferentiated leukemia and comparison to acute myeloid leukemia with minimal differentiation: a study from the bone marrow pathology group. Mod. Pathol. 2019, 32, 1373–1385. [Google Scholar] [CrossRef]
- Guzman, M.L.; Neering, S.J.; Upchurch, D.; Grimes, B.; Howard, D.S.; Rizzieri, D.A.; Luger, S.M.; Jordan, C.T. Nuclear factor B is constitutively activated in primitive acute human acute myelogenous leukemia cells. Blood 2011, 98, 2301–2307. [Google Scholar] [CrossRef]
- Hwang, K.; Park, C.J.; Jang, S.; Chi, H.S.; Kim, D.Y.; Lee, J.H.; Im, H.J.; Seo, J.J. Flow cytometric quantification and immunophenotyping of leukemic stem cells in acute myeloid leukemia. Ann. Hematol. 2012, 91, 1541–1546. [Google Scholar] [CrossRef]
- Vergez, F.; Green, A.S.; Tamburin, J.; Sany, I.F.; Gaillard, B.; Camillet-Lefebvre, P.; Pennetier, M.; Neyret, A.; Chapuis, N.; Itah, N.; et al. High levels of CD34+CD38low/CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia. Haematologica 2011, 96, 1792–1798. [Google Scholar] [CrossRef]
- Pelosi, E.; Castelli, G.; Testa, U. Targeting LSCs through membrane antigens selectively or preferentially expressed in these cells. Blood Cells Mol. Dis. 2015, 55, 336–346. [Google Scholar] [CrossRef]
- Haubner, S.; Perna, F.; Kohnke, T.; Schmidt, C.; Berman, S.; Augsberger, C.; Scnorfeil, F.M.; Krupka, C.; Lichtenegger, F.S.; Liu, X.; et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia 2019, 33, 64–74. [Google Scholar] [CrossRef]
- Yan, B.; Chen, Q.; Shimada, K.; Tang, M.; Li, H.; Gurumurthy, A.; Khoury, J.D.; Xu, B.; Huang, S.; Qiu, Y. Histone deacetylase inhibitor targets CD123/CD47 positive cells and reverse chemoresistant phenotype in acute myeloid leukemia. Leukemia 2019, 33, 931–944. [Google Scholar] [CrossRef]
- Zahran, A.M.; Shaker, S.; Rayan, A.; El-Badawy, O.; Fattah, M.A.; Alio, A.M.; ElBadre, H.M.; Hetta, H.F. Survival outcomes of CD34+CD38− LSCs and their expression of CD123 in adult AML patients. Oncotarget 2018, 9, 34056–34065. [Google Scholar] [CrossRef]
- Ravandi, F.; Walter, R.B.; Freeman, S.D. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv. 2018, 2, 1356–1366. [Google Scholar] [Green Version]
- Ivet, A.; Hills, R.K.; Simpson, M.A.; Jovanovic, J.V.; Gilkes, A.; Grech, A.; Patel, Y.; Bhudia, N.; Farah, H.; Mason, J.; et al. Assessment of minimal residual disease in standard-risk AML. N. Engl. J. Med. 2016, 374, 422–433. [Google Scholar]
- Coustan-Smith, E.; Song, G.; Shurtleff, S.; Yeoh, A.E.; Yeoh, A.E.; Chng, W.J.; Chen, S.P.; Rubnitz, J.E.; Pui, C.H.; Dowing, J.R.; et al. Universal monitoring of minimal residual disease in acute myeloid leukemia. JCI Insights 2018, 3, 98561. [Google Scholar] [CrossRef]
- Jongen-Lavrencic, M.; Grob, T.; Hanekamp, D.; Kavelaars, F.G.; Al Hinai, A.; Zeilemaker, A.; Erpelinck-Verschueren, C.A.J.; Gradowska, P.L.; Meijer, R.; Cloos, J.; et al. Molecular minimal residual disease in acute myeloid leukemia. N. Engl. J. Med. 2018, 378, 1189–1199. [Google Scholar] [CrossRef]
- Venugopal, S.; Zhou, S.; Jamal, S.; Lane, A.A.; Mascarenhas, J. Blastic plasmocytoid dendritic cell neoplasm. Clin. Lymphoma Myeloma Leuk. 2019, in press. [Google Scholar]
- Sapienza, M.R.; Pileri, A.; Derenzini, E.; Melle, F.; Motta, G.; Fiori, S.; Calleri, A.; Pimpinelli, N.; Tabanelli, V.; Pileri, S. Blastic plasmacytoid dendritic cell neoplasm: State of the arty and prospects. Cancers 2019, 11, 595. [Google Scholar] [CrossRef]
- Lucio, P.; Parreira, A.; Orfao, A. CD123hi dendritic cell lymphoma: An unusual case of non-Hodgkin lymphoma. Ann. Intern. Med. 1999, 131, 549–550. [Google Scholar] [CrossRef]
- Chaperot, L.; Bendriss, N.; Manches, O.; Gressin, R.; Maynadie, M.; Trimoreau, F.; Orfeuvre, H.; Corront, B.; Feuillard, J.; Sotto, J.J.; et al. Identification of a leukemic counterpart of the plasmacytoid dendritic cells. Blood 2001, 97, 3210–3217. [Google Scholar] [CrossRef] [Green Version]
- Ros-Weil, D.; Dietrich, S.; Boumendil, A.; Polge, E.; Bron, D.; Carreras, E.; Iriondo Atienza, A.; Arcese, W.; Beelen, D.W.; Cornelissen, J.J.; et al. Stem cell transplantation can provide durable disease control in blastic plasmacytoid dendritic cell neoplasm: A retrospective study from the European group and bone marrow transplantation. Blood 2013, 121, 440–446. [Google Scholar] [CrossRef]
- Pagano, L.; Valentini, G.C.; Pulsoni, A.; Fisogni, S.; Carluccio, P.; Mannelli, F.; Lunghi, M.; Pica, G.; Onida, F.; Cattaneo, C.; et al. Blast plasmacytoid dendritic cell neoplasm with leukemic presentation: An Italian multicenter study. Haematologica 2013, 98, 239–246. [Google Scholar] [CrossRef]
- Del Giudice, I.; Matutes, E.; Morilla, R.; Morilla, A.; Owusu-Ankomah, K.; Rafiq, F.; A’Hem, R.; Delgado, J.; Bazerbashi, M.B.; Catovsky, D. The diagnostic value of CD123 in B-cell disorders with hairy or villous lymphocytes. Haematologica 2004, 89, 303–308. [Google Scholar]
- Venkatam, G.; Aguhar, C.; Kretiman, R.; Yuan, C.; Stetler-Stevenson, M. Characteristic CD103 and CD123 expression pattern defines hairy cell leukemia. Am. J. Clin. Pathol. 2011, 136, 625–630. [Google Scholar] [CrossRef]
- Shao, K.; Calvo, K.R.; Grouborg, M.; Temhore, P.R.; Kreitman, R.J.; Stetler-Stevenson, M.; Yuan, C.M. Distinguishing hairy cell leukemia variant from hairy cell leukemia: Development and validation of diagnostic criteria. Leuk. Res. 2013, 37, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Grever, M.R.; Abdel-Wahab, O.; Andritsos, L.A.; Banerji, V.; Barrientos, J.; Blachly, J.S.; Call, T.G.; Catovsky, D.; Dearden, C.; Demeter, J.; et al. Consensus guidelines for the diagnosis and management of patients with classic hairy cell leukemia. Blood 2017, 129, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Fromm, J.R. Flow cytometric analysis of CD123 is useful for immunophenotyping classical Hodgkin lymphoma. Cytom. Part B Clin. Cytom. 2011, 80B, 91–99. [Google Scholar] [CrossRef]
- Djokic, M.; Bjorklund, E.; Blennow, E.; Mazur, J.; Soderhall, S.; Powirt, A. Overexpression of CD123 correlates with hyperdiploid genotype in acute lymphoblastic leukemia. Haematologica 2009, 94, 1016–1019. [Google Scholar] [CrossRef]
- Hassanein, N.; Alancia, F.; Perkinson, K.; Buckley, P.; Lagoo, A. Distinct expression patternbs of CD123 and CD34 on normal bone marrow B-cell precursors (“hematogenes”) and B lymphoblastic leukemia blasts. Am. J. Clin. Pathol. 2009, 132, 573–580. [Google Scholar] [CrossRef]
- Constant-Smith, E.; Song, G.; Clark, C.; Key, L.; Liu, P.; Mehpooya, M.; Stow, P.; Su, X.; Shrleff, S.; Pui, C.H.; et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2011, 117, 6267. [Google Scholar] [CrossRef]
- Angelova, E.; Audette, C.; Kovtun, Y.; Daver, N.; Wang, S.A.; Pierce, S.; Konoplev, S.V.; Kogheer, H.; Jogersen, J.L.; Konopleva, M.; et al. CD123 expression patterns and selective targeting with a CD123-targeted antibody-drug conjugate (IMGN632) in acute lymphoblastic leukemia. Haematologica 2019, 104, 749–755. [Google Scholar] [CrossRef]
- Liu, J.; Tan, X.; Ma, Y.Y.; Gao, L.; Kong, P.; Peng, X.G.; Zhang, X.; Zhang, C. Study of the prognostic value of aberrant antigen in patients with acute B lymphocytic leukemia. Clin. Lymphoma Myeloma Leuk. 2019, 19, e349–e358. [Google Scholar] [CrossRef]
- Frankel, A.E.; McCubrey, J.A.; Miller, M.S.; Delatte, S.; Ramage, J.; Kiser, M.; Kucera, G.L.; Alexander, R.L.; Beran, M.; Tagge, E.P.; et al. Diphteria toxin fused to human interleukin-3 is toxic to blasts from patients with myeloid leukemias. Leukemia 2000, 14, 576–585. [Google Scholar] [CrossRef]
- Cohen, K.A.; Liu, T.F.; Cline, J.M.; Wagner, J.D.; Hall, P.D.; Frankel, A.E. Toxicilogy and pharmacokinetics of DT388IL3, a fusion protein consisting of a truncated diphteria toxin (DT388) linked to human interleukin 3 (IL3) in cynomolgous monkeys. Leuk. Lymphoma 2004, 45, 1647–1656. [Google Scholar] [CrossRef]
- Cohen, K.A.; Liu, T.F.; Cline, J.M.; Wagner, J.D.; Hall, P.D.; Frankel, A.E. Safety evaluation of DT388IL3, a diphteria toxin/interleukin 3 fusion protein, in cynomolgus monkey. Cancer Immunol. Immunother. 2005, 54, 799–806. [Google Scholar] [CrossRef]
- Testa, U.; Riccioni, R.; Biffoni, M.; Diverio, D.; Lo-Coco, F.; Foà, R.; Peschle, C.; Frankel, A.E. Diphteria toxin fused to variant human interleukin-3 induces cytotoxicity of blasts from patients with acute myeloid leukemia according to the level of interleukin-3 receptor expression. Blood 2005, 106, 2527–2529. [Google Scholar] [CrossRef]
- Yalcintepe, L.; Frankel, A.E.; Hogge, D.F. Expression of interleukin-3 receptor subunits on defined subpopulations of acute myeloid leukemia blasts predicts the cytotoxicity of diphtheria toxin interleukin-3 fusion protein against malignant progenitors that engraft in immunodeficient mice. Blood 2006, 108, 3530–3537. [Google Scholar] [CrossRef] [Green Version]
- Hogge, D.F.; Yalcintepe, L.; Wong, S.H.; Gerhard, B.; Frankel, A.E. Variant diphtheria toxin-interleukin-3 fusion proteins with increased receptor affinity have enhanced cytotoxicity against acute myeloid leukemia progenitors. Clin. Cancer Res. 2006, 12, 1284–1291. [Google Scholar] [CrossRef]
- Angelot-Delettre, F.; Roggy, A.; Frankel, A.E.; Lamarthee, B.; Seilles, E.; Biichle, S.; Royer, B.; Deconinck, E.; Rowinsky, E.K.; Brook, C.; et al. In vivo and in vitro sensitivity of blastic plasmacytoid dendritic cell neoplasms to SL-401, an interleukin-3 receptor targeted biologic agent. Haematologica 2015, 100, 223–230. [Google Scholar] [CrossRef]
- Frankel, A.E.; Woo, J.H.; Ahn, C.; Pemmaraju, N.; Medeiros, B.C.; Carraway, H.E.; Frankfust, O.; Forman, S.J.; Yang, A.E.; Konopleva, M.; et al. Activity of SL-401, a targeted therapy directed to interleukin-3 receptor, in blastic plasmacytoid dendritic cell neoplasm patients. Blood 2014, 124, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Pemmaraju, N.; Sweet, K.L.; Lane, A.A.; Stein, A.S.; Vasu, S.; Blum, W.; Rizzieri, D.A.; Wang, E.S.; Duvic, M.; Aung, P.; et al. Results of pivotal phaser 2 trial of SL-401 in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). Blood 2017, 130, 1298. [Google Scholar]
- Pemmaraju, N.; Lane, A.A.; Sweet, K.L.; Stein, A.S.; Vasu, S.; Blum, W.; Rizzieri, D.A.; Wang, E.S.; Dovic, M.; Sloan, J.M.; et al. Tagraxofusp in blastic plasmacytoid dendritic-cell neoplasm. N. Engl. J. Med. 2019, 380, 1628–1637. [Google Scholar] [CrossRef]
- Sun, W.; Liu, H.; Kim, Y.; Karras, N.; Pawloska, A.; Toomey, D.; Kyono, W.; Gaynon, P.; Rosenthal, J.; Stein, A. First pediatric experience of SL-401, a CD123-targeted therapy, in patients with blastic plasmacytoid dendritic cell neoplasm: Report of three cases. J. Hematol. Oncol. 2018, 11, 61. [Google Scholar] [CrossRef]
- Mani, R.; Goswami, S.; Gopalakrishnan, B.; Ramaswamy, R.; Wasmuth, R.; Tran, M.; Mo, X.; Gordon, A.; Bucci, D.; Lucas, D.M.; et al. The interleukin-3 receptor CD123 targeted SL-401 mediates potent cytotoxic activity against CD34+ CD123+ cells from acute myeloid leukemia/myelodysplastic syndrome patients and healthy donors. Haematologica 2018, 103, 1288–1297. [Google Scholar] [CrossRef]
- Frankel, A.; Liu, J.S.; Rizzieri, D.; Hogge, D. Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk. Lymphoma 2008, 49, 543–553. [Google Scholar] [CrossRef]
- Lane, A.A.; Sweek, K.L.; Wang, E.S.; Bonnellan, W.B.; Walter, R.B.; Stein, A.S.; Rizzieri, D.A.; Carraway, H.E.; Mantzar, I.; Prebet, T.; et al. Results from ongoing phase 2 trial of SL-401 as consolidation therapy in patients with acute myeloid leukemia (AML) in remission with high relapse risk including minimal residual disease (MRD). Blood 2016, 128, 215. [Google Scholar]
- Stephansky, J.; Togami, K.; Ghandi, M.; Montero, J.; von Egypt, N.; Lindsay, R.; Brooks, C.; Aster, J.C.; Johannessen, C.; Lane, A.A. Resistance to SL-401 in AML and BPDCN is associated with loss of diphtamide synthesis pathway enzyme DPH1 and is reversible by azacytidine. Blood 2017, 170, 797. [Google Scholar]
- Tagami, K.; Pastika, T.; Stephansky, J.; Ghandi, M.; Christie, A.L.; Jones, K.L.; Johnson, C.A.; Lindsay, A.W.; Brooks, C.L.; Letai, A.; et al. DNA methyltransferase inhibition overcomes diphtamide pathway deficiencies underlying CD123-targeted treatment resistance. J. Clin. Investig. 2019. [Google Scholar] [CrossRef]
- Ray, A.; Das, D.S.; Song, Y.; Macri, V.; Richardson, P.; Brooks, C.L.; Chauhan, D.; Anderson, K.C. A novel agent SL-401 induces anti-myeloma activity by targeting plasmocytoid dendritic cells, osteoclastogenesis and cancer stem-like cells. Leukemia 2017, 31, 2652–2660. [Google Scholar] [CrossRef]
- Htut, M.; Gasparetto, C.; Zonder, J.; Matin, T.G., III; Scott, E.C.; Chen, J.; Shemesh, S.; Brooks, C.L.; Chauhan, D.; Anderson, K.C.; et al. Results from ongoing phase 1/2 trial of SL-401 in combination with pomalidomide and dexamethasone in relapsed or refractory multiple myeloma. Blood 2016, 128, 5696. [Google Scholar]
- Lashjo, T.; Finke, C.; Kimlingen, T.K.; Zblewski, D.; Chen, D.; Patnaik, D.; Hauson, C.A.; Brooks, C.; Tefferi, A.; Pardanani, A. Expression of CD123 (IL-3R alpha), a therapeutic target of SL-401, on myeloproliferative neoplasms. Blood 2014, 124, 5577. [Google Scholar]
- Patnaik, M.M.; Gupta, V.; Gotlib, J.R.; Carraway, H.E.; Wadleigh, M.; Schiller, G.J.; Talpaz, M.; Arana-Yi, C.; McCloskey, J.; Lee, S.; et al. Results from ongoing phase 2 trial of SL-401 in patients with advanced, high-risk myeloproliferative neoplasms including chronic myelomonocytic leukemia. Blood 2016, 128, 4245. [Google Scholar]
- Patnaik, M.M.; Ali, H.; Gupta, V.; Schiller, G.J.; Lee, S.; Yacoub, A.; Talpaz, M.; Sardone, M.; Wysowskyj, H.; Shemesh, S.; et al. Results from ongoing phase 1/2 clinical trial of tagraxopusp (SL-401) in patients with relapsed/refractory chronic myelomonocytic leukemia (CMML). Blood 2018, 132, 1821. [Google Scholar]
- Pemmaraju, N.; Gupta, V.; Schiller, G.; Lee, S.; Yacoub, A.; Ali, H.; Talpaz, M.; Sardone, M.; Wysowskyj, H.; Shemesh, S.; et al. Results from ongoing phase 1/2 clinical trial of tagraxofusp (SL-401) in patients with intermediate or high risk relapsed/refractory myelofibrosis. Blood 2018, 132, 1771. [Google Scholar] [CrossRef]
- Lucas, N.; Duchmann, M.; Rameau, P.; Noel, F.; Michea, P.; Saada, V.; Kosmider, O.; Pierron, G.; Fernandez-Zapico, M.E.; Howard, M.T.; et al. Biology and prognostic impact of clonal plasmocytoid dendritic cells in chronic myelomonocytic leukemia. Leukemia 2019. [Google Scholar] [CrossRef]
- Frolova, O.; Berrito, G.; Brooks, C.; Wang, R.Y.; Korchin, B.; Rowinsky, E.K.; Cortes, J.; Kantarjian, H.; Andreef, M.; Frankel, A.E.; et al. SL-401 and SL-501, targeted therapeutics directed at the interleukin-3 receptor, inhibit the growth of leukemic cells and stem cells in advanced chronic myeloid leukemia. Br. J. Haematol. 2014, 166, 862–874. [Google Scholar] [CrossRef]
- Han, L.; Jorgensen, J.L.; Brooks, C.; Shi, C.; Zhang, Q.; Nogueras Gonzalez, G.M.; Cavazos, A.; Pan, R.; Mu, H.; Wang, S.A.; et al. Antileukemia efficacy and mechanisms of action of SL-101, a novel anti-CD123 antibody conjugate, in acute myeloid leukemia. Clin. Cancer Res. 2017, 23, 3385–3395. [Google Scholar] [CrossRef]
- Sun, Q.; Woodcock, J.M.; Rapoport, A.; Stomski, F.C.; Korpelainen, E.I.; El Bagley, C.J.; Goodall, G.J.; Smith, W.B.; Gamble, J.R.; Vadas, M.A.; et al. Monoclonal antobody 7G3 recognizes the N-terminal domain of the human interleukin-3 (IL-3) receptor alpha-chain and functions as a specific receptor antagonist. Blood 1996, 87, 1183–1192. [Google Scholar]
- Jin, L.; Lee, E.M.; Ramshaw, H.S.; Busfield, S.J.; Peoppl, A.G.; Wilkinson, L.; Guthridge, M.A.; Thomas, D.; Barry, E.F.; Boyd, A.; et al. Monoclonal-antibody mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemia stem cells. Cell Stem Cell 2009, 5, 31–42. [Google Scholar] [CrossRef]
- Busfield, S.; Brodo, M.; Wong, M.; Ramshaw, H.; Lee, E.M.; Martin, K.; Ghosh, S.; Braley, H.; Tomasetig, V.; Panousis, C.; et al. CSL362: A monoclonal antibody to human interleukin 3 receptor (CD123), optimized for NK cell-mediated cytotoxicity of AML stem cells. Blood 2012, 120, 3598. [Google Scholar]
- Herzog, F.; Busfield, S.; Biondo, M.; Vairo, G.; DeWitte, M.; Pragst, I.; Dickneite, G.; Nash, A.; Zollner, S. Pharmacodynamic activity and preclinical safety of CSL362, a novel humanized, affinity-matured monoclonal antibody against human interleukin 3 receptor. Blood 2012, 120, 1524. [Google Scholar]
- Lee, E.M.; Yee, D.; Busfield, S.; Vairo, G.; Lock, R. A neutralizing antibody (CSL362) against the interleukin-3 receptor alpha with CSL362 augments the efficacy of a cytabarine/daunorubicin induction-type therapy in preclinical xenograft models of acute myelogenous leukemia. Blood 2012, 120, 3599. [Google Scholar]
- Nievergall, E.; Ramshaw, H.S.; Yong, A.; Biondo, M.; Busfield, S.J.; Vairo, G.; Lopez, A.F.; Hughes, T.P.; White, D.L.; Hiwase, D.K. Monoclonal antobody targeting IL-3 receptor alpha with CSL 362 effectively depletes CML progenitor and stem cells. Blood 2014, 123, 1218–1228. [Google Scholar] [CrossRef]
- Busfield, S.J.; Biondo, M.; Wong, M.; Ramshaw, H.S.; Lee, E.M.; Ghosh, S.; Braley, H.; Panousis, C.; Roberts, A.W.; He, S.Z.; et al. Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC. Leukemia 2014, 28, 2213–2221. [Google Scholar] [CrossRef]
- Broughton, S.E.; Hercus, T.R.; Hardy, M.P.; McClure, B.J.; Nero, T.L.; Dottore, M.; Hujnh, H.; Braley, H.; Barry, E.F.; Kan, W.L.; et al. Dual mechanism of interleukin-3 receptor blockade by anti-cancer antibody. Cell Rep. 2014, 8, 410–419. [Google Scholar] [CrossRef]
- Lee, E.M.; Yee, D.; Busfield, S.J.; McManus, J.F.; Cummings, N.; Vairo, G.; Wei, A.; Ramshaw, H.S.; Powell, J.A.; Lopez, A.F.; et al. Efficacy of an Fc-modified anti-CD123 antibody CSL362 combined with chemotherapy in xenograft models of acute myelogenous leukemia in immunodeficient mice. Haematologica 2015, 100, 914–926. [Google Scholar] [CrossRef]
- Xie, L.H.; Biondo, M.; Busfield, S.J.; Arruda, A.; Yang, X.; Vairo, G.; Minden, M.D. CD123 target validation and preclinical evaluation of ADCC activity of anti-CD123 antibody CSL362 in combination with NKs from AML patients in remission. Blood Cancer J. 2017, 7, e567. [Google Scholar] [CrossRef]
- He, S.Z.; Busfield, S.; Ritchie, D.S.; Hertzberg, M.S.; Durront, S.; Lewis, I.D.; Marlton, P.; McLachlan, A.J.; Kerridge, I.; Bradstock, K.F.; et al. A phase I study of the safety, pharmacokinetics and anti-leukemic activity of the anti-CD123 monoclonal antibody CSL360 in relapsed, refractory or high-risk acute myeloid leukemia. Leuk. Lymphoma 2015, 56, 1406–1415. [Google Scholar] [CrossRef]
- Douglas-Smith, B.; Roboz, G.L.; Walter, R.B.; Altman, J.K.; Ferguson, A.; Curcio, T.J.; Orlowski, K.F.; Garrett, L.; Busfield, S.J.; Baruden, M.; et al. First in man, phase I study of CSL362 (anti-IL3Rα/CD123) monoclonal antibody in patients with CD123+ acute myeloid leukemia in complete remission at high risk for early relapse. Blood 2014, 124, abst. 120. [Google Scholar]
- Smith, D.; Roberts, A.W.; Raboz, G.L.; DeWitrte, M.; Ferguson, A.; Garrett, L.; Curcio, T.; Orlowski, K.F.; Dasen, S.; Beusen-Kennedy, D.M.; et al. Minimal residual disease (MRD) as exploratory endpoint in a phase I study of the anti-CD123 mAb CSL362 given as post-remission therapy in adult myeloid leukemia. Blood 2015, 126, 3819. [Google Scholar]
- Platzebecker, L.; Gotze, K.; Kronke, J.; Delschlagel, U.; Schultze, F.; Sockel, K.; Middeke, J.M.; Chermat, F.; Gloaquen, S.; Puttrich, M.; et al. Single agent Talocutuzumab in elderly high-risk MDS or AML patients failing hypomethylating agents–results of the SAMBA study by the EMSCO network. EHA Learning Center 2019, 16, 215549. [Google Scholar]
- Kubasch, A.S.; Schulze, F.; Gotze, K.S.; Kronke, J.; Sockel, K.; Midesteke, J.M.; Chermat, F.; Gloaguen, S.; Puttnich, M.; Weigt, C.; et al. Anti-CD123 targeted therapy with Talacotuzumab in advanced MDS and AML after failing hypomethylating agents-final results of the Samba trial. Blood 2018, 132, 4045. [Google Scholar]
- Ernst, D.; Williams, B.A.; Wang, X.H.; Yoon, N.; Kim, K.P.; Chu, J.; Luo, Z.J.; Hermans, K.G.; Krueger, J.; Keating, A. Humanized anti-CD123 antibody facilitates NK cell antibody-dependent cell-mediated cytotoxicity (ADCC) of Hodgkin lymphoma targets via ARF6/PLD-1. Blood Cancer J. 2019, 9, 6. [Google Scholar] [CrossRef]
- Kovtun, Y.; Jones, G.E.; Adamns, S.; Harvey, L.; Audette, C.A.; Wihelm, A.; Bai, C.; Rui, L.; Lelan, R.; Liu, F.; et al. A CD123 targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Adv. 2018, 2, 848–858. [Google Scholar] [CrossRef]
- Evanns, K.; El-Zein, N.; Jones, C.; Erickson, S.W.; Guo, Y.; Teichjer, B.A.; Adams, S.; Zweilder-McKay, P.A.; Smith, M.A.; Lock, R.B. Abstract 4820: Pediatric preclinical testing consortium evaluation of the CD123 antibody drug conjugate, IMGN632, against xenograft models of pediatric acute lymphoblastic leukemia. Cancer Res. 2019, 79. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, T.; Han, L.; Kuruvilla, V.M.; Adams, S.; Callum, S.M.; Harutyunyan, K.; Lane, A.A.; Kotun, Y.; Daver, N.G.; et al. Pre-clinical efficacy of CD123-tergeting antibody-drug conjugate IMGN632 in blastic plasmocytoid dendritic cell neoplasm (BPDCN) models. Blood 2018, 132, abst. 3956. [Google Scholar]
- Fritz, C.; Portywood, S.M.; Adams, J.; Cronin, T.; Lutgen-Dunckley, L.; Martery, B.L.; Sloss, C.M.; Watkins, K.; Kovtun, Y.; Adams, S.; et al. Synergistic anti-leukemic activity of PARP inhibition combined with IMGN632, an anti-CD123 antibody-drug conjugate in acute myeloid leukemia models. Blood 2018, 132, 2647. [Google Scholar]
- Daver, N.G.; Erba, H.P.; Papadantonakis, N.; De Angelo, D.J.; Wang, E.S.; Konopleva, M.; Sloss, C.M.; Culm-Merdek, K.; Zweilder-Mckay, P.A.; Kantarjian, H.M. A phase I, First-in-human study evaluating the safety and preliminary antileukemia activity of IMGN632, a novel CD123-tergeting antibody-drug conjugate, in patients with relapsed/refractory acute myeloid leukemia and other CD123-positive hematologic malignancies. Blood 2018, 132, abst. 27. [Google Scholar]
- Adams, S.; Zhang, Q.I.; McCarthy, R.; Flaherty, L.J.; Kuruvilla, V.M.; Watkins, K.; Sloss, C.M.; Romanelli, A.; Zweilder-McCay, P.A.; Konopleva, M. The combination of IMGN362, a CD123 targeting-ADC, with venetoclax augments anti-leukemic activity in vitro and prolongs survival in vivo in preclinic al models of human AML. HemaSphere 2019, 3, e53. [Google Scholar] [CrossRef]
- Kuo, S.R.; Wong, L.; Liu, J.S. Engineering of a CD123xCD3 bispecific scFv immunofusion for the treatment of leukemia and elimination of leukemia stem cells. Protein Eng. Des. Sel. 2012, 25, 561–569. [Google Scholar] [CrossRef]
- Hussaini, M.; Rickey, J.; Retting, M.P.; Eissenberg, L.; Uy, G.; Chichili, G.; Moore, P.A.; Johnson, S.; Collins, R.; Bonvini, E.; et al. Targeting CD123 in leukemic stem cells using dual affinity re-targeting molecules (DARTs). Blood 2013, 122, 360. [Google Scholar]
- Chicili, G.R.; Huang, L.; Li, H.; Burke, S.; He, L.; Thang, Q.; Jin, L.; Gorlatov, S.; Ciccarone, V.; Chen, F.; et al. A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: Preclinical activity and safety in nonhuman primates. Sci. Transl. Med. 2015, 7, 289ra82. [Google Scholar] [CrossRef]
- Al-Hussaini, M.; Rettig, M.P.; Ritchey, J.K.; Korpova, D.; Uy, G.L.; Eissenberg, L.G.; Gao, F.; Eades, W.C.; Bonvini, E.; Chichili, G.R.; et al. Targeting CD123 in acute myeloid leukemia using a T-cell directed dual affinity retargeting platform. Blood 2016, 127, 122–131. [Google Scholar] [CrossRef]
- Uy, G.L.; Rettig, M.P.; Vey, N.; Godwin, J.; Foster, M.C.; Rizzieri, D.A.; Arellano, M.L.; Topp, M.S.; Huls, G.; Jongen-Lavrencic, M.; et al. Phase 1 cohort expansion of Flotetuzumab, a CD123xCD3 bispecific DART protein in patients with relapsed/refractory acute myeloid leukemia (AML). Blood 2018, 132, abst. 764. [Google Scholar]
- Vadakekolathu, J.; Patel, T.; Reeder, S.; Schrarschmidt, H.; Schmitz, M.; Bornhauser, M.; Warren, S.E.; Hood, T.; Donaher, P.; Cesano, A.; et al. Immune gene expression profiling in children and adults with acute myeloid leukemia identifies distinct phenotypic patterns. Blood 2017, 130, 3942. [Google Scholar]
- Rutella, S.; Church, S.E.; Vadakekolathu, J.; Viboch, E.; Sullivan, A.H.; Hood, T.; Warrem, S.E.; Cesano, A.; La Motte-Mohs, R.; Muth, J.; et al. Adaptive immune gene signatures correlate with response to Flotetuzumab, a CD123xCD3 bispecific DART molecule, in patients with relapsed/refractory acute myeloid leukemia. Blood 2018, 132, e444. [Google Scholar] [CrossRef]
- Jacobs, K.; Viero, C.; Godwin, J.; Baughman, J.; Sun, J.; Ying, K.; Muth, J.; Hong, S.; Vey, N.; Sweet, K.L.; et al. Management of cytokine release syndrome in AML patients treated with Flotetuzumab, a CD123xCD3 bispecific DART molecule for T-cell redirected therapy. Blood 2018, 132, 2738. [Google Scholar]
- Bonivini, E.; La Motte-Mohs, R.; Huang, L.; Lang, C.Y.; Kaufman, T.; Liu, L.; Alderson, R.F.; Stahl, K.; Brown, J.G.; Li, H.; et al. A next-generation Fc-bearing CD3-engaging bispecific DART platform with extended pharmacokinetic and expanded pharmacologic window: Characterization as CD123xCD3 and CD19xCD3 DART molecules. Blood 2018, 132, 5230. [Google Scholar]
- Ravandi, F.; Baskey, A.; Foran, J.M.; Stock, W.; Mawad, R.; Blum, W.; Saville, W.; Johnson, C.M.; Vanasse, G.J.; Ly, T.; et al. Complete responses in relapsed7refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of XmAb 14045, a CD123xCD3 T cell-engaging bispecific antibody: Initial results of a phase 1 study. Blood 2018, 132, e763. [Google Scholar]
- Braciak, T.A.; Roskopf, C.C.; Wildenhain, S.; Fenn, N.C.; Schiller, C.B.; Schubert, I.A.; Jacob, U.; Honegger, A.; Krupka, C.; Subklewe, M.; et al. Dual-targeting triplebody 33-16-123 (SPM-2) mediates effective redirected lysis of primary blasts from patients with a broad range of AML subtypes in combination with natural killer cells. Oncoimmunology 2018, 7, e1472195. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, S.; Schubert, M.L.; Wang, L.; He, B.; Neuber, B.; Dreger, P.; Muller-Tidow, C.; Schmitt, M. Chimeric antigen receptor (CAR) T cell therapy in acute myeloid leukemia (AML). J. Clin. Med. 2019, 8, 200. [Google Scholar] [CrossRef]
- June, C.H.; O’Conner, R.S.; Kawalekar, O.U. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef] [Green Version]
- Maude, S.L.; Laetsch, T.W.; Buechner, J. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Cummins, K.D.; Gill, S. Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: How close to reality? Haematologica 2019, 104, 1302–1309. [Google Scholar] [CrossRef]
- Tettamanti, S.; Marin, V.; Pizzitola, I.; Magnani, C.; Giordano Attianese, G.M.; Cribioli, E.; Maltese, F.; Galimberti, S.; Lopez, A.F.; Biondi, A.; et al. Targeting of acute myeloid leukemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br. J. Haematol. 2013, 161, 389–401. [Google Scholar] [CrossRef]
- Pizzitola, I.; Anjos-Alfonso, F.; Rouault-Pierre, K.; Lassailly, F.; Tettamanti, S.; Spinelli, O.; Biondi, A.; Biagi, E.; Bonnet, D. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia 2014, 28, 1596–1605. [Google Scholar] [CrossRef]
- Mardiros, A.; Dos Santos, C.; McDonald, T.; Brown, C.E.; Wangh, X.; Budde, L.E.; Hofman, L.; Aguilar, B.; Chang, W.C.; Bretzlaff, W.; et al. T cells expressing CD123-specific cytolytic effector functions and anti-tumor effects against human acute myeloid leukemia. Blood 2013, 122, 3138–3148. [Google Scholar] [CrossRef]
- Gill, S.; Tasian, S.K.; Ruella, M.; Shestova, D.; Li, Y.; Porter, D.L.; Carroll, M.; Danet-Desnoyeers, G.; Scholler, J.; Grupp, S.A.; et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 2014, 123, 2343–2354. [Google Scholar] [CrossRef]
- Jacoby, E.; Shahani, S.A.; Shah, N.N. Updates on CAR T-cell therapy in B-cell malignancies. Immunol. Rev. 2019, 290, 39–59. [Google Scholar] [CrossRef]
- Ruella, M.; Barrett, D.M.; Kenderian, S.S.; Shestova, O.; Hofmann, T.J.; Perazzelli, J.; Klimnchinsky, M.; Aikaewa, V.; Nazimuddin, F.; Koriowski, M.; et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J. Clin. Investig. 2016, 126, 3814–3826. [Google Scholar] [CrossRef] [Green Version]
- Tasian, S.; Kenderian, S.S.; Shen, F.; Ruella, M.; Shestova, O.; Kozlowski, M.; LI, Y.; Schrank-Hacker, A.; Morrissette, J.; Carroll, M. Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood 2017, 129, 2395–2407. [Google Scholar] [CrossRef] [Green Version]
- Arcangeli, S.; Rotiroti, M.C.; Bardelli, M.; Simonelli, L.; Magnani, M.F.; Biondi, A.; Biagi, E.; Tettamanti, S.; Varani, L. Balance of anti-CD123 chimeric antigen receptor binding affinity and density for the targeting of acute myeloid leukemia. Mol. Ther. 2017, 25, 1933–1945. [Google Scholar] [CrossRef]
- Collinson-Pantz, M.R.; Chang, W.C.; Lu, A.; Khalil, M.; Crisostomo, J.W.; Lin, P.Y.; Mahendrevada, A.; Shinners, N.P.; Brndt., M.E.; Zhang, M.; et al. Constitutively active MyD88/CD40 costimulation enhances expansion and efficacy of chimeric antigen T cells targeting hematological malignancies. Leukemia 2019, 33, 2195–2207. [Google Scholar] [CrossRef]
- Petrov, J.C.; Wada, M.; Pinz, K.G.; Yan, L.E.; Chen, K.H.; Shuai, X.; Liu, H.; Chen, X.; Leung, L.H.; Salman, H.; et al. Compound CART-cells as a double-pronged approach for treating acute myeloid leukemia. Leukemia 2018, 32, 1317–1326. [Google Scholar] [CrossRef]
- Klob, S.; Oberschmidt, O.; Morgan, M.; Dahle, J.; Arseniev, L.; Huppert, V.; Granzin, M.; Gardlowski, T.; Matthies, N.; Solterbon, S.; et al. Optimization of human NK cell manufacturing: Fully automated separation, improved ex vivo expansion using IL-21 with autologous feeder cells, and generation of anti-CD123-CAR-expressing effector cells. Hum. Gene Ther. 2017, 28, 897–913. [Google Scholar]
- Luo, Y.; Chang, L.J.; Hu, Y.; Dong, L.; Wei, G.; Huang, H. First-in-manCD123-spedific chimeric antigen receptor-modified T cells for the treatment of refractory acute myeloid leukemia. Blood 2015, 126, 3778. [Google Scholar]
- Budde, L.E.; Song, J.Y.; Kim, Y.; Blanchard, S.; Wagner, J.; Stein, A.S.; Weng, L.; De Real, M.; Hernandez, R.; Marcucci, E.; et al. Remissions of acute myeloid leukemia and blastic plasmacytoid dendritic cell neoplasm following treatment with CD123-specific CART cells: A first-in-human clinical trial. Blood 2017, 130, 811. [Google Scholar]
- Budde, L.E.; Schuster, S.J.; Del Real, M. CD123CAR displays clinical activity in refractory/relapsed acute myeloid leukemia (AML) and blastic plasmocytoid dendritic cell neoplasm (BPDCN): Safety and efficacy results from a phase 1 study. In Proceedings of the AACR Tumor Immunology and Immunotherapy, Miami, FL, USA, 27–30 November 2018. [Google Scholar]
- Cummins, K.D.; Frey, N.; Nelson, A.M. Treating relapsed/refractory (RR) AML with biodegradable antiCD123 CAR modified T cells. Blood 2017, 130, 1359. [Google Scholar]
- Mu, H.; Ma, H.; Vaidya, A.; Bonifant, C.L.; Gottschalk, S.; Velasquez, M.P.; Andreef, M. IL15 expressing CD123-targeted engager T-cell therapy for adult acute myeloid leukemia. Blood 2018, 132, 2724. [Google Scholar]
- Loff, S.; Meyer, J.E.; Dietrich, T.; Spehr, J.; Julia, R.; von Bonin, R.; Grunder, C.; Franke, K.; Feldmann, A.; Bechmann, M.; et al. Late-stage preclinical characterization of switchable CD123-specifioc CAR-T for treatment of acute leukemia. Blood 2018, 132, 964. [Google Scholar]
- Ball, B.; Stein, E.M. Which are the most promising targets for minimal residual disease-directed therapy in acute myeloid leukemia prior to allogeneic stem cell transplant? Haematologica 2019, 104, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
Risk Category | Genetic Abnormality | Response to Therapy |
---|---|---|
Favorable | t(15;17)(q22;q12); PML-RARA | CR 81% DFS 46% OS 45% |
t(8;21)(q22;q22); RUNX1-RUNX1T1 | ||
inv(16)(q13.1q22) or t(16;16)(p13.1;q22) CBFB-MYH11 | ||
NPM1mut/FLT3WT or FLT3-ITDlow = allelic ratio < 0.5 | ||
Biallelic mutated CEBPA | ||
Intermediate-I | NPM1mut/FLT3-ITDhigh = allelic ratio > 0.5 | CR 51% DFS 17% OS 18% |
NPM1WT/FLT3-ITD | ||
NPM1WT/FLT3WT | ||
Intermediate-II | t(9;11)(p22;q23); MLLT3-KMT2A | CR 51% DFS 17% OS 18% |
Cytogenetic abnormalities not classified as favorable or adverse | ||
Adverse | t(6;9)(p23;q34.1); DEK-NUYP214 | CR 37% DFS 2% OS 4% |
t(v;11q23.3): KMT2A rearranged | ||
t(9;22)(q34.1;q11.2); BCR-ABL1 | ||
inv(3)(q21.3;q26.2) or t(3;3)(q21.3;q26.2); GATA2 | ||
MECOM (EV11) | ||
−5 or del(5q); −7; −17/abn(17p) | ||
Complex karyotype (three or more unrelated chromosomal abnormalities) | ||
Monosomal karyotype | ||
NPM1WT/FLT3-ITDhigh = allelic ratio > 0.5 | ||
Mutated RUNX1 | ||
Mutated ASXL1 | ||
Mutated TP53 |
Drugs | Indication | Phase | Status | Identifiers |
---|---|---|---|---|
Tagraxofusp (human IL-3 conjugated to a truncated diphteria toxin) | AML or MDS | I/II | Completed | NCT00397579 |
Tagraxofusp | BPDCN, AMLK | I/II | Active, not recruiting | NCT02113982 |
Tagraxofusp | Relapsed/Refractory Multiple Myeloma | I/II | Ongoing | NCT02661022 |
Tagraxofusp | MDR-positive AML in remission | I/II | Ongoing | NCT02270463 |
Tagraxofusp | High-risk myeloproliferative neoplasms | I/II | Ongoing | NCTo2268253 |
Tagraxofusp | AML or high-risk MDS | I/II | Ongoing | NCT03113643 |
Talacotuzumab + Decitabine vs. Decitabine alone | AML ineligible to intensive chemotherapy | II/III | Ongoing | NCT02472145 |
Talacotuzumab | MDS or AML patients failing hypomethylating therapy | II | Terminated | NCT02992860 |
Talacotuzumab or Daratumumab | Low- or intermediate-risk MDS | II | Active, not recruiting | NCT0301134 |
IMGN632 (CD113-targeting antibody-drug conjugate, ADC) | Relapsed/refractory AML, BPDCN, ALL and other CD123+ hematological malignancies | I | Ongoing | NCT03386513 |
XmAb 14045 (anti-CD123/anti-CD3 bispecific monoclonal antibody) | Relapsed/refractory AML | I | Ongoing Partial clinical hold | NCT02730312 |
Flotetuzumab (MGD006) (Dual-affinity retargeting (DART) molecule targeting CD123 × CD3 | Recurrent/refractory CD123-positive blood cancer | II | Not yet recruiting | NCT03739606 |
Flotetuzumab (MGD006, DART molecule targeting CD3 × CD123 | Relapsed/refractory AML; Intermediate/high-risk MDS | I | Recruiting | NCT02152956 |
JNJ-63709178 (anti-CD123/anti-CD3 bispecific mAb) | Relapsed/refractory AML | I | Suspended | NCT02715011 |
antiCD123 CAR T (autologous lentivirally transduced) (CD123CAR-41BB-CD3) | Relapsed/refractory AML AlloHSCT is expected to be required in responding patients | I | Recruiting | NCT03766126 |
antiCD123 CAR T (autologous lentivirally transduced) (CD123CAR-CD28-CD3zeta-EGFRt) | Relapsed/refractory AML or relapsed BPDCN AlloHSCT is expected to be required in responding patients | I | Recruiting | NCT021159495 |
Universal (TCR KO) allogeneic antiCD123 CAR T (UCAR T123) | Relapsed/refractory AML or ELN adverse AML AlloHSCT is expected to be required in responding patients | I | Recruiting | NCT03190278 |
antiCD123 CAR T (allogeneic, donor-derived lentivirally transduced) (CD123CAR-CD28-CD3-EGFRt) | Relapsed AML after alloHSCT EGFR in CAR T construct allows for in vivo eradication of infused CAR T cells if needed with anti-EGFR mAb | I | Recruiting | NCT03114670 |
antiCD123 – antiCLL1 compound CAR T | Relapsed/refractory AML | I | Recruiting | NCT03631576 |
antiCD123 CAR T (autologous lentivirally transduced) | Relapsed/refractory AML (> 80% CD123+ leukemic blasts) | I | Recruiting | NCT03796390 |
antiCD123 CAR T (autologous or allogeneic lentivirally transduced) | Relapsed/refractory AML | I | Recruiting | NCT03556982 |
Multi-CAR T cell (autologous Muc1/CD33/CD38/CD56/CD123-specific T cells) | Relapsed/refractory AML | I | Recruiting | NCT03222674 |
4SCAR19 + 4SCAR123 (4th gen. CAR T targeting CD19 and CD123 | B cell malignancies | I/II | Recruiting | NCT03291444 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testa, U.; Pelosi, E.; Castelli, G. CD123 as a Therapeutic Target in the Treatment of Hematological Malignancies. Cancers 2019, 11, 1358. https://doi.org/10.3390/cancers11091358
Testa U, Pelosi E, Castelli G. CD123 as a Therapeutic Target in the Treatment of Hematological Malignancies. Cancers. 2019; 11(9):1358. https://doi.org/10.3390/cancers11091358
Chicago/Turabian StyleTesta, Ugo, Elvira Pelosi, and Germana Castelli. 2019. "CD123 as a Therapeutic Target in the Treatment of Hematological Malignancies" Cancers 11, no. 9: 1358. https://doi.org/10.3390/cancers11091358
APA StyleTesta, U., Pelosi, E., & Castelli, G. (2019). CD123 as a Therapeutic Target in the Treatment of Hematological Malignancies. Cancers, 11(9), 1358. https://doi.org/10.3390/cancers11091358