Predictive Markers for Malignant Urothelial Transformation in Balkan Endemic Nephropathy: A Case–Control Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stefanovic, V.; Polenakovic, M.H. Balkan nephropathy. Kidney disease beyond the Balkans? Am. J. Nephrol 1991, 11, 1–11. [Google Scholar] [CrossRef]
- Toncheva, D.; Dimitrov, T.; Stojanova, S. Etiology of Balkan endemic nephropathy: A multifactorial disease. Eur. J. Epidemiol. 1998, 14, 389–394. [Google Scholar] [CrossRef]
- Stefanovic, V.; Cukuranovic, R.; Miljkovic, S.; Marinkovic, D.; Toncheva, D. Fifty years of Balkan endemic nephropathy: Challenges of study using epidemiological method. Ren. Fail. 2009, 31, 409–418. [Google Scholar] [CrossRef] [Green Version]
- de Broe, M.E. Chinese herbs nephropathy and Balkan endemic nephropathy: Toward a single entity, aristolochic acid nephropathy. Kidney Int. 2012, 81, 513–515. [Google Scholar] [CrossRef] [Green Version]
- Cukuranovic, R.; Petrovic, B.; Cukuranovic, Z.; Stefanovic, V. Balkan endemic nephropathy: A decreasing incidence of the disease. Pathol. Biol. (Paris) 2000, 48, 558–561. [Google Scholar]
- Dimitrov, S.P.; Simeonov, A.V.; Ganev, S.V.; Karmaus, J.J.W. Is the incidence of Balkan endemic nephropathy decreasing? Pathol. Biol. (Paris) 2002, 50, 38–41. [Google Scholar] [CrossRef]
- Janković, S.; Bukvić, D.; Marinković, J.; Janković, J.; Marić, I.; Djukanović, L. Trends in incidence and prevalence of Balkan endemic nephropathy in the three most affected villages in Serbia over a 36-year period. Ren. Fail. 2013, 35, 509–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanovic, V.; Toncheva, D.; Atanasova, S.; Polenakovic, M. Etiology of Balkan endemic nephropathy and associated urothelial cancer. Am. J. Nephrol. 2006, 26, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Stefanovic, V.; Radovanovic, Z. Balkan endemic nephropathy and associated urothelial cancer. Nat. Clin. Pract. Urol. 2008, 5, 105–112. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Petkova-Bocharova, T.; Chernozemsky, I.N.; Castegnaro, M. Balkan endemic nephropathy and associated urinary tract tumours: A review on aetiological causes and the potential role of mycotoxins. Food Addit. Contam. 2002, 19, 282–302. [Google Scholar] [CrossRef]
- Stiborová, M.; Arlt, V.M.; Schmeiser, H.H. Balkan endemic nephropathy: An update on its aetiology. Arch. Toxicol. 2016, 90, 2595–2615. [Google Scholar] [CrossRef] [Green Version]
- Staneva, R.; Rukova, B.; Hadjidekova, S.; Nesheva, D.; Antonova, O.; Dimitrov, P.; Simeonov, V.; Stamenov, G.; Cukuranovic, R.; Cukuranovic, J.; et al. Whole genome methylation array analysis reveals new aspects in Balkan endemic nephropathy etiology. BMC Nephrol. 2013, 16, 225. [Google Scholar] [CrossRef] [Green Version]
- Toncheva, D.; Mihailova-Hristova, M.; Vazharova, R.; Staneva, R.; Karachanak, S.; Dimitrov, P.; Simeonov, V.; Ivanov, S.; Balabanski, L.; Serbezov, D.; et al. NGS nominated CELA1, HSPG2, and KCNK5 as candidate genes for predisposition to Balkan endemic nephropathy. Biomed. Res. Int. 2014, 2014, 920723. [Google Scholar] [CrossRef] [Green Version]
- Grollman, A.P.; Shibutani, S.; Moriya, M.; Miller, F.; Wu, L.; Moll, U.; Suzuki, N.; Fernandes, A.; Rosenquist, T.; Medverec, Z.; et al. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc. Natl. Acad. Sci. USA 2007, 104, 12129–12134. [Google Scholar] [CrossRef] [Green Version]
- Jelakovic, B.; Karanovic, S.; Vukovic-Lela, I.; Miller, F.; Edwards, K.L.; Nikolic, J.; Tomic, K.; Slade, N.; Brdar, B.; Turesky, R.J.; et al. Aristolactam-DNA adducts are a biomarker of environmental exposure to aristolochic acid. Kidney Int. 2012, 81, 559–567. [Google Scholar] [CrossRef] [Green Version]
- Grollman, A.P. Aristolochic Acid Nephropathy: Harbringer of a Global Iatrogenic Disease. Environ. Mol. Mutagen. 2013, 54, 1–7. [Google Scholar] [CrossRef]
- Polenakovic, M.; Stefanović, V. What do we know about the Balkan endemic nephropathy and the uroepithelial tumors? Pril (Makedon Akad Nauk Umet Odd Med. Nauk.) 2014, 35, 11–15. [Google Scholar]
- Stefanovic, V.; Jelakovic, B.; Cukuranovic, R.; Bukvic, D.; Nikolic, J.; Lukic, L.; Gluhovschi, G.; Toncheva, D.; Polenakovic, M.; Cosyns, J.-P. Diagnostic Criteria for Balkan Endemic Nephropathy: Proposal by an International Panel. Ren. Fail. 2007, 29, 867–880. [Google Scholar] [CrossRef]
- Stefanovic, V.; Djukanovic, L.; Cukuranovic, R.; Bukvic, D.; Lezaic, V.; Maric, I.; Simic Ogrizovic, S.; Jovanovic, I.; Vlahovic, P.; Pesic, I.; et al. Beta2-Microglobulin and Alpha1-Microglobulin as Markers of Balkan Endemic Nephropathy, a Worldwide Disease. Ren. Fail. 2011, 33, 176–183. [Google Scholar] [CrossRef]
- Jelakovic, B.; Dika, Z.; Arlt, V.M.; Stiborova, M.; Pavlovic, N.M.; Nikolic, J.; Colet, J.-M.; Vanherweghem, J.-L.; Nortier, J.L. Balkan Endemic Nephropathy and the Causative Role of Aristolochic Acid. Semin. Nephrol. 2019, 39, 284–296. [Google Scholar] [CrossRef]
- Jankovic-Velickovic, L.; Hattori, T.; Stefanovic, V. Molecular markers in upper urothelial carcinoma associated to Balkan endemic nephropathy. Aristolochic acid as the major risk factor of the worldwide disease. Sci. World J. 2009, 9, 1360–1373. [Google Scholar] [CrossRef] [Green Version]
- Jankovic-Velickovic, L.; Stojnev, S.; Ristic-Petrovic, A.; Dolicanin, Z.; Hattori, T.; Mukaisho, K.; Stojanovic, M.; Stefanovic, V. Pro- and antiapoptotic markers in upper tract urothelial carcinoma associated with Balkan endemic nephropathy. Sci. World J. 2011, 11, 1699–1711. [Google Scholar] [CrossRef] [Green Version]
- Rak, J.; Yu, J.L.; Klement, G.; Kerbel, R.S. Oncogenes and angiogenesis: Signaling three-dimensional tumor growth. J. Investig. Derm. Symp. Proc. 2000, 5, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, R.N.; Riba, R.D.; Zacharoulis, S.; Bramley, A.H.; Vincent, L.; Costa, C.; MacDonald, M.M.; Jin, D.K.; Shido, K.; Kerns, S.A.; et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005, 438, 820–827. [Google Scholar] [CrossRef]
- Jankovic-Velickovic, L.; Ristic Petrovic, A.; Stojnev, S.; Dolicanin, Z.; Hattori, T.; Sugihara, H.; Mukaisho, K.; Stojanovic, M.; Stefanovic, V. Angiogenesis in upper tract urothelial carcinoma associated with Balkan endemic nephropathy. Int. J. Clin. Exp. Pathol. 2012, 5, 674–683. [Google Scholar]
- Djukanovic, L.; Marinkovic, J.; Maric, I.; Lezaic, V.; Dajak, M.; Petronic, D.; Matic, M.; Bukvic, D. Contribution to the definition of diagnostic criteria for Balkan endemic nephropathy. Nephrol. Dial. Transpl. 2008, 23, 3932–3938. [Google Scholar] [CrossRef] [Green Version]
- Djukanović, L.; Ležaić, V.; Bukvić, D.; Mirković, D.; Marić, I. Increased Glomerular Filtration Rate in Early Stage of Balkan Endemic Nephropathy. Medicine 2019, 55, 155. [Google Scholar] [CrossRef] [Green Version]
- Makboul, R.; Refaiy, A.E.; Badary, F.A.; Abdelkawi, I.F.; Merseburger, A.S.; Mohammed, R.A. Expression of survivin in squamous cell carcinoma and transitional cell carcinoma of the urinary bladder: A comparative immunohistochemical study. Korean J. Urol. 2015, 56, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Babjuk, M.; Burger, M.; Zigeuner, R.; Shariat, S.F.; Van Rhijn, B.W.; Compérat, E.; Sylvester, R.J.; Kaasinen, E.; Böhle, A.; Redorta, J.P.; et al. EAU guidelines on non–muscle-invasive urothelial carcinoma of the bladder: Update 2013. Eur. Urol. 2013, 64, 639–653. [Google Scholar] [CrossRef]
- Wheatley, S.P.; McNeish, I.A. Survivin: A protein with dual roles in mitosis and apoptosis. Int Rev. Cytol 2005, 247, 35–88. [Google Scholar] [CrossRef]
- Tamm, I.; Wang, Y.; Sausville, E.; Scudiero, D.A.; Vigna, N.; Oltersdorf, T.; Reed, J.C. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 1998, 58, 5315–5320. [Google Scholar]
- Vallet, C.; Aschmann, D.; Beuck, C.; Killa, M.; Meiners, A.; Mertel, M.; Ehlers, M.; Bayer, P.; Schmuck, C.; Giese, M.; et al. Functional disruption of the cancer-relevant interaction between Survivin and Histone H3 with a guanidiniocarbonyl pyrrole ligand. ANGEW Chem. Int Ed. Engl. 2020, 59, 5567–5571. [Google Scholar] [CrossRef]
- Kocic, G.; Cukuranovic, J.; Stoimenov, T.J.; Cukuranovic, R.; Djordjevic, V.; Bogdanovic, D.; Stefanovic, V. Global and specific histone acetylation pattern in patients with Balkan endemic nephropathy, a worldwide disease. Ren. Fail. 2014, 36, 1078–1082. [Google Scholar] [CrossRef] [Green Version]
- Arber, C.; Feng, X.; Abhyankar, H.; Romero, E.; Wu, M.F.; Heslop, H.E.; Barth, P.; Dotti, G.; Savold, B. Survivin-specific T cell receptor targets tumor but not T cells. J. Clin. Investig. 2015, 125, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yang, X.-Q.; Zhang, M.-Z.; Song, Y.-Y.; Cheng, K.; An, J.; Zhang, X.-S.; Xuan, Y.; Liu, B.; Zhao, Y.-D. In vivo Imaging-Guided Nanoplatform for Tumor Targeting Delivery and Combined Chemo-, Gene- and Photothermal Therapy. Theranostics 2018, 8, 5662–5675. [Google Scholar] [CrossRef]
- Carpi, S.; Fogli, S.; Giannetti, A.; Adinolfi, B.; Tombelli, S.; Da Pozzo, E.; Vanni, A.; Martinotti, E.; Martini, C.; Breschi, M.C.; et al. Theranostic Properties of a Survivin-Directed Molecular Beacon in Human Melanoma Cells. PLoS ONE 2014, 9, e114588. [Google Scholar] [CrossRef] [Green Version]
- Jobst-Schwan, T.; Knaup, K.X.; Nielsen, R.; Hackenbeck, T.; Buettner-Herold, M.; Lechler, P.; Kroening, S.; Goppelt-Struebe, M.; Schloetzer-Schrehardt, U.; Furnrohr, B.G.; et al. Renal uptake of the antiapoptotic protein surviving is mediated by megalin at the apical membrane of the proximal tubule. Am. J. Physiol. Ren. Physiol. 2013, 305, F734–F744. [Google Scholar] [CrossRef] [Green Version]
- Joerger, A.C.; Fersht, A.R. Structural Biology of the Tumor Suppressor p53. Annu. Rev. Biochem. 2008, 77, 557–582. [Google Scholar] [CrossRef]
- Kim, S.; An, S.S.A. Role of p53 isoforms and aggregations in cancer. Medicine (Baltimore) 2016, 95, e3993. [Google Scholar] [CrossRef]
- Luo, Y.; Fu, X.; Han, B.; Zhang, F.; Yuan, L.; Men, H.; Zhang, S.; Tian, S.; Dong, B.; Meng, M. The Apoptosis Mechanism of Epirubicin Combined with BCG on Human Bladder Cancer Cells. Anticancer Agents Med. Chem. 2020, 20, 1571–1581. [Google Scholar] [CrossRef]
- Kong, L.R.; Ong, R.W.; Tan, T.Z.; Mohamed Salleh, N.A.B.; Thangavelu, M.; Chan, J.V.; Koh, L.Y.J.; Periyasamy, G.; Lau, J.A.; Le, T.B.U.; et al. Targeting codon 158 p53-mutant cancers via the induction of p53 acetylation. Nat. Commun. 2020, 11, 2086. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Kim, J.; Westphal, S.N.; Long, K.E.; Padanilam, B.J. Targeted Deletion of p53 in the Proximal Tubule Prevents Ischemic Renal Injury. J. Am. Soc. Nephrol. 2014, 25, 2707–2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Q.; Dong, G.; Yang, T.; Megyesi, J.; Price, P.M.; Dong, Z. Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am. J. Physiol. Ren. Physiol. 2007, 293, F1282–F1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Fu, P.; Huang, X.R.; Liu, F.; Lai, K.N.; Lan, H.Y. Activation of p53 promotes renal injury in acute aristolochic acid nephropathy. J. Am. Soc. Nephrol. 2010, 21, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Wallach, D.; Varfolomeev, E.E.; Malinin, N.L.; Goltsev, Y.V.; Kovalenko, A.V.; Boldin, M.P. Tumor necrosis factor receptors and Fas signaling mechanism. Annu. Rev. Immunol. 1991, 17, 331–364. [Google Scholar] [CrossRef] [PubMed]
- Sano, H.; Asano, K.; Minatoguchi, S.; Hiraoka, J.; Fujisawa, K.; Nishigaki, K.; Yasuda, N.; Kumada, H.; Takemura, M.; Ohashi, H.; et al. Plasma Soluble Fas and Soluble Fas Ligand in Chronic Glomerulo nephritis. Nephron 1998, 80, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Kondera-Anasz, Z.; Mielczarek-Palacz, A.; Sikora, J. Soluble Fas receptor and soluble Fas ligand in the serum of women with uterine tumors. Apoptosis 2005, 10, 1143–1149. [Google Scholar] [CrossRef]
- Fuchs, D.; Avanzas, P.; Arroyo-Espliguero, R.; Jenny, M.; Consuegra-Sanchez, L.; Kaski, J.C. The role of neopterin in atherogenesis and cardiovascular risk assessment. Curr. Med. Chem. 2009, 16, 4644–4653. [Google Scholar] [CrossRef]
- Murr, C.; Widner, B.; Wirleitner, B.; Fuchs, D. Neopterin as a Marker for Immune System Activation. Curr. Drug Metab. 2002, 3, 175–187. [Google Scholar] [CrossRef]
- Weiss, G.; Willeit, J.; Kiechl, S.; Fuchs, D.; Jarosch, E.; Oberhollenzer, F.; Reibnegger, G.; Tilz, G.P.; Gerstenbrand, F.; Wachter, H. Increased concentration of neopterin in carotid atherosclerosis. Atherosclerosis 1994, 106, 263–271. [Google Scholar] [CrossRef]
- Avci, S.; Coskun, E.C.; Akir, Y.; Kurt, E.O.; Bilgi, C. Relations between concentrations of asymmetric dimethylarginine and neopterin as potential risk factors for cardiovascular diseases in haemodialysis-treated patients. Ren. Fail. 2008, 30, 784–790. [Google Scholar] [CrossRef]
- Roccatello, D.; Formica, M.; Cavalli, G.; Quattrocchio, G.; Aimo, G.; Polloni, R.; Amprimo, M.C.; Moho, A.; Martha, G.; Isidoro, C.; et al. Serum and Intracellular Detection of Cytokines in Patients Undergoing Chronic Hemodialysis. Artif. Organs 1992, 16, 131–140. [Google Scholar] [CrossRef]
- Kotanko, P.; Margreiter, R.; Pfaller, W. Urinary N-acetyl-β-d-glucosaminidase and neopterin aid in the diagnosis of rejection and acute tubular necrosis in initially nonfunctioning kidney grafts. Nephron 2000, 84, 228–235. [Google Scholar] [CrossRef]
- Lhee, H.Y.; Kim, H.; Joo, K.J.; Jung, S.S.; Lee, K.B. The clinical significance of serum and urinary neopterin levels in several renal diseases. J. Korean Med. Sci. 2006, 21, 678–682. [Google Scholar] [CrossRef]
- Formanowicz, D. Neopterin in patients with chronic kidney disease and patients with coronary artery disease. BioTechnologia 2012, 93, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Neufeld, G.; Cohen, T.; Gengrinovitch, S.; Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptor. FASEB J. 1999, 13, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Pugh, C.W.; Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat. Med. 2003, 9, 677–684. [Google Scholar] [CrossRef]
- Stefanovic, V.; Cukuranovic, R.; Dolicanin, Z.; Cukuranovic, J.; Stojnev, S.; Bogdanovic, D.; Rajic, M.; Kocic, G. Placental growth factor and placental protein 13 in patients with Balkan endemic nephropathy, a worldwide disease. Ren. Fail. 2015, 37, 1145–1148. [Google Scholar] [CrossRef] [Green Version]
- Cross, M.J.; Dixelius, J.; Matsumoto, T.; Claesson-Welsh, L. VEGF-receptor signal transduction. Trends Biochem. Sci. 2003, 28, 488–494. [Google Scholar] [CrossRef]
- Rahmani, A.; Alzohairy, M.; Khadri, H.; Mandal, A.K.; Rizvi, M.A. Expressional evaluation of vascular endothelial growth factor (VEGF) protein in urinary bladder carcinoma patients exposed to cigarette smoke. Int. J. Clin. Exp. Pathol. 2012, 5, 195–202. [Google Scholar]
- Chan, J.M.; Stampfer, M.J.; Giovannucci, E.; Gann, P.H.; Ma, J.; Wilkinson, P.; Hennekens, C.H.; Pollak, M. Plasma insulin-like growth factor-I and prostate cancer risk: A prospective study. Science 1998, 279, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Pollak, M.N.; Schernhammer, E.S.; Hankinson, S.E. Insulin-like growth factors and neoplasia. Nat. Rev. Cancer 2004, 4, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Beattie, J.; Allan, G.J.; Lochrie, J.D.; Flint, D.J. Insulin-like growth factor-binding protein-5 (IGFBP-5): A critical member of the IGF axis. Biochem. J. 2006, 395, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laterre, P.-F.; Wittebole, X.; Collienne, C. Pharmacological Inhibition of Tissue Factor. Semin. Thromb. Hemost. 2006, 32, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.L.; May, L.; Lhotak, V.; Shahrzad, S.; Shirasawa, S.; Weitz, J.I.; Coomber, B.L.; Mackman, N.; Rak, J.W. Oncogenic events regulate tissue factor expression in colorectal cancer cells: Implications for tumor progression and angiogenesis. Blood 2005, 105, 1734–1741. [Google Scholar] [CrossRef]
- Eisenreich, A.; Bolbrinker, J.; Leppert, U. Tissue Factor: A Conventional or Alternative Target in Cancer Therapy. Clin. Chem. 2016, 62, 563–570. [Google Scholar] [CrossRef] [Green Version]
- Greenfield, R.S.; Herd, T.M.; Date, K.; Cooper, P.; O’Kane, A.; Gardiner, E.; Maraveyas, A. Signal Transduction Peptide of Tissue Factor Phosphorylated at Ser258 and the Unphosphorylated STP in Urine Are Potential Biomarkers for Bladder Cancer. Clin. Genitourin. Cancer 2019, 17, e247–e257. [Google Scholar] [CrossRef]
- Versteeg, H.H.; Schaffner, F.; Kerver, M.; Petersen, H.H.; Ahamed, J.; Felding-Habermann, B.; Takada, Y.; Mueller, B.M.; Ruf, W. Inhibition of tissue factor signaling suppresses tumor growth. Blood 2008, 111, 190–199. [Google Scholar] [CrossRef] [Green Version]
Parameters | BEN | Control | p |
---|---|---|---|
Male | 31 (59.6%) | 23 (57.5%) | 0.866 |
Female | 21 (40.4%) | 17 (42.5%) | |
Age (year) | 73 (53.60–86.70) | 73 (65.05–83.95) | 0.377 |
Plasma Cr umol/L | 123.20 (70.22–609.40) | 85.20 (68.63–130.15) | 0.000 |
Hb g/L | 11.1 (8.7–141.6) | 13.4 (12.71–157.9) | 0.045 |
Glucose mmol/L | 4.86 (3.80–6.60) | 5.10 (4.31–6.69) | 0.022 |
Creatinine clearance (CCr) mL/min | 38.61 (7.93–89.41) | 64.90 (23.09–106.70) | 0.000 |
U Cr mmol/L | 8.03 (1.77–23.79) | 10.28 (5.20–23.57) | 0.020 |
Urinary protein to creatinine index UPCI mg/mmol | 21.91 (5.43–418.47) | 11.72 (5.22–26.24) | 0.000 |
Urinary albumin to creatinine index UACI mg/mmol | 1.73 (0.18–61.72) | 0.97 (0.20–12.17) | 0.043 |
Urinary protein mg/L | 225.0 (36.5–1517.5) | 110.0 (50.0–499.0) | 0.005 |
Urinary albumin mg/L | 17.28 (1.44–415.24) | 8.37 (2.14–232.24) | 0.037 |
Beta2 microglobulin ug/L | 99.81 (5.85–4794.00) | - | - |
Parameters | BEN | Control | p |
---|---|---|---|
Plasma survivin pg/mL | 190.00 (29.67–1046.00) | 66.67 (1.00–254.00) | 0.002 |
U survivin | 100.00 (53.33–354.67) | 36.67 (0.00–894.67) | 0.049 |
U survivin/U Cr | 15.58 (2.54–29.87) | 3.30 (0.00–41.07) | 0.018 |
U survivin/P survivin | 0.52 (0.34–0.76) | 0.55 (0.29–0.66) | 0.423 |
Plasma p53 ng/mL | 0.17 (0.07–0.71) | 0.24 (0.06–2.17) | 0.241 |
U p53 | 0.13 (0.04–1.90) | 0.11 (0.05–0.31) | 0.804 |
U p53/U Cr | 0.016 (0.050–0.900) | 0.010 (0.008–0.050) | 0.047 |
U p53/P p53 | 0.764 (0.091–0.953) | 0.428 (0.221–0.501) | 0.017 |
Plasma sFas pg/mL | 3971.00 (1113.07–14,842.61) | 4900.85 (684.92–14,231.42) | 0.545 |
U sFas | 351.31 (174.54–1465.95) | 363.97 (72.88–1487.88) | 0.465 |
U sFas/U Cr | 36.07 (8.10–224.91) | 32.14 (4.84–158.96) | 0.380 |
U sFas/P sFas | 0.088 (0.050–0.102) | 0.074 (0.001–0.124) | 0.405 |
Plasma neopterin nmol/mL | 199.21 (7.59–312.46) | 100.11 (10.75–246.57) | 0.006 |
U neopterin nmol/mL | 51.89 (15.7–249.37) | 100.77 (7.75–294.03) | 0.001 |
U neopterin/U Cr | 11.47 (1.35–291.24) | 118.53 (4.01–188.38) | 0.021 |
U neopterin/P neopterin | 0.260 (0.050–1.268) | 1.000 (0.217–3.395) | 0.001 |
Plasma VEGF pg/mL | 344.57 (62.07–839.28) | 365.29 (69.64–755.28) | 0.395 |
U VEGF | 31.00 (2,72–264.28) | 43.86 (5.29–151.71) | 0.219 |
U VEGF/U Cr | 2.61 (0.17–50.08) | 4.65 (0.52–11.71) | 0.306 |
U VEGF/P VEGF | 0.089 (0.043–0.123) | 0.120 (0.044–0.134) | 0.049 |
Plasma VEGFR1 pg/mL | 144.67 (34.94–472.33) | 110.78 (85.11–147.23) | 0.125 |
U VEGFR1 | 51.89 (30.00–93.67) | 43.00 (1.75–155.89) | 0.114 |
U VEGFR1/U Cr | 4.98 (1.28–13.81) | 3.68 (0.19–21.73) | 0.093 |
U VEGFR1/P VEGFR1 | 0.35 (0.14–0.67) | 0.39 (0.21–0.57) | 0.129 |
Plasma IGF-I pg/mL | 188.40 (57.49–794.25) | 326.80 (53.00–716.06) | 0.645 |
U IGF-I | 81.70 (31.10–159.15) | 135.05 (61.00–200.66) | 0.001 |
U IGF-I /U Cr | 7.60 (2.15–20.60) | 12.40 (5.20–33.31) | 0.011 |
U IGF-I/P IGF-I | 0.43 (0.09–0.81) | 0.41 (0.05–0.90) | 0.854 |
Plasma IGFBP5 | 558.50 (426.00–738.85) | 625.00 (619.00–677.80) | 0.044 |
U IGFBP5 pg/mL | 582.00 (184.50–1154.00) | 746.50 (251.00–1253.10) | 0.027 |
U IGFBP5/U Cr | 61.50 (17.10–127.95) | 64.70 (21.50–126.03) | 0.233 |
U IGFBP5/P IGFBP5 | 1.040 (0.043–0.158) | 1.190 (0.035–0.159) | 0.784 |
Plasma IGF-1R pg/mL | 311.50 (1.00–854.50) | 512.50 (1.00–735.70) | 0.393 |
U IGF-1R | 643.00 (302.50–1273.50) | 551.50 (148.00–741.00) | 0.009 |
U IGF-1R/C Cr | 80.07 (24.10–117.02) | 54.3 (31.50–100.03) | 0.010 |
U IGF-1R/P IGF-1R | 2.06 (0.17–12.08) | 1.07 (0.11–6.08) | 0.013 |
Plasma (TF)/CD142 pg/mL | 103.59 (4.00–1260.11) | 100.19 (5.55–336.06) | 0.822 |
U (TF)/CD142 | 54.91 (12.00–379.14) | 37.17 (3.77–138.30) | 0.380 |
U (TF)/CD142 /U Cr | 4.53 (0.17–24.42) | 3.02 (0.54–16.84) | 0.242 |
U (TF)/CD142 /P (TF)/CD142 | 0.53 (0.27–0.78) | 0.37 (0.24–0.62) | 0.058 |
Variables | Multivariant Regression Analysis | |||
---|---|---|---|---|
B | 95% CI | p | ||
Lower Bound | Upper Bound | |||
Plasma survivin and BEN patients | 325.81 | 44.64 | 606.99 | 0.024 |
U survivin and CCr mL/min | 6.39 | 0.88 | 11.91 | 0.029 |
U survivin and U Cr mmol/L | −12.21 | −22.84 | −1.58 | 0.030 |
U survivin and U albumin mg/L | -3.17 | -6.29 | −0.05 | 0.048 |
Plasma p53 and age | −0.002 | −0.003 | −0.001 | 0.006 |
Plasma p53 and P Cr umol/L | −0.013 | −0.022 | −0.005 | 0.006 |
Plasma p53 and CCr mL/min | −0.013 | −0.022 | −0.005 | 0.006 |
U p53 and UPCI mg/mmol | −0.065 | −0.102 | −0.028 | 0.005 |
U p53 and U Protein mg/L | 0.007 | 0.002 | 0.012 | 0.013 |
U p53/P p53 and U albumin mg/L | 0.001 | 0.0005 | 0.002 | 0.007 |
U p53/P p53 and UPCI mg/mmol | −0.010 | −0.015 | −0.005 | 0.003 |
U p53/P p53 and UACI mg/mmol | −0.010 | −0.015 | −0.005 | 0.003 |
U P53/P p53 and U protein mg/L | 0.0010 | 0.0003 | 0.0020 | 0.007 |
P VEGF and female | −192.26 | −358.92 | −25.59 | 0.025 |
P VEGF and age | −17.72 | −34.71 | −0.72 | 0.041 |
U VEGF and Hb g/L | 0.77 | 0.07 | 1.48 | 0.034 |
U VEGF and U protein mg/L | 1.03 | 0.14 | 1.92 | 0.025 |
U VEGF and female | −95.91 | −167.52 | −24.29 | 0.016 |
U VEGF and Hb g/L | 0.96 | 0.31 | 1.61 | 0.010 |
P VEGFR and Cr umol/L | 0.70 | 0.24 | 1.16 | 0.004 |
P VEGFR and U Cr umol/L | 0.81 | 0.06 | 1.56 | 0.036 |
Plasma CD 142 and BEN | 30.90 | 0.72 | 61.09 | 0.045 |
Plasma CD 142 and Hb g/L | −0.78 | −1.52 | −0.04 | 0.040 |
U (TF)/CD 142 Hb g/L | 0.96 | 0.31 | 1.61 | 0.010 |
U sFas /U Cr and P Cr umol/L | 0.12 | 0.02 | 0.22 | 0.019 |
U sFas /U Cr and U Cr mmol/L | −1.80 | −3.17 | −0.44 | 0.010 |
U sFas and U Cr mmol/L | −2.41 | −4.80 | −0.02 | 0.048 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocic, G.; Hadzi-Djokic, J.; Cukuranovic-Kokoris, J.; Gajic, M.; Veljkovic, A.; Cukuranović, R.; Basic, D.; Jovanovic, I.; Smelcerovic, A. Predictive Markers for Malignant Urothelial Transformation in Balkan Endemic Nephropathy: A Case–Control Study. Cancers 2020, 12, 2945. https://doi.org/10.3390/cancers12102945
Kocic G, Hadzi-Djokic J, Cukuranovic-Kokoris J, Gajic M, Veljkovic A, Cukuranović R, Basic D, Jovanovic I, Smelcerovic A. Predictive Markers for Malignant Urothelial Transformation in Balkan Endemic Nephropathy: A Case–Control Study. Cancers. 2020; 12(10):2945. https://doi.org/10.3390/cancers12102945
Chicago/Turabian StyleKocic, Gordana, Jovan Hadzi-Djokic, Jovana Cukuranovic-Kokoris, Mihajlo Gajic, Andrej Veljkovic, Rade Cukuranović, Dragoslav Basic, Ivan Jovanovic, and Andrija Smelcerovic. 2020. "Predictive Markers for Malignant Urothelial Transformation in Balkan Endemic Nephropathy: A Case–Control Study" Cancers 12, no. 10: 2945. https://doi.org/10.3390/cancers12102945
APA StyleKocic, G., Hadzi-Djokic, J., Cukuranovic-Kokoris, J., Gajic, M., Veljkovic, A., Cukuranović, R., Basic, D., Jovanovic, I., & Smelcerovic, A. (2020). Predictive Markers for Malignant Urothelial Transformation in Balkan Endemic Nephropathy: A Case–Control Study. Cancers, 12(10), 2945. https://doi.org/10.3390/cancers12102945