Genome-Wide Gene Expression Analyses of BRCA1- and BRCA2-Associated Breast and Ovarian Tumours
Abstract
:Simple Summary
Abstract
1. Introduction
2. BRCA1- and BRCA2-Associated Breast Tumours
3. BRCA1- and BRCA2-Associated Ovarian Tumours
4. Non-Tumour Tissue from BRCA1 and BRCA2 Pathogenic Variant Carriers
4.1. Fibroblasts
4.2. Lymphoblastoid Cell Lines (LCLs)
4.3. Peripheral Blood
5. Reproducibility between Expression Studies
5.1. Sample Selection
5.2. Differences in DNA Damaging Treatments of Normal Tissue
5.3. Advancement in Technologies and Statistical Approaches
5.4. Methods of Transcriptome Analysis
6. Conclusions
Funding
Conflicts of Interest
References
- Maxwell, K.N.; Domchek, S.M.; Nathanson, K.L.; Robson, M. Population Frequency of Germline BRCA1/2 Mutations. J. Clin. Oncol. 2016, 34, 4183–4185. [Google Scholar] [CrossRef]
- Couch, F.J.; Nathanson, K.L.; Offit, K. Two Decades After BRCA: Setting Paradigms in Personalized Cancer Care and Prevention. Science 2014, 343, 1466–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, T.; Permuth-Wey, J.; Betts, J.A.; Krischer, J.P.; Fiorica, J.; Arango, H.; Lapolla, J.; Hoffman, M.; Martino, M.A.; Wakeley, K.; et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer 2005, 104, 2807–2816. [Google Scholar] [CrossRef] [PubMed]
- Mavaddat, N.; Peock, S.; Frost, D.; Ellis, S.; Platte, R.; Fineberg, E.; Evans, D.G.; Izatt, L.; Eeles, R.A.; Adlard, J.; et al. Cancer Risks for BRCA1 and BRCA2 Mutation Carriers: Results from Prospective Analysis of EMBRACE. J. Natl. Cancer Inst. 2013, 105, 812–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spurdle, A.B.; Greville-Heygate, S.; Antoniou, A.C.; Brown, M.; Burke, L.; De La Hoya, M.; Domchek, S.; Dörk, T.; Firth, H.V.; Monteiro, A.N.; et al. Towards controlled terminology for reporting germline cancer susceptibility variants: An ENIGMA report. J. Med. Genet. 2019, 56, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Hedenfalk, I.; Duggan, D.; Chen, Y.; Radmacher, M.; Bittner, M.L.; Simon, R.; Meltzer, P.; Gusterson, B.; Esteller, M.; Raffeld, M.; et al. Gene-Expression Profiles in Hereditary Breast Cancer. N. Engl. J. Med. 2001, 344, 539–548. [Google Scholar] [CrossRef]
- Jazaeri, A.A.; Yee, C.J.; Sotiriou, C.; Brantley, K.R.; Boyd, J.; Liu, E.T. Gene Expression Profiles of BRCA1-Linked, BRCA2-Linked, and Sporadic Ovarian Cancers. J. Natl. Cancer Inst. 2002, 94, 990–1000. [Google Scholar] [CrossRef]
- van ’t Veer, L.J.; Dai, H.; Van De Vijver, M.J.; He, Y.D.; Hart, A.A.M.; Mao, M.; Peterse, H.L.; Van Der Kooy, K.; Marton, M.J.; Witteveen, A.T.; et al. Gene expression profiling predicts clinical outcome of breast cancer. Nat. Cell Biol. 2002, 415, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Kote-Jarai, Z.; Williams, R.D.; Cattini, N.; Copeland, M.; Giddings, I.; Wooster, R.; Tepoele, R.H.; Workman, P.; Gusterson, B.; Peacock, J.; et al. Gene Expression Profiling after Radiation-Induced DNA Damage Is Strongly Predictive of BRCA1 Mutation Carrier Status. Clin. Cancer Res. 2004, 10, 958–963. [Google Scholar] [CrossRef] [Green Version]
- Kote-Jarai, Z.; Matthews, L.; Osorio, A.; Shanley, S.; Giddings, I.; Moreews, F.; Locke, I.; Evans, D.G.; Eccles, D.M.; Williams, R.D.; et al. Accurate Prediction of BRCA1 and BRCA2 Heterozygous Genotype Using Expression Profiling after Induced DNA Damage. Clin. Cancer Res. 2006, 12, 3896–3901. [Google Scholar] [CrossRef] [Green Version]
- Dudaladava, V.; Jarząb, M.; Stobiecka, E.; Chmielik, E.; Simek, K.; Huzarski, T.; Lubiński, J.; Pamuła, J.; Pękala, W.; Grzybowska, E.; et al. Gene Expression Profiling in Hereditary, BRCA1-linked Breast Cancer: Preliminary Report. Hered. Cancer Clin. Pract. 2006, 4, 28–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, R.W.; Orelli, B.J.; Yamazoe, M.; Minn, A.J.; Takeda, S.; Bishop, D.K. RAD51 Up-regulation Bypasses BRCA1 Function and Is a Common Feature of BRCA1-Deficient Breast Tumors. Cancer Res. 2007, 67, 9658–9665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waddell, N.; Haaf, A.T.; Marsh, A.; Johnson, J.; Walker, L.C.; kConFab Investigators; Gongora, M.; Brown, M.; Grover, P.; Girolami, M.; et al. BRCA1 and BRCA2 Missense Variants of High and Low Clinical Significance Influence Lymphoblastoid Cell Line Post-Irradiation Gene Expression. PLoS Genet. 2008, 4, e1000080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuillaume, M.-L.; Uhrhammer, N.; Vidal, V.; Vidal, V.S.; Chabaud, V.; Jesson, B.; Kwiatkowski, F.; Bignon, Y.-J. Use of Gene Expression Profiles of Peripheral Blood Lymphocytes to Distinguish BRCA1 Mutation Carriers in High Risk Breast Cancer Families. Cancer Inform. 2009, 7, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.C.; Thompson, B.A.; Waddell, N.; kConFab Investigators; Grimmond, S.M.; Spurdle, A.B. Use of DNA–Damaging Agents and RNA Pooling to Assess Expression Profiles Associated with BRCA1 and BRCA2 Mutation Status in Familial Breast Cancer Patients. PLoS Genet. 2010, 6, e1000850. [Google Scholar] [CrossRef]
- Press, J.Z.; Wurz, K.; Norquist, B.M.; Lee, M.K.; Pennil, C.; Garcia, R.; Welcsh, P.; Goff, B.A.; Swisher, E.M. Identification of a Preneoplastic Gene Expression Profile in Tubal Epithelium of BRCA1 Mutation Carriers. Neoplasia 2010, 12, 993-IN8. [Google Scholar] [CrossRef] [Green Version]
- Konstantinopoulos, P.A.; Spentzos, D.; Karlan, B.Y.; Taniguchi, T.; Fountzilas, E.; Francoeur, N.; Levine, D.A.; Cannistra, S.A. Gene Expression Profile of BRCAness That Correlates With Responsiveness to Chemotherapy and With Outcome in Patients With Epithelial Ovarian Cancer. J. Clin. Oncol. 2010, 28, 3555–3561. [Google Scholar] [CrossRef] [Green Version]
- Waddell, N.; kConFab Investigators; Arnold, J.; Cocciardi, S.; Da Silva, L.; Marsh, A.; Riley, J.; Johnstone, C.N.; Orloff, M.; Assié, G.; et al. Subtypes of familial breast tumours revealed by expression and copy number profiling. Breast Cancer Res. Treat. 2009, 123, 661–677. [Google Scholar] [CrossRef]
- Lisowska, K.M. BRCA1-related gene signature in breast cancer: The role of ER status and molecular type. Front. Biosci. 2011, 3, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, G.; Staaf, J.; Vallon-Christerson, J.; Ringnér, M.; Gruvberger-Saal, S.K.; Saal, L.H.; Holm, K.; Hegardt, C.; Arason, A.; Fagerholm, R.; et al. The Retinoblastoma Gene Undergoes Rearrangements inBRCA1-Deficient Basal-like Breast Cancer. Cancer Res. 2012, 72, 4028–4036. [Google Scholar] [CrossRef] [Green Version]
- Salmon, A.Y.; Salmon-Divon, M.; Zahavi, T.; Barash, Y.; Levy-Drummer, R.S.; Jacob-Hirsch, J.; Peretz, T. Determination of Molecular Markers for BRCA1 and BRCA2 Heterozygosity Using Gene Expression Profiling. Cancer Prev. Res. 2013, 6, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, J.; Alsop, K.; Etemadmoghadam, D.; Hondow, H.; Mikeska, T.; Dobrovic, A.; DeFazio, A.; Smyth, G.K.; Levine, D.A.; Mitchell, G.; et al. Nonequivalent Gene Expression and Copy Number Alterations in High-Grade Serous Ovarian Cancers with BRCA1 and BRCA2 Mutations. Clin. Cancer Res. 2013, 19, 3474–3484. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.J.; Kruse, T.A.; Tan, Q.; Lænkholm, A.-V.; Bak, M.; Lykkesfeldt, A.E.; Sørensen, K.P.; Hansen, T.V.O.; Ejlertsen, B.; Gerdes, A.-M.; et al. Classifications within Molecular Subtypes Enables Identification of BRCA1/BRCA2 Mutation Carriers by RNA Tumor Profiling. PLoS ONE 2013, 8, e64268. [Google Scholar] [CrossRef] [Green Version]
- Feilotter, H.E.; Michel, C.; Uy, P.; Bathurst, L.; Davey, S. BRCA1 Haploinsufficiency Leads to Altered Expression of Genes Involved in Cellular Proliferation and Development. PLoS ONE 2014, 9, e100068. [Google Scholar] [CrossRef] [PubMed]
- Massink, M.P.G.; Kooi, I.E.; Van Mil, S.E.; Jordanova, E.S.; Ameziane, N.; Dorsman, J.C.; Van Beek, D.M.; Van Der Voorn, J.P.; Sie, D.; Ylstra, B.; et al. Proper genomic profiling of (BRCA1-mutated) basal-like breast carcinomas requires prior removal of tumor infiltrating lymphocytes. Mol. Oncol. 2015, 9, 877–888. [Google Scholar] [CrossRef] [Green Version]
- Pouliot, M.-C.; Kothari, C.; Joly-Beauparlant, C.; Labrie, Y.; Ouellette, G.; Simard, J.; Droit, A.; Durocher, F. Transcriptional signature of lymphoblastoid cell lines of BRCA1, BRCA2 and non-BRCA1/2 high risk breast cancer families. Oncotarget 2017, 8, 78691–78712. [Google Scholar] [CrossRef] [Green Version]
- Zahavi, T.; Sonnenblick, A.; Shimshon, Y.; Kadouri, L.; Peretz, T.; Salmon, A.Y.; Salmon-Divon, M. SYK expression level distinguishes control from BRCA1-mutated lymphocytes. Cancer Manag. Res. 2018, 10, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Phipps, E.A.; Wei, T.; Wu, X.; Goswami, C.; Liu, Y.; Sledge, J.G.W.; Mina, L.; Herbert, B.-S. Altered expression of telomere-associated genes in leukocytes among BRCA1 and BRCA2 carriers. Mol. Carcinog. 2018, 57, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Akbari, V.; Kallhor, M.; Akbari, M.T. Transcriptome mining of non-BRCA1/A2 and BRCA1/A2 familial breast cancer. J. Cell. Biochem. 2018, 120, 575–583. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.S.; Mullins, M.; Cheang, M.C.; Leung, S.; Voduc, D.; Vickery, T.; Davies, S.; Fauron, C.; He, X.; Hu, Z.; et al. Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. J. Clin. Oncol. 2009, 27, 1160–1167. [Google Scholar] [CrossRef]
- Larsen, M.J.; Thomassen, M.; Tan, Q.-R.; Laenkholm, A.-V.; Bak, M.; Sørensen, K.P.; Andersen, M.K.; Kruse, T.A.; Gerdes, A.-M. RNA profiling reveals familial aggregation of molecular subtypes in non-BRCA1/2 breast cancer families. BMC Med. Genom. 2014, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Waddell, N.; Cocciardi, S.; Johnson, J.; Healey, S.; Marsh, A.; Riley, J.; Da Silva, L.; Vargas, A.C.; Reid, L.; Simpson, P.T.; et al. Gene expression profiling of formalin-fixed, paraffin-embedded familial breast tumours using the whole genome-DASL assay. J. Pathol. 2010, 221, 452–461. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nat. Cell Biol. 2011, 474, 609–615. [Google Scholar] [CrossRef]
- Tothill, R.W.; Tinker, A.V.; George, J.; Brown, R.; Fox, S.B.; Lade, S.; Johnson, D.S.; Trivett, M.K.; Etemadmoghadam, D.; Locandro, B.; et al. Novel Molecular Subtypes of Serous and Endometrioid Ovarian Cancer Linked to Clinical Outcome. Clin. Cancer Res. 2008, 14, 5198–5208. [Google Scholar] [CrossRef] [Green Version]
- Bourton, E.C.; Foster, H.A.; Plowman, P.N.; Harvey, A.J.; Parris, C.N. Hypersensitivity of BRCA1 Heterozygote Lymphoblastoid Cells to Gamma Radiation and PARP Inhibitors. J. Genet. Syndr. Gene Ther. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Rosen, E.M. BRCA1 in the DNA damage response and at telomeres. Front. Genet. 2013, 4, 85. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Ramires, R.; Gómez, G.; Muñoz-Repeto, I.; De Cecco, L.; Llort, G.; Cazorla, A.; Blanco, I.; Gariboldi, M.; Pierotti, M.A.; Benítez, J.; et al. Transcriptional characteristics of familial non-BRCA1/BRCA2 breast tumors. Int. J. Cancer 2010, 128, 2635–2644. [Google Scholar] [CrossRef]
- Çalışkan, M.; Cusanovich, D.A.; Ober, C.; Gilad, Y. The effects of EBV transformation on gene expression levels and methylation profiles. Hum. Mol. Genet. 2011, 20, 1643–1652. [Google Scholar] [CrossRef]
- Trenz, K.; Schütz, P.; Speit, G. Radiosensitivity of lymphoblastoid cell lines with a heterozygous BRCA1 mutation is not detected by the comet assay and pulsed field gel electrophoresis. Mutagenesis 2005, 20, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Barnes, M.; Freudenberg, J.; Thompson, S.; Aronow, B.; Pavlidis, P. Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic Acids Res. 2005, 33, 5914–5923. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Gong, B.; Bushel, P.R.; Thierry-Mieg, J.; Thierry-Mieg, D.; Xu, J.; Fang, H.; Hong, H.; Shen, J.; Su, Z.; et al. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat. Biotechnol. 2014, 32, 926–932. [Google Scholar] [CrossRef] [PubMed]
Reference | Tissue Source | Statistical Analysis | P-Value Adjustments | Number of Samples (Number of Familial Samples) | Transcriptome Platform |
---|---|---|---|---|---|
Hedenfalk et al. [6] (2001) | Breast tumour | LOO-CV, Modified F-test, t-test, weighted gene analysis and InfoScore | None | 21 (7 BRCA1, 7 BRCA2) | cDNA array (~6500 probes) |
Jazaeri et al. [7] (2002) | Ovarian tumour | Modified F-test | None, p < 0.001 | 61 (18 BRCA1, 16 BRCA2) | cDNA microarray chips (7651 probes) |
van’t Veer et al. [8] (2002) | Breast tumour | Pearson correlation, LOO-CV | None | 98 (18 BRCA1, 2 BRCA2) | Hu25K microarrays |
Kote-Jarai et al. [9] (2004) | Breast fibroblasts | Class prediction, SAM, SVM, LOOCV, | None | 14 (9 BRCA1) | cDNA array (~5600 probes) |
Kote-Jarai et al. [10] (2006) | Breast fibroblasts | SVM, Fisher score, t test Mann-Whitney, GPC, LOO-CV. | None | 30 (10 BRCA1, 10 BRCA2) | cDNA array (~14,000 probes) |
Dudaladava et al. [11] (2006) | Breast tumour | Parametric Welch test | BH | 20 (7 BRCA1) | Affymetrix HG U133 Plus 2.0 Gene Chip |
Martin et al. [12] (2007) | Breast tumour | Random variance t tests | None | van’t Veer dataset | Hu25K microarrays |
Waddell et al. [13] (2008) | LCLs | SVM, Fisher score, t test Mann-Whitney, GPC, LOO-CV. | None | 72 (23 BRCA1, 22 BRCA2, 27 BRCAx) | Illumina Human-6 version 1 BeadChips |
Vuillaume et al. [14] (2009) | Peripheral blood | Welch t-test | BH | 30 (15 BRCA1, 15 BRCAx) | Agilent 44 K Whole Human genome Oligo Microarray |
Walker et al. [15] (2010) | LCLs | F-test, t-test | FDR – Korn et al. approach | 36 (9 BRCA1, 9 BRCA2, 9 BRCAx) | Illumina HumanRef8-V2 Beadchips |
Press et al. [16] (2010) | Fallopian tube and ovarian tumour | Welch t-test | None, p < 0.01 | 30 (19 BRCA1) | Affymetrix HG U133A Plus 2.0 Gene Chip |
Konstantinopoulos et al. [17] (2010) | Ovarian tumour | Fisher’s exact test | None | Jazaeria et al., (2002) 61 (18 BRCA1, 16 BRCA2) | cDNA microarray chips (7651 probes) |
Waddell et al. [18] (2010) | Breast tumour | limma | None, positive B | 75 (19 BRCA1, 30 BRCA2, 25 BRCAx) | Illumina Human-6 version 2 BeadChips |
Lisowska [19] (2011) | Breast tumour | Welch t test, ANOVA | BH | 35 (12 BRCA1, 1 BRCA2, 5 BRCAx) | Affymetrix HG U133 Plus 2.0 Gene Chip |
Jönsson et al. [20] (2012) | Breast tumour | Fisher exact test | None | 577 (34 BRCA1, 39 BRCA2) | Swegene H_v2.1.1 55K |
Salmon et al. [21] (2013) | Lymphocytes | one-way Welch ANOVA | BH | 80 (13 BRCA1, 10 BRCA2, 43 BRCAx) | Affymetrix U133A Plus 2.0 |
Ovarian tumour | limma | FDR | TCGA dataset (27 BRCA1, 28 BRCA2, 145 BRCAx) | RNA-sequencing | |
George et al. [22] (2013) | AOCS dataset (18 BRCA1, 11 BRCA2, 103 BRCAx) | Affymetrix U133A Plus 2.0 | |||
Jazaeria et al., (2002) 61 (18 BRCA1, 16 BRCA2) | cDNA microarray chips (7651 probes) | ||||
Larsen et al. [23] (2013) | Breast tumour | limma, Welch t-test, LOOCV, SVM | None | 183 (33 BRCA1, 22 BRCA2) | Agilent SurePrint G3 Human GE 8 × 60K Microarray |
Feilotter et al. [24] (2014) | LCLs | PAM, SAM | None | 69 (31 BRCA1) | Agilent Whole Human Genome Oligo 4 × 44K GE arrays |
Massink et al. [25] (2015) | Breast tumour | ANNOVA | FDR | Nagel et al., (2012) 120 (17 CHEK2, 35 BRCA1, 5 BRCA2, 63 BRCAx) | Affymetrix U133A Plus 2.0 |
Pouliot et al. [26] (2017) | LCLs | ANOVA, Scheffe post-hoc test | Bonferroni correction | 117 (36 BRCA1, 49 BRCA2, 32 BRCAx) | RNA Sequencing |
Zahavi et al. [27] (2018) | Lymphocytes | limma | None, p < 0.001 | 50 (11 BRCA1, 13 BRCA2) | mRNA Sequencing |
Tanaka et al. [28] (2018) | Peripheral blood | ANOVA | None | 40 (10 BRCA1, 10 BRCA2, 9 BRCAx) | Illumina DASL array |
Akbari et al. [29] (2019) | Breast tumour | Four study Meta-analysis (Fisher’s). limma | FDR | 45 (BRCA1 BRCA2) + 25 BRCAx) | Illumina Human-6 version 1 BeadChips |
43 (BRCA1 BRCA2) + 29 BRCAx) | Illumina Whole Genome-DASL | ||||
55 (BRCA1 BRCA2) + 65 BRCAx) | Agilent SurePrint G3 Human GE 8x60K Microarray | ||||
53 (BRCA1 BRCA2) + 76 BRCAx) | Affymetrix U133A Plus 2.0 |
Breast Tumour | Ovarian Tumour | Fibroblast | LCLs/Lymphocytes/Blood | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hedenfalk et al., 2001 | van ’t Veer et al., 2002 | Dudaladava et al., 2006 | Martin et al., 2007 | Waddell et al., 2010 | Lisowska, 2011 | Jönsson et al., 2012 | Larsen et al., 2013 | Akbari et al., 2013 | Jazaeri et al., 2002 | Press et al., 2008 | Konstantinopoulos et al., 2010 | George et al., 2013 | Kote-Jarai et al., 2004 | Kote-Jarai et al., 2006 | Waddell et al., 2008 | Vuillaume et al., 2009 | Walker et al., 2010 | Salmon et al., 2013 | Feilotter et al., 2014 | Pouliot et al., 2017 | Tanaka et al., 2018 | Zahavi et al., 2018 | |
Hedenfalk et al. [6] 2001 (n = 50) | 0 | 1 | 0 | 3 | 1 | 0 | 1 | 2 | 0 | 0 | 2 | 0 | 3 | 1 | 0 | 2 | 1 | 0 | 0 | 2 | 2 | 0 | |
van ’t Veer et al. [8] 2002 (n = 71) | 0 | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | ||
Dudaladava et al. [11] 2006 (n = 88) | 0 | 1 | 9 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 4 | 0 | 0 | 2 | 0 | 1 | |||
Martin et al. [12] 2007 (n = 3) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
Waddell et al. [18] 2010 (n = 227) | 3 | 0 | 2 | 49 | 0 | 0 | 1 | 2 | 2 | 7 | 3 | 1 | 9 | 0 | 0 | 0 | 0 | 5 | |||||
Lisowska, [19] 2011 (n = 61) | 0 | 0 | 5 | 0 | 2 | 0 | 1 | 0 | 1 | 1 | 0 | 5 | 0 | 0 | 1 | 0 | 0 | ||||||
Jönsson et al. [20] 2012 (n = 4) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | |||||||
Larsen et al. [23] 2013 (n = 210) | 8 | 0 | 0 | 1 | 2 | 2 | 3 | 2 | 1 | 7 | 0 | 0 | 0 | 0 | 2 | ||||||||
Akbari et al. [29] 2018 (n = 278) | 1 | 2 | 2 | 1 | 4 | 4 | 1 | 1 | 7 | 1 | 1 | 0 | 0 | 7 | |||||||||
Jazaeri et al. [7] 2002 (n = 12) | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||||
Press et al. [16] 2008 (n = 33) | 0 | 1 | 0 | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | |||||||||||
Konstantinopoulos et al. [17] 2010 (n = 60) | 0 | 2 | 3 | 3 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | ||||||||||||
George et al. [22] 2013 (n = 75) | 5 | 3 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | |||||||||||||
Kote-Jarai et al. [9] 2004 (n = 122) | 3 | 2 | 2 | 4 | 0 | 1 | 1 | 1 | 3 | ||||||||||||||
Kote-Jarai et al. [10] 2006 (n = 330) | 3 | 0 | 21 | 1 | 2 | 1 | 4 | 3 | |||||||||||||||
Waddell et al. [13] 2008 (n = 333) | 1 | 11 | 0 | 2 | 0 | 1 | 3 | ||||||||||||||||
Vuillaume et al. [14] 2009 (n = 81) | 5 | 0 | 0 | 3 | 1 | 1 | |||||||||||||||||
Walker et al. [15] 2010 (n = 687) | 1 | 4 | 3 | 3 | 3 | ||||||||||||||||||
Salmon et al. [21] 2013 (n = 21) | 1 | 0 | 0 | 0 | |||||||||||||||||||
Feilotter et al. [24] 2014 (n = 43) | 0 | 1 | 0 | ||||||||||||||||||||
Pouliot et al. [26] 2017 (n = 62) | 1 | 4 | |||||||||||||||||||||
Tanaka et al. [28] 2018 (n = 51) | 1 | ||||||||||||||||||||||
Zahavi et al. [27] 2018 (n = 228) |
Study (Year) | Tissue Source | Tissue Criteria | Comparison(s) | Treatment |
---|---|---|---|---|
Kote-Jarai et al. [9] (2004) | Breast fibroblast | Prophylactic mastectomy or breast reduction | BRCA1 vs. non-BRCA1 | γ irradiation |
Kote-Jarai et al. [10] (2006) | Breast fibroblast | Skin biopsy women post BC (disease-free at time of collection) | BRCA1 vs. BRCAx; BRCA2 vs. BRCAx | γ irradiation |
Waddell et al. [13] (2008) | LCLs | Breast cancer affected women | BRCA1 (truncating variants) vs. BRCAx; BRCA1 (missense variants) vs. BRCAx; BRCA2 (truncating variants) vs. BRCAx; BRCA2 (missense variants) vs. BRCAx; | γ irradiation |
Vuillaume et al. [14] (2009) | Peripheral blood Mononuclear Cells | High risk breast cancer family members, disease-free at time of collection (some had BC/OC history) | BRCA1 vs. non-BRCA1 | None |
Walker et al. [15] (2010) | LCLs–pooled from 3x individuals | Breast cancer affected women | BRCA1 vs. BRCA2 vs. BRCAx | Mitomycin C |
Salmon et al. [21] (2013) | Lymphocytes | No personal history of cancer with family member with history of breast cancer | BRCA1 vs. BRCAx; BRCA2 vs. BRCAx | γ irradiation |
Feilotter et al. [24] (2014) | LCLs | Samples deposited in NIH Breast Cancer Family Registries with and without BRCA1 variants. | BRCA1 vs. non-BRCA1 | γ irradiation |
Pouliot et al. [26] (2017) | LCLs | Individuals of high risk breast cancer families with and with disease history. Included the oldest BRCAx sister with no cancer history | BRCA1 vs. BRCAx (no BC history); BRCA2 vs. BRCAx (no BC history); BRCAx (BC history) vs. BRCAx (no BC history) | None |
Tanaka et al. [28] (2018) | Peripheral blood | Carriers of pathogenic BRCA1 or BRCA2 variant with or without cancer, BRCAx carriers with cancer. | BRCA1 vs. non-BRCA1; BRCA2 vs. non-BRCA2 | None |
Zahavi et al. [27] (2018) | Lymphocytes | No personal history of cancer. Controls had no family history of BC or OC | BRCA1 vs. BRCAx; BRCA2 vs. BRCAx | None |
Study design |
Variant classifications (missense/truncating, germline/somatic) |
Sample size |
Control arm (unselected, BRCAx, healthy controls) |
Technology (spotted microarray, oligo array, RNA-sequencing) |
Tissue type/purity |
Tissue treatments |
Identification of BRCA1 associated genes |
Class comparison |
Class prediction |
Other |
Non-variant effect |
Epigenetic silencing |
Environmental effects |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiggins, G.A.R.; Walker, L.C.; Pearson, J.F. Genome-Wide Gene Expression Analyses of BRCA1- and BRCA2-Associated Breast and Ovarian Tumours. Cancers 2020, 12, 3015. https://doi.org/10.3390/cancers12103015
Wiggins GAR, Walker LC, Pearson JF. Genome-Wide Gene Expression Analyses of BRCA1- and BRCA2-Associated Breast and Ovarian Tumours. Cancers. 2020; 12(10):3015. https://doi.org/10.3390/cancers12103015
Chicago/Turabian StyleWiggins, George A. R., Logan C. Walker, and John F. Pearson. 2020. "Genome-Wide Gene Expression Analyses of BRCA1- and BRCA2-Associated Breast and Ovarian Tumours" Cancers 12, no. 10: 3015. https://doi.org/10.3390/cancers12103015
APA StyleWiggins, G. A. R., Walker, L. C., & Pearson, J. F. (2020). Genome-Wide Gene Expression Analyses of BRCA1- and BRCA2-Associated Breast and Ovarian Tumours. Cancers, 12(10), 3015. https://doi.org/10.3390/cancers12103015