Impact of Polypharmacy for Chronic Ailments in Colon Cancer Patients: A Review Focused on Drug Repurposing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Antihypertensive Drugs
2.2. Non-Steroid Anti-Inflammatory Drugs (NSAIDs)
2.3. Antibacterial Antibiotics
2.4. Antidepressants
2.5. Metformin
2.6. Statins
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EGFR | Epidermal Growth Factor Receptor |
VEGF | Vascular Endothelial Growth Factor |
ACEi | Angiotensin-Converting Enzyme inhibitor |
ARB | Angiotensin II Receptor Blockers |
CCBs | Calcium Channel Blockers |
mCRC/CRC | metastatic Colorectal Cancer/Colorectal Cancer |
OR | Odds Ratio |
95% CI | 95% Confidence Interval |
HR | Hazard Ratio |
OS/mOS | Overall Survival/median Overall Survival |
DSS | Disease-specific Survival |
HMG-CoA | Hydroxymethylglutaryl coenzyme A |
LDL | low-density lipoprotein |
FPP | farnesylpyrophosphate |
GGPP | geranylgeranylpyrophosphate |
IBD | inflammatory bowel disease |
ACM | all-cause mortality |
CMS: | consensus molecular subtypes |
RCTs | randomized controlled trials |
NSAIDs | non-steroid anti-inflammatory drugs |
ASA | acetylsalicylic acid |
COX | cyclooxygenase |
CTCs | circulating tumour cells |
NA-NSAIDs | non-aspirin-NSAIDs |
CRC | colorectal cancer |
GI | Gastro-intestinal |
CRT | chemo-radiotherapy |
BMI | Body-mass index |
PARP | Poly (ADP-Ribose) Polymerase |
References
- Giampieri, R.; Scartozzi, M.; Del Prete, M.; Fulli, A.; Faloppi, L.; Bianconi, M.; Maccaroni, E.; Cascinu, S. The “angiogenetic ladder”, step-wise angiogenesis inhibition in metastatic colorectal cancer. Cancer Treat. Rev. 2014, 40, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, R.; Scartozzi, M.; Del Prete, M.; Maccaroni, E.; Bittoni, A.; Faloppi, L.; Bianconi, M.; Cecchini, L.; Cascinu, S. Molecular biomarkers of resistance to anti-EGFR treatment in metastatic colorectal cancer, from classical to innovation. Crit. Rev. Oncol. 2013, 88, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Galvão, M.G.A.; Santos, M.C.; Da Cunha, A.J.L.A. Amantadine and rimantadine for influenza A in children and the elderly. Cochrane Database Syst. Rev. 2014, 2014, CD002745. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.; Ba, M.; Ren, C.; Yu, L.; Dong, S.; Yu, G.; Liang, H. An updated meta-analysis of amantadine for treating dyskinesia in Parkinson’s disease. Oncotarget 2017, 8, 57316–57326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Scialli, A.R. Thalidomide: The Tragedy of Birth Defects and the Effective Treatment of Disease. Toxicol. Sci. 2011, 122, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Matthews, S.J.; McCoy, C. Thalidomide: A review of approved and investigational uses. Clin. Ther. 2003, 25, 342–395. [Google Scholar] [CrossRef]
- Scartozzi, M.; Galizia, E.; Chiorrini, S.; Giampieri, R.; Berardi, R.; Pierantoni, C.; Cascinu, S. Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Ann. Oncol. 2009, 20, 227–230. [Google Scholar] [CrossRef]
- Giampieri, R.; Del Prete, M.; Prochilo, T.; Puzzoni, M.; Pusceddu, V.; Pani, F.; Maccaroni, E.; Mascia, R.; Baleani, M.G.; Meletani, T.; et al. Off-target effects and clinical outcome in metastatic colorectal cancer patients receiving regorafenib: The TRIBUTE analysis. Sci. Rep. 2017, 7, 45703. [Google Scholar] [CrossRef] [Green Version]
- Bangalore, S.; Kumar, S.; Kjeldsen, S.E.; Makani, H.; Grossman, E.; Wetterslev, J.; Gupta, A.K.; Sever, P.S.; Gluud, C.; Messerli, F.H. Antihypertensive drugs and risk of cancer: Network meta-analyses and trial sequential analyses of 324 168 participants from randomised trials. Lancet Oncol. 2011, 12, 65–82. [Google Scholar] [CrossRef]
- Effects of telmisartan, irbesartan, valsartan, candesartan, and losartan on cancers in 15 trials enrolling 138,769 individuals. J. Hypertens. 2011, 29, 623–635. [CrossRef]
- Htoo, P.; Stürmer, T.; Jonsson-Funk, M.; Pate, V.; Simpson, R.J.; Lund, J.L. Renin–Angiotensin–Aldosterone System-based Antihypertensive Agents and the Risk of Colorectal Cancer among Medicare Beneficiaries. Epidemiology 2019, 30, 867–875. [Google Scholar] [CrossRef]
- Thulstrup, A.M.; Steffensen, F.H.; McLaughlin, J.K.; Baron, J.A.; Sørensen, H.T.; Olsen, J.H.; Mellemkjær, L. Cancer risk and mortality in users of calcium channel blockers. Cancer 2000, 89, 165–170. [Google Scholar] [CrossRef]
- Assimes, T.L.; Elstein, E.; Langleben, A.; Suissa, S. Long-term use of antihypertensive drugs and risk of cancer. Pharmacoepidemiol. Drug Saf. 2008, 17, 1039–1049. [Google Scholar] [CrossRef]
- Cui, Y.; Wen, W.; Zheng, T.; Li, H.; Gao, Y.-T.; Cai, H.; You, M.; Gao, J.; Yang, G.; Zheng, W.; et al. Use of Antihypertensive Medications and Survival Rates for Breast, Colorectal, Lung, or Stomach Cancer. Am. J. Epidemiol. 2019, 188, 1512–1528. [Google Scholar] [CrossRef] [PubMed]
- Jansen, L.; Hoffmeister, M.; Arndt, V.; Chang-Claude, J.; Brenner, H. Stage-specific associations between beta blocker use and prognosis after colorectal cancer. Cancer 2014, 120, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Jansen, L.; Weberpals, J.; Kuiper, J.G.; Vissers, P.A.; Wolkewitz, M.; Hoffmeister, M.; Brenner, H. Pre- and post-diagnostic beta-blocker use and prognosis after colorectal cancer: Results from a population-based study. Int. J. Cancer 2017, 141, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, R.; Scartozzi, M.; Del Prete, M.; Faloppi, L.; Bianconi, M.; Ridolfi, F.; Cascinu, S. Prognostic Value for Incidental Antihypertensive Therapy With β-Blockers in Metastatic Colorectal Cancer. Medicine 2015, 94, e719. [Google Scholar] [CrossRef] [Green Version]
- Fiala, O.; Ostasov, P.; Sorejs, O.; Liska, V.; Buchler, T.; Poprach, A.; Finek, J. Incidental Use of Beta-Blockers Is Associated with Outcome of Metastatic Colorectal Cancer Patients Treated with Bevacizumab-Based Therapy: A Single-Institution Retrospective Analysis of 514 Patients. Cancers 2019, 11, 1856. [Google Scholar] [CrossRef] [Green Version]
- Cardwell, C.R.; McMenamin, Ú.; Hicks, B.M.; Hughes, C.; Cantwell, M.M.; Murray, L.J. Drugs affecting the renin-angiotensin system and survival from cancer: A population based study of breast, colorectal and prostate cancer patient cohorts. BMC Med. 2014, 12, 28. [Google Scholar] [CrossRef] [Green Version]
- Coelho, M.; Moz, M.; Correia, G.; Teixeira, A.; Medeiros, R.; Ribeiro, L. Antiproliferative effects of β-blockers on human colorectal cancer cells. Oncol. Rep. 2015, 33, 2513–2520. [Google Scholar] [CrossRef] [Green Version]
- Baker, F.L.; Bigley, A.B.; Agha, N.H.; Pedlar, C.R.; O’Connor, D.P.; Bond, R.A.; Bollard, C.M.; Katsanis, E.; Simpson, R.J. Systemic β-Adrenergic Receptor Activation Augments the ex vivo Expansion and Anti-Tumor Activity of Vγ9Vδ2 T-Cells. Front. Immunol. 2020, 10, 3082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Mao, T.; He, Z.; Wu, X.; Peng, Y.; Chen, Y.; Dong, Y.; Ruan, Z.; Wang, Z. Angiotensin I-converting enzyme gene plays a crucial role in the pathology of carcinomas in colorectal cancer. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2500–2506. [Google Scholar] [CrossRef] [PubMed]
- Ahl, R.; Matthiessen, P.; Fang, X.; Cao, Y.; Sjolin, G.; Lindgren, R.; Ljungqvist, O.; Mohseni, S. Effect of beta-blocker therapy on early mortality after emergency colonic cancer surgery. Br. J. Surg. 2018, 106, 477–483. [Google Scholar] [CrossRef]
- Lee, C.S.; McNamara, D.; O’Morain, C.A. Aspirin as a chemoprevention agent for colorectal cancer. Curr. Drug Metab. 2012, 13, 1313–1322. [Google Scholar] [CrossRef] [Green Version]
- Couturier, D. Recent notions on intestinal cancerogenesis, their implications in genetic risk screening and preventive action of non-steroid anti-inflammatory agents. Bull. Acad. Natl. Med. 2002, 186, 421–443; discussion 443–445. (In French) [Google Scholar]
- Grancher, A.; Michel, P.; Di Fiore, F.; Sefrioui, D. Aspirine et cancer colorectal. Bull. Cancer 2018, 105, 171–180. [Google Scholar] [CrossRef]
- Mccarty, O.J.; Jadhav, S.; Burdick, M.M.; Bell, W.R.; Konstantopoulos, K. Fluid Shear Regulates the Kinetics and Molecular Mechanisms of Activation-Dependent Platelet Binding to Colon Carcinoma Cells. Biophys. J. 2002, 83, 836–848. [Google Scholar] [CrossRef] [Green Version]
- Mitrugno, A.; Tormoen, G.W.; Kuhn, P.; Mccarty, O.J.T. The prothrombotic activity of cancer cells in the circulation. Blood Rev. 2015, 30, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Phillips, K.G.; Kuhn, P.; Mccarty, O.J.T. Physical Biology in Cancer. The physical biology of circulating tumor cells. Am. J. Physiol. Physiol. 2014, 306, C80–C88. [Google Scholar] [CrossRef] [Green Version]
- Santilli, F.; Boccatonda, A.; Davì, G. Aspirin, platelets, and cancer: The point of view of the internist. Eur. J. Intern. Med. 2016, 34, 11–20. [Google Scholar] [CrossRef]
- Ai, G.; Dachineni, R.; Muley, P.; Tummala, H.; Bhat, G.J. Aspirin and salicylic acid decrease c-Myc expression in cancer cells: A potential role in chemoprevention. Tumor Biol. 2015, 37, 1727–1738. [Google Scholar] [CrossRef] [PubMed]
- Dovizio, M.; Tacconelli, S.; Sostres, C.; Ricciotti, E.; Patrignani, P. Mechanistic and Pharmacological Issues of Aspirin as an Anticancer Agent. Pharmaceuticals 2012, 5, 1346–1371. [Google Scholar] [CrossRef] [Green Version]
- Thun, M.J.; Jacobs, E.J.; Patrono, C. The role of aspirin in cancer prevention. Nat. Rev. Clin. Oncol. 2012, 9, 259–267. [Google Scholar] [CrossRef]
- Erisman, M.D.; Rothberg, P.G.; Diehl, R.E.; Morse, C.C.; Spandorfer, J.M.; Astrin, S.M. Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene. Mol. Cell. Biol. 1985, 5, 1969–1976. [Google Scholar] [CrossRef] [Green Version]
- Knoepfler, P.; Leroy, P.J.; Hunter, J.J.; Hoar, K.M.; Burke, K.E.; Shinde, V.; Ruan, J.; Bowman, D.; Galvin, K.; Ecsedy, J.A. Myc Goes Global: New Tricks for an Old Oncogene. Cancer Res. 2007, 67, 5061–5063. [Google Scholar] [CrossRef] [Green Version]
- Kopp, H.-G.; Placke, T.; Salih, H.R. Platelet-Derived Transforming Growth Factor- Down-Regulates NKG2D Thereby Inhibiting Natural Killer Cell Antitumor Reactivity. Cancer Res. 2009, 69, 7775–7783. [Google Scholar] [CrossRef] [Green Version]
- Placke, T.; Kopp, H.-G.; Salih, H.R. Modulation of Natural Killer Cell Anti-Tumor Reactivity by Platelets. J. Innate Immun. 2011, 3, 374–382. [Google Scholar] [CrossRef]
- Mitrugno, A.; Sylman, J.L.; Ngo, A.T.P.; Pang, J.; Sears, R.C.; Williams, C.D.; Mccarty, O.J.T. Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: Implications for the oncoprotein c-MYC. Am. J. Physiol. Physiol. 2017, 312, C176–C189. [Google Scholar] [CrossRef]
- Tomić, T.; Domínguez-López, S.; Barrios-Rodríguez, R. Non-aspirin non-steroidal anti-inflammatory drugs in prevention of colorectal cancer in people aged 40 or older: A systematic review and meta-analysis. Cancer Epidemiol. 2019, 58, 52–62. [Google Scholar] [CrossRef]
- Seetha, A.; Devaraj, H.; Sudhandiran, G. Indomethacin and juglone inhibit inflammatory molecules to induce apoptosis in colon cancer cells. J. Biochem. Mol. Toxicol. 2020, 34, e22433. [Google Scholar] [CrossRef]
- Gasic, G.J.; Gasic, T.B.; Stewart, C.C. Antimetastatic effects associated with platelet reduction. Proc. Natl. Acad. Sci. USA 1968, 61, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.; Yan, Y.; Chen, M.; Luo, G.; Hao, J.; Pan, J.; Hu, S.; Guo, P.; Li, W.; Wang, R.; et al. Aspirin enhances the sensitivity of colon cancer cells to cisplatin by abrogating the binding of NF-κB to the COX-2 promoter. Aging 2020, 12, 611–627. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, R.; Restivo, A.; Pusceddu, V.; Del Prete, M.; Maccaroni, E.; Bittoni, A.; Faloppi, L.; Andrikou, K.; Bianconi, M.; Cabras, F.; et al. The Role of Aspirin as Antitumoral Agent for Heavily Pretreated Patients with Metastatic Colorectal Cancer Receiving Capecitabine Monotherapy. Clin. Color. Cancer 2017, 16, 38–43. [Google Scholar] [CrossRef]
- Restivo, A.; Cocco, I.M.F.; Casula, G.; Scintu, F.; Cabras, F.; Scartozzi, M.; Zorcolo, L. Aspirin as a neoadjuvant agent during preoperative chemoradiation for rectal cancer. Br. J. Cancer 2015, 113, 1133–1139. [Google Scholar] [CrossRef] [Green Version]
- Petrelli, F.; Ghidini, M.; Ghidini, A.; Perego, G.; Cabiddu, M.; Khakoo, S.; Oggionni, E.; Abeni, C.; Hahne, J.C.; Tomasello, G.; et al. Use of Antibiotics and Risk of Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Cancers 2019, 11, 1174. [Google Scholar] [CrossRef] [Green Version]
- Sobhani, I.; Tap, J.; Roudot-Thoraval, F.; Roperch, J.P.; Letulle, S.; Langella, P.; Corthier, G.; Van Nhieu, J.T.; Furet, J.P. Microbial Dysbiosis in Colorectal Cancer (CRC) Patients. PLoS ONE 2011, 6, e16393. [Google Scholar] [CrossRef]
- Dulal, S.; Keku, T.O. Gut Microbiome and Colorectal Adenomas. Cancer J. 2014, 20, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Kaur, K.; Saxena, A.; Debnath, I.; O’Brien, J.L.; Ajami, N.J.; Auchtung, T.A.; Petrosino, J.F.; Sougiannis, A.-J.; DePaep, S.; Chumanevich, A.; et al. Antibiotic-mediated bacteriome depletion in ApcMin/+ mice is associated with reduction in mucus-producing goblet cells and increased colorectal cancer progression. Cancer Med. 2018, 7, 2003–2012. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Zhong, W.; Yang, M.; Xu, M.; Sun, Y.; Ma, J.; Liu, T.; Song, X.; Dong, W.; et al. Gut microbiota from colorectal cancer patients enhances the progression of intestinal adenoma in Apcmin/+ mice. EBioMedicine 2019, 48, 301–315. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Cai, G.; Qiu, Y.; Fei, N.; Zhang, M.; Pang, X.; Jia, W.; Cai, S.; Zhao, L. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2011, 6, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Becattini, S.; Taur, Y.; Pamer, E.G. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends Mol. Med. 2016, 22, 458–478. [Google Scholar] [CrossRef] [Green Version]
- Ubeda, C.; Pamer, E.G. Antibiotics, microbiota, and immune defense. Trends Immunol. 2012, 33, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Dik, V.K.; Van Oijen, M.G.H.; Smeets, H.M.; Siersema, P.D. Frequent Use of Antibiotics Is Associated with Colorectal Cancer Risk: Results of a Nested Case-Control Study. Dig. Dis. Sci. 2015, 61, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Haines, C.; Watson, A.J.M.; Hart, A.R.; Platt, M.J.; Pardoll, D.M.; Cosgrove, S.E.; Gebo, K.A.; Sears, C.L. Oral antibiotic use and risk of colorectal cancer in the United Kingdom, 1989–2012: A matched case–control study. Gut 2019, 68, 1971–1978. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, S.; Li, H.; Yang, F.; Mushtaq, N.; Ullah, S.; Shi, Y.; An, C.; Xu, J. The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed. Pharmacother. 2018, 108, 184–193. [Google Scholar] [CrossRef]
- Abdel-Rahman, O.; Ghosh, S.; Walker, J. Outcomes of metastatic colorectal cancer patients in relationship to prior and concurrent antibiotics use; individual patient data analysis of three clinical trials. Clin. Transl. Oncol. 2020, 22, 1651–1656. [Google Scholar] [CrossRef]
- Hekmatshoar, Y.; Saadat, Y.R.; Khatibi, S.M.H.; Ozkan, T.; Vahed, F.Z.; Nariman-Saleh-Fam, Z.; Gargari, B.P.; Sunguroglu, A.; Vahed, S.Z. The impact of tumor and gut microbiotas on cancer therapy: Beneficial or detrimental? Life Sci. 2019, 233, 116680. [Google Scholar] [CrossRef]
- Arimochi, H.; Morita, K. Characterization of cytotoxic actions of tricyclic antidepressants on human HT29 colon carcinoma cells. Eur. J. Pharmacol. 2006, 541, 17–23. [Google Scholar] [CrossRef]
- Arimochi, H.; Morita, K. Desipramine Induces Apoptotic Cell Death through Nonmitochondrial and Mitochondrial Pathways in Different Types of Human Colon Carcinoma Cells. Pharmacology 2007, 81, 164–172. [Google Scholar] [CrossRef]
- Alburquerque-González, B.; Bernabé-García, M.; Montoro-García, S.; Bernabé-García, Á.; Rodrigues, P.C.; Sanz, J.R.; López-Calderón, F.F.; Luque, I.; Nicolas, F.J.; Cayuela, M.L.; et al. New role of the antidepressant imipramine as a Fascin1 inhibitor in colorectal cancer cells. Exp. Mol. Med. 2020, 52, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Gil-Ad, I.; Zolokov, A.; Lomnitski, L.; Taler, M.; Bar, M.; Luria, D.; Ram, E.; Weizman, A. Evaluation of the potential anti-cancer activity of the antidepressant sertraline in human colon cancer cell lines and in colorectal cancer-xenografted mice. Int. J. Oncol. 2008, 33, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, W.-J.; Jung, S.K.; Vo, T.T.L.; Jeong, C.-H. Anticancer activity of paroxetine in human colon cancer cells: Involvement of MET and ERBB. J. Cell. Mol. Med. 2018, 23, 1106–1115. [Google Scholar] [CrossRef] [Green Version]
- Kannen, V.; Hintzsche, H.; Zanette, D.L.; Silva, W.A.; Garcia, S.B.; Waaga-Gasser, A.M.; Stopper, H. Antiproliferative Effects of Fluoxetine on Colon Cancer Cells and in a Colonic Carcinogen Mouse Model. PLoS ONE 2012, 7, e50043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stopper, H.; Garcia, S.B.; Waaga-Gasser, A.M.; Kannen, V. Antidepressant fluoxetine and its potential against colon tumors. World J. Gastrointest. Oncol. 2014, 6, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Kannen, V.; Garcia, S.B.; Silva, W.A.; Waaga-Gasser, A.M.; Mönch, R.; Alho, E.J.L.; Heinsen, H.; Scholz, C.-J.; Friedrich, M.; Heinze, K.G.; et al. Oncostatic effects of fluoxetine in experimental colon cancer models. Cell. Signal. 2015, 27, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
- Marcinkute, M.; Afshinjavid, S.; Fatokun, A.A.; Javid, F.A. Fluoxetine selectively induces p53-independent apoptosis in human colorectal cancer cells. Eur. J. Pharmacol. 2019, 857, 172441. [Google Scholar] [CrossRef] [PubMed]
- Iskar, M.; Bork, P.; Van Noort, V. Discovery and validation of the antimetastatic activity of citalopram in colorectal cancer. Mol. Cell. Oncol. 2015, 2, e975080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.-K.; Chen, H.-W.; Chiang, I.-T.; Chen, C.-C.; Liao, J.-F.; Su, T.-P.; Tung, C.-Y.; Uchitomi, Y.; Hwang, J.-J. Mirtazapine Inhibits Tumor Growth via Immune Response and Serotonergic System. PLoS ONE 2012, 7, e38886. [Google Scholar] [CrossRef]
- Xu, W.; Tamim, H.; Shapiro, S.; Stang, M.R.; Collet, J.-P. Use of antidepressants and risk of colorectal cancer: A nested case-control study. Lancet Oncol. 2006, 7, 301–308. [Google Scholar] [CrossRef]
- Coogan, P.F.; Strom, B.L.; Rosenberg, L.; Coogan, P.F. Antidepressant use and colorectal cancer risk. Pharmacoepidemiol. Drug Saf. 2009, 18, 1111–1114. [Google Scholar] [CrossRef] [Green Version]
- Chubak, J.; Boudreau, D.M.; Rulyak, S.J.; Mandelson, M.T. Colorectal cancer risk in relation to antidepressant medication use. Int. J. Cancer 2010, 128, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, A.J.; Card, T.; Bates, T.; Muir, K. Tricyclic antidepressants and the incidence of certain cancers: A study using the GPRD. Br. J. Cancer 2010, 104, 193–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, A.J.; Grainge, M.J.; Bates, T.; Card, T.R.; Card, T. Survival of glioma and colorectal cancer patients using tricyclic antidepressants post-diagnosis. Cancer Causes Control. 2012, 23, 1959–1964. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Chiuv, W.C.; Wang, T.N.; Liao, Y.T.; Chien, I.C.; Lee, Y.; McIntyre, R.S.; Chen, P.C.; Chen, V.C.H. Antidepressants and Colorectal Cancer: A Population-Based Nested Case-Control Study. Br. J. Cancer 2011, 104, 188–192. [Google Scholar] [CrossRef]
- Cronin-Fenton, D.P.; Riis, A.H.; Lash, T.L.; Dalton, S.O.; Friis, S.; Robertson, D.; Sørensen, H.T. Antidepressant use and colorectal cancer risk: A Danish population-based case–control study. Br. J. Cancer 2010, 104, 188–192. [Google Scholar] [CrossRef]
- Haukka, J.; Sankila, R.; Klaukka, T.; Lönnqvist, J.; Niskanen, L.; Tanskanen, A.; Wahlbeck, K.; Tiihonen, J. Incidence of cancer and antidepressant medication: Record linkage study. Int. J. Cancer 2010, 126, 285–296. [Google Scholar] [CrossRef]
- Boursi, B.; Lurie, I.; Mamtani, R.; Haynes, K.; Yang, Y.-X. Anti-depressant therapy and cancer risk: A nested case-control study. Eur. Neuropsychopharmacol. 2015, 25, 1147–1157. [Google Scholar] [CrossRef]
- Kiridly-Calderbank, J.F.; Sturgeon, S.R.; Kroenke, C.H.; Reeves, K.W. Antidepressant Use and Risk of Colorectal Cancer in the Women’s Health Initiative. Cancer Epidemiol. Biomark. Prev. 2018, 27, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Pocobelli, G.; Yu, O.; Ziebell, R.A.; Bowles, E.J.A.; Fujii, M.M.; Sterrett, A.T.; Boggs, J.M.; Chen, L.; Boudreau, D.M.; Ritzwoller, D.P.; et al. Use of antidepressants after colon cancer diagnosis and risk of recurrence. Psycho-Oncology 2019, 28, 750–758. [Google Scholar] [CrossRef]
- Godsland, I. Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin. Sci. 2009, 118, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-H.; Lin, J.-W.; Wu, L.-C.; Lai, M.-S.; Chuang, L.-M. Oral insulin secretagogues, insulin, and cancer risk in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2012, 97, E1170–E1175. [Google Scholar] [CrossRef] [PubMed]
- Pollak, M. Investigating Metformin for Cancer Prevention and Treatment: The End of the Beginning. Cancer Discov. 2012, 2, 778–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zell, J.A.; McLaren, C.E.; Morgan, T.R.; Lawson, M.J.; Rezk, S.; Albers, C.G.; Chen, W.-P.; Carmichael, J.C.; Chung, J.; Richmond, E.; et al. A Phase IIa Trial of Metformin for Colorectal Cancer Risk Reduction among Individuals with History of Colorectal Adenomas and Elevated Body Mass Index. Cancer Prev. Res. 2019, 13, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Higurashi, T.; Hosono, K.; Takahashi, H.; Komiya, Y.; Umezawa, S.; Sakai, E.; Uchiyama, T.; Taniguchi, L.; Hata, Y.; Uchiyama, S.; et al. Metformin for chemoprevention of metachronous colorectal adenoma or polyps in post-polypectomy patients without diabetes: A multicentre double-blind, placebo-controlled, randomised phase 3 trial. Lancet Oncol. 2016, 17, 475–483. [Google Scholar] [CrossRef]
- Powell, M.K.; Cempirkova, D.; Dundr, P.; Grimmichova, T.; Trebicky, F.; Brown, R.E.; Gregorova, J.; Litschmannova, M.; Janurova, K.; Pesta, M.; et al. Metofrmin Treatment for diabetes mellitus correlates with progression and survival in colorectal carcinoma. Transl. Oncol. 2020, 13, 383–392. [Google Scholar] [CrossRef]
- Al-Omari, A.; AbdelKhaleq, H.; Al-Hussaini, M.; Turfa, R.; Awad, N.; Hassan, M.M.; Alfaqih, M.A.; Garrett, C.R. Validation of the Survival Benefits of Metformin in Middle Eastern Patients With Type II Diabetes Mellitus and Colorectal Cancer. J. Glob. Oncol. 2018, 4, 1–10. [Google Scholar] [CrossRef]
- Garrett, C.R.; Hassabo, H.M.; Bhadkamkar, N.A.; Wen, S.; Baladandayuthapani, V.; Kee, B.K.; Eng, C.; Hassan, M.M. Survival advantage observed with the use of metformin in patients with type II diabetes and colorectal cancer. Br. J. Cancer 2012, 106, 1374–1378. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Wang, M.; Kang, Y.; Li, B.; Guo, M.; Cheng, Z.; Bi, C. Prognostic role of metformin intake in diabetic patients with colorectal cancer: An updated qualitative evidence of cohort studies. Oncotarget 2017, 8, 26448–26459. [Google Scholar] [CrossRef]
- Bardou, M.; Barkun, A.; Martel, M. Effect of statin therapy on colorectal cancer. Gut 2010, 59, 1572–1585. [Google Scholar] [CrossRef] [Green Version]
- Gazzerro, P.; Proto, M.C.; Gangemi, G.; Malfitano, A.M.; Ciaglia, E.; Pisanti, S.; Santoro, A.; Laezza, C.; Bifulco, M. Pharmacological Actions of Statins: A Critical Appraisal in the Management of Cancer. Pharmacol. Rev. 2011, 64, 102–146. [Google Scholar] [CrossRef]
- Song, S.; Cong, W.; Zhou, S.; Shi, Y.; Dai, W.; Zhang, H.; Wang, X.; He, B.; Zhang, Q. Small GTPases: Structure, biological function and its interaction with nanoparticles. Asian J. Pharm. Sci. 2019, 14, 30–39. [Google Scholar] [CrossRef]
- Thurnher, M.; Gruenbacher, G. T lymphocyte regulation by mevalonate metabolism. Sci. Signal. 2015, 8, re4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, J.K. Effects of Statins on 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibition Beyond Low-Density Lipoprotein Cholesterol. Am. J. Cardiol. 2005, 96, 24–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chimento, A.; Casaburi, I.; Avena, P.; Trotta, F.; De Luca, A.; Rago, V.; Pezzi, V.; Sirianni, R. Cholesterol and Its Metabolites in Tumor Growth: Therapeutic Potential of Statins in Cancer Treatment. Front. Endocrinol. 2019, 9, 807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.; Xie, Y.; Yu, Z.; Xiao, H.; Jiang, G.; Zhou, X.; Yang, Y.; Li, X.; Zhao, M.; Li, L.; et al. The Mevalonate Pathway Is a Druggable Target for Vaccine Adjuvant Discovery. Cell 2018, 175, 1059–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauthaman, K.; Richards, M.; Wong, J.; Bongso, A. Comparative evaluation of the effects of statins on human stem and cancer cells in vitro. Reprod. Biomed. Online 2007, 15, 566–581. [Google Scholar] [CrossRef]
- Poynter, J.N.; Gruber, S.B.; Higgins, P.D.; Almog, R.; Bonner, J.D.; Rennert, H.S.; Low, M.; Greenson, J.K.; Rennert, G. Statins and the Risk of Colorectal Cancer. N. Engl. J. Med. 2005, 352, 2184–2192. [Google Scholar] [CrossRef] [Green Version]
- Kaye, J.; Jick, H. Statin use and cancer risk in the General Practice Research Database. Br. J. Cancer 2004, 90, 635–637. [Google Scholar] [CrossRef] [Green Version]
- Friis, S.; Poulsen, A.H.; Johnsen, S.P.; McLaughlin, J.K.; Fryzek, J.P.; Dalton, S.O.; Sørensen, H.T.; Olsen, J.H. Cancer risk among statin users: A population-based cohort study. Int. J. Cancer 2004, 114, 643–647. [Google Scholar] [CrossRef]
- Blais, L.; Desgagne, A.; LeLorier, J. 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors and the Risk of Cancer. Arch. Intern. Med. 2000, 160, 2363–2368. [Google Scholar] [CrossRef] [Green Version]
- Bonovas, S.; Filioussi, K.; Flordellis, C.S.; Sitaras, N.M. Statins and the Risk of Colorectal Cancer: A Meta-Analysis of 18 Studies Involving More Than 1.5 Million Patients. J. Clin. Oncol. 2007, 25, 3462–3468. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tang, W.; Wang, J.; Xie, L.; Li, T.; He, Y.; Deng, Y.; Peng, Q.; Li, S.; Qin, X. Association between statin use and colorectal cancer risk: A meta-analysis of 42 studies. Cancer Causes Control. 2013, 25, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Lytras, T.; Nikolopoulos, G.K.; Bonovas, S. Statins and the risk of colorectal cancer: An updated systematic review and meta-analysis of 40 studies. World J. Gastroenterol. 2014, 20, 1858–1870. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Baba, Y.; Ng, K.; Giovannucci, E.; Fuchs, C.S.; Ogino, S.; Chan, A.T. Statin use and colorectal cancer risk according to molecular subtypes in two large prospective cohort studies. Cancer Prev. Res. 2011, 4, 1808–1815. [Google Scholar] [CrossRef] [Green Version]
- Sehdev, A.; Shih, Y.-C.T.; Huo, D.; Vekhter, B.; Lyttle, C.; Polite, B. The role of statins for primary prevention in non-elderly colorectal cancer patients. Anticancer Res. 2014, 34, 5043–5050. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Cagan, A.; Cai, T.; Gainer, V.S.; Shaw, S.Y.; Churchill, S.; Karlson, E.W.; Murphy, S.N.; Liao, K.P.; Kohane, I. Statin Use Is Associated With Reduced Risk of Colorectal Cancer in Patients With Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2016, 14, 973–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibáñez-Sanz, G.; Guinó, E.; Pontes, C.; Quijada-Manuitt, M.Á.; De La Peña-Negro, L.C.; Aragón, M.; Domínguez, M.; Rodríguez-Alonso, L.; Blasco, A.; García-Rodríguez, A.; et al. Statin use and the risk of colorectal cancer in a population-based electronic health records study. Sci. Rep. 2019, 9, 13560–13568. [Google Scholar] [CrossRef] [Green Version]
- Dobrzycka, M.; Spychalski, P.; Łachiński, A.J.; Kobiela, P.; Jędrusik, P.; Kobiela, J. Statins and Colorectal Cancer—A Systematic Review. Exp. Clin. Endocrinol. Diabetes 2018, 128, 255–262. [Google Scholar] [CrossRef]
- Li, Y.; He, X.; Ding, Y.; Chen, H.; Sun, L. Statin uses and mortality in colorectal cancer patients: An updated systematic review and meta-analysis. Cancer Med. 2019, 8, 3305–3313. [Google Scholar] [CrossRef] [Green Version]
- Hoffmeister, M.; Jansen, L.; Rudolph, A.; Toth, C.; Kloor, M.; Roth, W.; Bläker, H.; Chang-Claude, J.; Brenner, H. Statin Use and Survival After Colorectal Cancer: The Importance of Comprehensive Confounder Adjustment. J. Natl. Cancer Inst. 2015, 107, djv045. [Google Scholar] [CrossRef] [Green Version]
- Krens, L.L.; Simkens, L.H.J.; Baas, J.M.; Koomen, E.R.; Gelderblom, H.; Punt, C.J.A.; Guchelaar, H.-J. Statin Use Is Not Associated with Improved Progression Free Survival in Cetuximab Treated KRAS Mutant Metastatic Colorectal Cancer Patients: Results from the CAIRO2 Study. PLoS ONE 2014, 9, e112201. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Kim, T.W.; Hong, Y.S.; Han, S.-W.; Lee, K.-H.; Kang, H.J.; Hwang, I.G.; Lee, J.Y.; Kim, H.S.; Kim, S.T.; et al. A randomised, double-blind, placebo-controlled multi-centre phase III trial of XELIRI/FOLFIRI plus simvastatin for patients with metastatic colorectal cancer. Br. J. Cancer 2015, 113, 1421–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinney, J.; Dienstmann, R.; Wang, X.; De Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Bittoni, A.; Sotte, V.; Meletani, T.; Cantini, L.; Giampieri, R.; Berardi, R. Immunotherapy in colorectal cancer treatment: Actual landscape and future perspectives. J. Cancer Metastasis Treat. 2018, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- GLOBOCAN 2018 Database. Issued by World Health Organization (WHO). Available online: http://gco.iarc.fr/today (accessed on 20 August 2020).
- Grothey, A.; Sobrero, A.; Shields, A.F.; Yoshino, T.; Paul, J.; Taieb, J.; Souglakos, J.; Shi, Q.; Kerr, D.J.; Labianca, R.; et al. Duration of Adjuvant Chemotherapy for Stage III Colon Cancer. N. Engl. J. Med. 2018, 378, 1177–1188. [Google Scholar] [CrossRef]
- Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer. N. Engl. J. Med. 2019, 381, 1632–1643. [Google Scholar] [CrossRef] [Green Version]
Drugs | Number of Patients | Results Favouring Drug | Results Not Favouring Drug | Results Against Drug | Citation No. |
---|---|---|---|---|---|
All antihypertensive | 2891 | Better OS and DSS for ARB users | No difference in OS and DSS for other antihypertensive drugs | / | Cui [14] |
Better OS and DSS for beta-blocker users | |||||
Beta blockers vs. others | 1975 | Better OS and DSS for stage IV patients | No difference in OS between beta-blocker users vs. not | / | Jansen [15] |
256 stage IV | |||||
Beta blockers vs. others | 8100 | / | No difference in OS between beta-blocker users vs. not | Long-term use related to higher mortality | Jansen [16] |
Beta blockers vs. others | 235 stage IV | Better OS and PFS for patients treated with chemotherapy | No difference in OS and PFS for patients treated with bevacizumab | / | Giampieri [17] |
Beta blockers vs. others | 514 stage IV Bevacizumab treated | Better OS and PFS for beta-blocker users | / | / | Fiala [18] |
ARB/ACEi users vs. others | 1511 | / | No difference in OS vs. patients treated with other drugs | / | Cardwell [19] |
Drugs | Number of Patients | Results Favouring Drug | Results Not Favouring Drug | Results Against Drug | Citation No. |
---|---|---|---|---|---|
ASA | In vitro | Inhibition of cancer cell proliferation | \ | \ | Mitrugno [38] |
Juglone, Indometacina | In vitro | Reduction of the occurrence of CRC | \ | \ | Seetha [40] |
ASA | In vitro | Enhancement of the cisplatin-mediated inhibitions of cell proliferation, migration and invasion and the induction of apoptosis in CRC | \ | \ | Jiang [42] |
ASA vs. not users | 66 | Improvement of the clinical outcome of heavily pretreated patients with metastatic colorectal cancer receiving chemotherapy | \ | \ | Giampieri [43] |
ASA vs. not users | 241 | Anticancer activity against rectal cancer during preoperative CRT | \ | \ | Restivo [44] |
Drugs | Number of Patients | Results Favouring Drug | Results Not Favouring Drug | Results Against Drug | Citation No. |
---|---|---|---|---|---|
TCA vs. others | 16,519 CRC | / | Improved survival for TCA users in glioma | Decreased survival for TCA users in CRC | Walker [73] |
(+1364 gliomas) | |||||
SSRI vs. nonuser TCA vs. nonuser | 1923 resected CRC stage I-IIIA | / | No difference in CRC risk of relapse between SSRI or TCA users vs. nonuser | / | Pocobelli [79] |
Drugs | Number of Patients | Results Favouring Drug | Results Not Favouring Drug | Results Against Drug | Citation No. |
---|---|---|---|---|---|
Statins vs. nonusers | Meta-analysis of 14 studies (130,994 patients) | Both pre-diagnosis and post-diagnosis, statin users have reduced all-cause mortality and cancer-specific mortality | / | / | Li [109] |
Statins vs. nonusers | 2697 patients of whom 412 statin users (cohort study) | / | No association between statin use and overall, CRC-specific or recurrence-free survival | / | Hoffmeister [110] |
Statins vs. nonusers | 529 patients of whom 78 were statin users (post hoc analysis from a phase III randomized controlled trial) | / | No association between statin use and overall and progression-free survival in KRAS mutant metastatic CRC patients treated with capecitabine, oxaliplatin bevacizumab ± cetuximab | / | Krens [111] |
FOLFIRI/XELIRI plus simvastatin (40 mg) vs. FOLFIRI/XELIRI plus placebo | 269 patients (phase III randomized controlled trial) | / | No improvement in terms of progression-free and overall survival by the addition of simvastatin | / | Lim [112] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giampieri, R.; Cantini, L.; Giglio, E.; Bittoni, A.; Lanese, A.; Crocetti, S.; Pecci, F.; Copparoni, C.; Meletani, T.; Lenci, E.; et al. Impact of Polypharmacy for Chronic Ailments in Colon Cancer Patients: A Review Focused on Drug Repurposing. Cancers 2020, 12, 2724. https://doi.org/10.3390/cancers12102724
Giampieri R, Cantini L, Giglio E, Bittoni A, Lanese A, Crocetti S, Pecci F, Copparoni C, Meletani T, Lenci E, et al. Impact of Polypharmacy for Chronic Ailments in Colon Cancer Patients: A Review Focused on Drug Repurposing. Cancers. 2020; 12(10):2724. https://doi.org/10.3390/cancers12102724
Chicago/Turabian StyleGiampieri, Riccardo, Luca Cantini, Enrica Giglio, Alessandro Bittoni, Andrea Lanese, Sonia Crocetti, Federica Pecci, Cecilia Copparoni, Tania Meletani, Edoardo Lenci, and et al. 2020. "Impact of Polypharmacy for Chronic Ailments in Colon Cancer Patients: A Review Focused on Drug Repurposing" Cancers 12, no. 10: 2724. https://doi.org/10.3390/cancers12102724
APA StyleGiampieri, R., Cantini, L., Giglio, E., Bittoni, A., Lanese, A., Crocetti, S., Pecci, F., Copparoni, C., Meletani, T., Lenci, E., Lupi, A., Baleani, M. G., & Berardi, R. (2020). Impact of Polypharmacy for Chronic Ailments in Colon Cancer Patients: A Review Focused on Drug Repurposing. Cancers, 12(10), 2724. https://doi.org/10.3390/cancers12102724