Advances in Acute Myeloid Leukemia: Recently Approved Therapies and Drugs in Development
Abstract
:Simple Summary
Abstract
1. Introduction
2. Recently Approved Agents in AML
3. Genetically Targeted Therapies
3.1. FLT3
3.2. IDH1/2
3.3. TP53
4. Non-Genetically Targeted Therapies
4.1. Vyxeos
4.2. Venetoclax
4.3. Glasdegib
4.4. Oral Azacitidine
4.5. Antibody–Drug Conjugates
5. Immunotherapies
5.1. Immunotherapy and AML
5.2. Immune Checkpoint Blockade
5.3. CD47—Magrolimab
5.4. CD123—SL-401/Tagraxofusp
5.5. Bispecific T Cell Engager
5.6. CAR T Cell Therapy
5.7. Vaccines
6. Drugs in the Pipeline
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shlush, L.I.; Zandi, S.; Mitchell, A.; Chen, W.C.; Brandwein, J.M.; Gupta, V.; Kennedy, J.A.; Schimmer, A.D.; Schuh, A.C.; Yee, K.W.; et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014, 506, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.S.; Ley, T.J.; Link, D.C.; Miller, C.A.; Larson, D.E.; Koboldt, D.C.; Wartman, L.D.; Lamprecht, T.L.; Liu, F.; Xia, J.; et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012, 150, 264–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roboz, G.J.; DiNardo, C.D.; Stein, E.M.; de Botton, S.; Mims, A.S.; Prince, G.T.; Altman, J.K.; Arellano, M.L.; Donnellan, W.; Erba, H.P.; et al. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. Blood 2020, 135, 463–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arlin, Z.; Case, D.C., Jr.; Moore, J.; Wiernik, P.; Feldman, E.; Saletan, S.; Desai, P.; Sia, L.; Cartwright, K. Randomized multicenter trial of cytosine arabinoside with mitoxantrone or daunorubicin in previously untreated adult patients with acute nonlymphocytic leukemia (ANLL). Lederle Cooperative Group. Leukemia 1990, 4, 177–183. [Google Scholar]
- Cortes, J.E.; Dombret, H.; Merchant, A.; Tauchi, T.; DiRienzo, C.G.; Sleight, B.; Zhang, X.; Leip, E.P.; Shaik, N.; Bell, T.; et al. Glasdegib plus intensive/nonintensive chemotherapy in untreated acute myeloid leukemia: BRIGHT AML 1019 Phase III trials. Future Oncol. 2019, 15, 3531–3545. [Google Scholar] [CrossRef] [Green Version]
- Richard-Carpentier, G.; DiNardo, C.D. Venetoclax for the treatment of newly diagnosed acute myeloid leukemia in patients who are ineligible for intensive chemotherapy. Ther. Adv. Hematol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Grimwade, D.; Hills, R.K.; Moorman, A.V.; Walker, H.; Chatters, S.; Goldstone, A.H.; Wheatley, K.; Harrison, C.J.; Burnett, A.K. Refinement of cytogenetic classification in acute myeloid leukemia: Determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010, 116, 354–365. [Google Scholar] [CrossRef] [Green Version]
- Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013, 368, 2059–2074. [Google Scholar] [CrossRef] [Green Version]
- Kiyoi, H.; Naoe, T.; Nakano, Y.; Yokota, S.; Minami, S.; Miyawaki, S.; Asou, N.; Kuriyama, K.; Jinnai, I.; Shimazaki, C.; et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999, 93, 3074–3080. [Google Scholar]
- Kiyoi, H.; Naoe, T.; Yokota, S.; Nakao, M.; Minami, S.; Kuriyama, K.; Takeshita, A.; Saito, K.; Hasegawa, S.; Shimodaira, S.; et al. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia 1997, 11, 1447–1452. [Google Scholar] [CrossRef] [Green Version]
- Garg, M.; Nagata, Y.; Kanojia, D.; Mayakonda, A.; Yoshida, K.; Haridas Keloth, S.; Zang, Z.J.; Okuno, Y.; Shiraishi, Y.; Chiba, K.; et al. Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse. Blood 2015, 126, 2491–2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.; et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N. Engl. J. Med. 2019, 381, 1728–1740. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.S. Beyond midostaurin: Which are the most promising FLT3 inhibitors in AML? Best Pract. Res. Clin. Haematol. 2019, 32, 101103. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kiyoi, H.; Nakano, Y.; Suzuki, R.; Kodera, Y.; Miyawaki, S.; Asou, N.; Kuriyama, K.; Yagasaki, F.; Shimazaki, C.; et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001, 97, 2434–2439. [Google Scholar] [CrossRef] [Green Version]
- Borthakur, G.; Kantarjian, H.; Patel, K.P.; Ravandi, F.; Qiao, W.; Faderl, S.; Kadia, T.; Luthra, R.; Pierce, S.; Cortes, J.E. Impact of numerical variation in FMS-like tyrosine kinase receptor 3 internal tandem duplications on clinical outcome in normal karyotype acute myelogenous leukemia. Cancer 2012, 118, 5819–5822. [Google Scholar] [CrossRef] [Green Version]
- Schlenk, R.F.; Kayser, S.; Bullinger, L.; Kobbe, G.; Casper, J.; Ringhoffer, M.; Held, G.; Brossart, P.; Lubbert, M.; Salih, H.R.; et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood 2014, 124, 3441–3449. [Google Scholar] [CrossRef] [Green Version]
- Stone, R.M.; Dohner, H.; Ehninger, G.; Villeneuve, M.; Teasdale, T.; Virkus, J.D.; Bressler, L.R.; Seiler, M.M.; Marcucci, G.; Larson, R.A.; et al. CALGB 10603 (RATIFY): A randomized phase III study of induction (daunorubicin/cytarabine) and consolidation (high-dose cytarabine) chemotherapy combined with midostaurin or placebo in treatment-naive patients with FLT3 mutated AML. J. Clin. Oncol. 2011, 29, TPS199. [Google Scholar] [CrossRef]
- Bacher, U.; Haferlach, C.; Kern, W.; Haferlach, T.; Schnittger, S. Prognostic relevance of FLT3-TKD mutations in AML: The combination matters--an analysis of 3082 patients. Blood 2008, 111, 2527–2537. [Google Scholar] [CrossRef]
- Levis, M.; Shi, W.; Chang, K.; Laing, C.; Pollner, R.; Gocke, C.; Adams, E.; Berisha, F.; Lameh, J.; Lesegretain, A. FLT3 inhibitors added to induction therapy induce deeper remissions. Blood 2020, 135, 75–78. [Google Scholar] [CrossRef]
- Smith, C.C.; Lin, K.; Stecula, A.; Sali, A.; Shah, N.P. FLT3 D835 mutations confer differential resistance to type II FLT3 inhibitors. Leukemia 2015, 29, 2390–2392. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.S.; Tallman, M.S.; Stone, R.M.; Walter, R.B.; Karanes, C.; Jain, V.; Collins, R.H. Low relapse rate in younger patients ≤ 60 years old with newly diagnosed FLT3-mutated acute myeloid leukemia (AML) treated with crenolanib and cytarabine/anthracycline chemotherapy. Blood 2017, 130, 566. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Wei, A.H. How I treat acute myeloid leukemia in the era of new drugs. Blood 2020, 135, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Burchert, A.; Bug, G.; Finke, J.; Stelljes, M.; Rollig, C.; Wäsch, R.; Bornhäuser, M.; Berg, T.; Lang, F.; Ehninger, G.; et al. Sorafenib as maintenance therapy post allogeneic stem cell transplantation for FLT3-ITD positive AML: Results from the randomized, double-blind, placebo-controlled multicentre sormain trial. Blood 2018, 132, 661. [Google Scholar] [CrossRef]
- Maziarz, R.T.T.; Patnaik, M.M.; Scott, B.L.; Mohan, S.R.; Deol, A.; Rowley, S.D.; Kim, D.; Haines, K.; Bonifacio, G.J.; Rine, P.; et al. Radius: A phase 2 randomized trial investigating standard of care ± midostaurin after allogeneic stem cell transplant in FLT3-ITD-mutated AML. Blood 2018, 132, 662. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef]
- Losman, J.A.; Looper, R.E.; Koivunen, P.; Lee, S.; Schneider, R.K.; McMahon, C.; Cowley, G.S.; Root, D.E.; Ebert, B.L.; Kaelin, W.G., Jr. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013, 339, 1621–1625. [Google Scholar] [CrossRef]
- Xu, W.; Yang, H.; Liu, Y.; Yang, Y.; Wang, P.; Kim, S.H.; Ito, S.; Yang, C.; Wang, P.; Xiao, M.T.; et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011, 19, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722–731. [Google Scholar] [CrossRef]
- Norsworthy, K.J.; Luo, L.; Hsu, V.; Gudi, R.; Dorff, S.E.; Przepiorka, D.; Deisseroth, A.; Shen, Y.L.; Sheth, C.M.; Charlab, R.; et al. FDA Approval summary: Ivosidenib for relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-1 mutation. Clin. Cancer Res. 2019, 25, 3205–3209. [Google Scholar] [CrossRef] [Green Version]
- Ducray, F.; El Hallani, S.; Idbaih, A. Diagnostic and prognostic markers in gliomas. Curr. Opin. Oncol. 2009, 21, 537–542. [Google Scholar] [CrossRef]
- Patel, J.P.; Gonen, M.; Figueroa, M.E.; Fernandez, H.; Sun, Z.; Racevskis, J.; Van Vlierberghe, P.; Dolgalev, I.; Thomas, S.; Aminova, O.; et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 2012, 366, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.M.; Baer, M.R.; Yang, J.; Prebet, T.; Lee, S.; Schiller, G.J.; Dinner, S.; Pigneux, A.; Montesinos, P.; Wang, E.S.; et al. Olutasidenib (FT-2102), an IDH1m inhibitor as a single agent or in combination with azacitidine, induces deep clinical responses with mutation clearance in patients with acute myeloid leukemia treated in a phase 1 dose escalation and expansion study. Blood 2019, 134, 231. [Google Scholar] [CrossRef]
- Caravella, J.A.; Lin, J.; Diebold, R.B.; Campbell, A.-M.; Ericsson, A.; Gustafson, G.; Wang, Z.; Castro, J.; Clarke, A.; Gotur, D.; et al. Structure-based design and identification of FT-2102 (Olutasidenib), a potent mutant-selective IDH1 inhibitor. J. Med. Chem. 2020, 63, 1612–1623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bykov, V.J.N.; Wiman, K.G.; Zawacka-Pankau, J. APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis. 2018, 9, 439. [Google Scholar] [CrossRef] [Green Version]
- Sallman, D.A.; DeZern, A.E.; Steensma, D.P.; Sweet, K.L.; Cluzeau, T.; Sekeres, M.A.; Garcia-Manero, G.; Roboz, G.J.; McLemore, A.F.; McGraw, K.L.; et al. Phase 1b/2 combination study of APR-246 and azacitidine (AZA) in patients with TP53 mutant myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Blood 2018, 132, 3091. [Google Scholar] [CrossRef]
- Welch, J.S.; Petti, A.A.; Miller, C.A.; Fronick, C.C.; O’Laughlin, M.; Fulton, R.S.; Wilson, R.K.; Baty, J.D.; Duncavage, E.J.; Tandon, B.; et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N. Engl. J. Med. 2016, 375, 2023–2036. [Google Scholar] [CrossRef]
- Winer, E.S.; Stone, R.M. Novel therapy in acute myeloid leukemia (AML): Moving toward targeted approaches. Ther. Adv. Hematol. 2019, 10, 2040620719860645. [Google Scholar] [CrossRef]
- FDA Grants Breakthrough Therapy Designation to APR-246, Azacitidine Combination for Myelodysplastic Syndrome. Available online: https://www.healio.com/hematology-oncology/myeloproliferative-neoplasms/news/online/%7Bf9b464e2-0d3f-4736-85a4-6fc5e6efe8e2%7D/fda-grants-breakthrough-therapy-designation-to-apr-246-azacitidine-combination-for-myelodysplastic-syndrome (accessed on 24 April 2020).
- Khurana, A.; Shafer, D.A. MDM2 antagonists as a novel treatment option for acute myeloid leukemia: Perspectives on the therapeutic potential of idasanutlin (RG7388). Onco Targets Ther. 2019, 12, 2903–2910. [Google Scholar] [CrossRef] [Green Version]
- Vyxeos Full Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209401s000lbl.pdf (accessed on 28 March 2020).
- Lim, W.S.; Tardi, P.G.; Dos Santos, N.; Xie, X.; Fan, M.; Liboiron, B.D.; Huang, X.; Harasym, T.O.; Bermudes, D.; Mayer, L.D. Leukemia-selective uptake and cytotoxicity of CPX-351, a synergistic fixed-ratio cytarabine:daunorubicin formulation, in bone marrow xenografts. Leuk. Res. 2010, 34, 1214–1223. [Google Scholar] [CrossRef]
- Tardi, P.; Johnstone, S.; Harasym, N.; Xie, S.; Harasym, T.; Zisman, N.; Harvie, P.; Bermudes, D.; Mayer, L. In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk. Res. 2009, 33, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.J.; Lancet, J.E.; Kolitz, J.E.; Ritchie, E.K.; Roboz, G.J.; List, A.F.; Allen, S.L.; Asatiani, E.; Mayer, L.D.; Swenson, C.; et al. First-in-man study of CPX-351: A liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J. Clin. Oncol. 2011, 29, 979–985. [Google Scholar] [CrossRef] [Green Version]
- Gabizon, A.; Goren, D.; Horowitz, A.T.; Tzemach, D.; Lossos, A.; Siegal, T. Long-circulating liposomes for drug delivery in cancer therapy: A review of biodistribution studies in tumor-bearing animals. Adv. Drug Deliv. Rev. 1997, 24, 337–344. [Google Scholar] [CrossRef]
- Lancet, J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J. Clin. Oncol. 2018, 36, 2684–2692. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- Wei, A.H.; Montesinos, P.; Ivanov, V.; Dinardo, C.D.; Novak, J.; Laribi, K.; Kim, I.; Stevens, D.A.; Fiedler, W.M.; Pagoni, M.; et al. A phase III study of venetoclax plus low-dose cytarabine in previously untreated older patients with acute myeloid leukemia (VIALE-C): A six-month update. J. Clin. Oncol. 2020, 38, 7511. [Google Scholar] [CrossRef]
- Wei, A.H.; Montesinos, P.; Ivanov, V.; DiNardo, C.D.; Novak, J.; Laribi, K.; Kim, I.; Stevens, D.A.; Fiedler, W.; Pagoni, M.; et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A phase 3 randomized placebo-controlled trial. Blood 2020, 135, 2137–2145. [Google Scholar] [CrossRef]
- Xiang, W.; Yang, C.-Y.; Bai, L. MCL-1 inhibition in cancer treatment. OncoTargets Ther. 2018, 11, 7301–7314. [Google Scholar] [CrossRef] [Green Version]
- Soucy, T.A.; Smith, P.G.; Milhollen, M.A.; Berger, A.J.; Gavin, J.M.; Adhikari, S.; Brownell, J.E.; Burke, K.E.; Cardin, D.P.; Critchley, S.; et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 2009, 458, 732–736. [Google Scholar] [CrossRef]
- Swords, R.T.; Coutre, S.; Maris, M.B.; Zeidner, J.F.; Foran, J.M.; Cruz, J.; Erba, H.P.; Berdeja, J.G.; Tam, W.; Vardhanabhuti, S.; et al. Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, combined with azacitidine in patients with AML. Blood 2018, 131, 1415–1424. [Google Scholar] [CrossRef] [Green Version]
- Sekeres, M.A.; Fram, R.J.; Hua, Z.; Ades, L. Phase 3 study of first line pevonedistat (PEV) + azacitidine (AZA) versus single-agent AZA in patients with higher-risk myelodysplastic syndromes (HR MDS), chronic myelomonocytic leukemia (CMML) or low-blast acute myelogenous leukemia (AML). J. Clin. Oncol. 2018, 36, TPS7077. [Google Scholar] [CrossRef]
- Guru Murthy, G.S.G.; Kaufmann, S.H.; Szabo, A.; Baim, A.; Anshu, A.; Hinman, A.; Michaelis, L.C.; Abedin, S.; Carlson, K.-S.B.; Runaas, L.; et al. A multisite phase Ib study of pevonedistat, azacitidine and venetoclax (PAVE) for the treatment of subjects with acute myelogenous leukemia (AML). Blood 2019, 134, 3837. [Google Scholar] [CrossRef]
- Lachowiez, C.A.; Borthakur, G.; Loghavi, S.; Zeng, Z.; Kadia, T.M.; Masarova, L.; Takahashi, K.; Tippett, G.D.; Naqvi, K.; Bose, P.; et al. Phase Ib/II study of the IDH1-mutant inhibitor ivosidenib with the BCL2 inhibitor venetoclax +/- azacitidine in IDH1-mutated hematologic malignancies. J. Clin. Oncol. 2020, 38, 7500. [Google Scholar] [CrossRef]
- APR-246 in Combination with Venetoclax and Azacitidine in TP53-mutant Myeloid Malignancies. Available online: https://clinicaltrials.gov/ct2/show/NCT04214860 (accessed on 3 October 2020).
- Cluzeau, T.; Sebert, M.; Rahmé, R.; Cuzzubbo, S.; Walter-petrich, A.; Lehmann che, J.; Peterlin, P.; Beve, B.; Attalah, H.; Chermat, F.; et al. APR-246 combined with azacitidine (AZA) in TP53 mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). A phase 2 study by the groupe francophone des myélodysplasies (GFM). Blood 2019, 134, 677. [Google Scholar] [CrossRef]
- Huls, G.; Chitu, D.A.; Havelange, V.; Jongen-Lavrencic, M.; van de Loosdrecht, A.A.; Biemond, B.J.; Sinnige, H.; Hodossy, B.; Graux, C.; Kooy, R.V.M.; et al. Azacitidine maintenance after intensive chemotherapy improves DFS in older AML patients. Blood 2019, 133, 1457–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grövdal, M.; Karimi, M.; Khan, R.; Aggerholm, A.; Antunovic, P.; Astermark, J.; Bernell, P.; Engström, L.M.; Kjeldsen, L.; Linder, O.; et al. Maintenance treatment with azacytidine for patients with high-risk myelodysplastic syndromes (MDS) or acute myeloid leukaemia following MDS in complete remission after induction chemotherapy. Br. J. Haematol. 2010, 150, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Manero, G.; Gore, S.D.; Cogle, C.; Ward, R.; Shi, T.; Macbeth, K.J.; Laille, E.; Giordano, H.; Sakoian, S.; Jabbour, E.; et al. Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J. Clin. Oncol. 2011, 29, 2521–2527. [Google Scholar] [CrossRef]
- Cogle, C.R.; Scott, B.L.; Boyd, T.; Garcia-Manero, G. Oral azacitidine (CC-486) for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Oncologist 2015, 20, 1404–1412. [Google Scholar] [CrossRef] [Green Version]
- Roboz, G.J.; Montesinos, P.; Selleslag, D.; Wei, A.; Jang, J.H.; Falantes, J.; Voso, M.T.; Sayar, H.; Porkka, K.; Marlton, P.; et al. Design of the randomized, Phase III, QUAZAR AML Maintenance trial of CC-486 (oral azacitidine) maintenance therapy in acute myeloid leukemia. Future Oncol. 2016, 12, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Wei, A.H.; Döhner, H.; Pocock, C.; Montesinos, P.; Afanasyev, B.; Dombret, H.; Ravandi, F.; Sayar, H.; Jang, J.H.; Porkka, K.; et al. The QUAZAR AML-001 maintenance trial: Results of a phase III international, randomized, double-blind, placebo-controlled study of CC-486 (oral formulation of azacitidine) in patients with acute myeloid leukemia (AML) in first remission. Blood 2019, 134. [Google Scholar] [CrossRef]
- Savona, M.R.; Kolibaba, K.; Conkling, P.; Kingsley, E.C.; Becerra, C.; Morris, J.C.; Rifkin, R.M.; Laille, E.; Kellerman, A.; Ukrainskyj, S.M.; et al. Extended dosing with CC-486 (oral azacitidine) in patients with myeloid malignancies. Am. J. Hematol. 2018, 93, 1199–1206. [Google Scholar] [CrossRef]
- Stanchina, M.; Pastore, A.; Devlin, S.; Famulare, C.; Stein, E.; Taylor, J. CD33 splice site genotype was not associated with outcomes of patients receiving the anti-CD33 drug conjugate SGN-CD33A. J. Hematol. Oncol. 2019, 12, 85. [Google Scholar] [CrossRef] [Green Version]
- Norsworthy, K.J.; Ko, C.W.; Lee, J.E.; Liu, J.; John, C.S.; Przepiorka, D.; Farrell, A.T.; Pazdur, R. FDA Approval summary: Mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia. Oncologist 2018, 23, 1103–1108. [Google Scholar] [CrossRef] [Green Version]
- Bross, P.F.; Beitz, J.; Chen, G.; Chen, X.H.; Duffy, E.; Kieffer, L.; Roy, S.; Sridhara, R.; Rahman, A.; Williams, G.; et al. Approval summary: Gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 2001, 7, 1490–1496. [Google Scholar] [PubMed]
- Petersdorf, S.H.; Kopecky, K.J.; Slovak, M.; Willman, C.; Nevill, T.; Brandwein, J.; Larson, R.A.; Erba, H.P.; Stiff, P.J.; Stuart, R.K.; et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood 2013, 121, 4854–4860. [Google Scholar] [CrossRef] [Green Version]
- Hills, R.K.; Castaigne, S.; Appelbaum, F.R.; Delaunay, J.; Petersdorf, S.; Othus, M.; Estey, E.H.; Dombret, H.; Chevret, S.; Ifrah, N.; et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: A meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014, 15, 986–996. [Google Scholar] [CrossRef] [Green Version]
- Kell, W.J.; Burnett, A.K.; Chopra, R.; Yin, J.A.; Clark, R.E.; Rohatiner, A.; Culligan, D.; Hunter, A.; Prentice, A.G.; Milligan, D.W. A feasibility study of simultaneous administration of gemtuzumab ozogamicin with intensive chemotherapy in induction and consolidation in younger patients with acute myeloid leukemia. Blood 2003, 102, 4277–4283. [Google Scholar] [CrossRef] [PubMed]
- Jen, E.Y.; Ko, C.W.; Lee, J.E.; Del Valle, P.L.; Aydanian, A.; Jewell, C.; Norsworthy, K.J.; Przepiorka, D.; Nie, L.; Liu, J.; et al. FDA Approval: Gemtuzumab ozogamicin for the treatment of adults with newly diagnosed CD33-positive acute myeloid leukemia. Clin. Cancer Res. 2018, 24, 3242–3246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollard, J.A.; Loken, M.; Gerbing, R.B.; Raimondi, S.C.; Hirsch, B.A.; Aplenc, R.; Bernstein, I.D.; Gamis, A.S.; Alonzo, T.A.; Meshinchi, S. CD33 expression and its association with gemtuzumab ozogamicin response: Results from the randomized phase iii children’s oncology group trial AAML0531. J. Clin. Oncol. 2016, 34, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Lamba, J.K.; Chauhan, L.; Shin, M.; Loken, M.R.; Pollard, J.A.; Wang, Y.C.; Ries, R.E.; Aplenc, R.; Hirsch, B.A.; Raimondi, S.C.; et al. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: Report from randomized phase III children’s oncology group trial AAML0531. J Clin Oncol 2017, 35, 2674–2682. [Google Scholar] [CrossRef]
- Gale, R.E.; Popa, T.; Wright, M.; Khan, N.; Freeman, S.D.; Burnett, A.K.; Russell, N.H.; Hills, R.K.; Linch, D.C. No evidence that CD33 splicing SNP impacts the response to GO in younger adults with AML treated on UK MRC/NCRI trials. Blood 2018, 131, 468–471. [Google Scholar] [CrossRef]
- Orskov, A.D.; Treppendahl, M.B.; Skovbo, A.; Holm, M.S.; Friis, L.S.; Hokland, M.; Gronbaek, K. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: A rationale for combined targeting of PD-1 and DNA methylation. Oncotarget 2015, 6, 9612–9626. [Google Scholar] [CrossRef] [Green Version]
- Ravandi, F.; Assi, R.; Daver, N.; Benton, C.B.; Kadia, T.; Thompson, P.A.; Borthakur, G.; Alvarado, Y.; Jabbour, E.J.; Konopleva, M.; et al. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: A single-arm, phase 2 study. Lancet Haematol. 2019, 6, e480–e488. [Google Scholar] [CrossRef]
- Hay, A.E.; Assouline, S.; Walter, R.B.; Little, R.F.; Moseley, A.; Gail, S.M.; Im, A.; Foran, J.M.; Radich, J.P.; Fang, M.; et al. Accrual barriers and detection of early toxicity signal in older less-fit patients treated with azacitidine and nivolumab for newly diagnosed acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) in the SWOG 1612 platform randomized phase II/III clinical trial. Blood 2019, 134, 3905. [Google Scholar] [CrossRef]
- Chandhok, N.S.; Wei, W.; Halene, S.; Prebet, T. Ivo-Nivo: A phase II study of the IDH1 inhibitor ivosidenib (AG-120) in combination with the checkpoint blockade inhibitor nivolumab for patients with IDH1 mutated relapsed/refractory AML and high risk MDS. Blood 2019, 134, 1374. [Google Scholar] [CrossRef]
- Kadia, T.M.; Cortes, J.E.; Ghorab, A.; Ravandi, F.; Jabbour, E.; Daver, N.G.; Alvarado, Y.; Ohanian, M.; Konopleva, M.; Kantarjian, H.M. Nivolumab (Nivo) maintenance (maint) in high-risk (HR) acute myeloid leukemia (AML) patients. J. Clin. Oncol. 2018, 36, 7014. [Google Scholar] [CrossRef]
- Chao, M.P.; Takimoto, C.H.; Feng, D.D.; McKenna, K.; Gip, P.; Liu, J.; Volkmer, J.P.; Weissman, I.L.; Majeti, R. Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies. Front Oncol. 2019, 9, 1380. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.P.; Weissman, I.L.; Majeti, R. The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol. 2012, 24, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Majeti, R.; Chao, M.P.; Alizadeh, A.A.; Pang, W.W.; Jaiswal, S.; Gibbs, K.D., Jr.; van Rooijen, N.; Weissman, I.L. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009, 138, 286–299. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, S.; Jamieson, C.H.; Pang, W.W.; Park, C.Y.; Chao, M.P.; Majeti, R.; Traver, D.; van Rooijen, N.; Weissman, I.L. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 2009, 138, 271–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallman, D.A.; Asch, A.S.; Al Malki, M.M.; Lee, D.J.; Donnellan, W.B.; Marcucci, G.; Kambhampati, S.; Daver, N.G.; Garcia-Manero, G.; Komrokji, R.S.; et al. The first-in-class anti-CD47 antibody magrolimab (5F9) in combination with azacitidine is effective in MDS and AML patients: Ongoing phase 1b results. Blood 2019, 134, 569. [Google Scholar] [CrossRef]
- Sikic, B.I.; Lakhani, N.; Patnaik, A.; Shah, S.A.; Chandana, S.R.; Rasco, D.; Colevas, A.D.; O’Rourke, T.; Narayanan, S.; Papadopoulos, K.; et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 2019, 37, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Saxena, K.; Konopleva, M. An expert overview of emerging therapies for acute myeloid leukemia: Novel small molecules targeting apoptosis, p53, transcriptional regulation and metabolism. Expert Opin. Investig. Drugs 2020, 29, 973–988. [Google Scholar] [CrossRef] [PubMed]
- Testa, U.; Pelosi, E.; Castelli, G. CD123 as a therapeutic target in the treatment of hematological malignancies. Cancers 2019, 11, 1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mani, R.; Goswami, S.; Gopalakrishnan, B.; Ramaswamy, R.; Wasmuth, R.; Tran, M.; Mo, X.; Gordon, A.; Bucci, D.; Lucas, D.M.; et al. The interleukin-3 receptor CD123 targeted SL-401 mediates potent cytotoxic activity against CD34(+)CD123(+) cells from acute myeloid leukemia/myelodysplastic syndrome patients and healthy donors. Haematologica 2018, 103, 1288–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, A.A.; Sweet, K.L.; Wang, E.S.; Donnellan, W.B.; Walter, R.B.; Stein, A.S.; Rizzieri, D.A.; Carraway, H.E.; Mantzaris, I.; Prebet, T.; et al. Results from ongoing phase 2 trial of SL-401 as consolidation therapy in patients with acute myeloid leukemia (AML) in remission with high relapse risk including minimal residual disease (MRD). Blood 2016, 128, 215. [Google Scholar] [CrossRef]
- Goebeler, M.-E.; Bargou, R.C. T cell-engaging therapies—BiTEs and beyond. Nat. Rev. Clin. Oncol. 2020. [Google Scholar] [CrossRef]
- Ravandi, F.; Bashey, A.; Foran, J.M.; Stock, W.; Mawad, R.; Blum, W.; Saville, M.W.; Johnson, C.M.; Vanasse, K.G.J.; Ly, T.; et al. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of XmAb14045, a CD123 x CD3 T cell-engaging bispecific antibody: Initial results of a phase 1 study. Blood 2018, 132, 763. [Google Scholar] [CrossRef]
- Przespolewski, A.C.; Griffiths, E.A. BITES and CARS and checkpoints, oh my! Updates regarding immunotherapy for myeloid malignancies from the 2018 annual ASH meeting. Blood Rev. 2020. [Google Scholar] [CrossRef]
- Myburgh, R.; Kiefer, J.; Russkamp, N.F.; Simonis, A.; Pfister, S.; Wilk, C.M.; Magnani, C.; Mueller, A.M.; Becher, B.; van den Broek, M.; et al. Anti-human CD117 CAR T-cells efficiently eliminate hematopoietic stem and CD117-positive AML cells. Blood 2018, 132, 4063. [Google Scholar] [CrossRef]
- Sommer, C.; Cheng, H.-Y.; Yeung, Y.A.; Nguyen, D.; Sutton, J.; Melton, Z.; Valton, J.; Poulsen, K.; Djuretic, I.; Van Blarcom, T.; et al. Preclinical evaluation of ALLO-819, an allogeneic CAR T cell therapy targeting FLT3 for the treatment of acute myeloid leukemia. Blood 2019, 134, 3921. [Google Scholar] [CrossRef]
- Sallman, D.A.; Kerre, T.; Poire, X.; Havelange, V.; Lewalle, P.; Davila, M.L.; Wang, E.S.; Dekker, D.; Snykers, S.; Sotiropoulou, P.A.; et al. Remissions in relapse/refractory acute myeloid leukemia patients following treatment with NKG2D CAR-T therapy without a prior preconditioning chemotherapy. Blood 2018, 132, 902. [Google Scholar] [CrossRef]
- Liu, F.; Cao, Y.; Pinz, K.; Ma, Y.; Wada, M.; Chen, K.; Ma, G.; Shen, J.; Tse, C.O.; Su, Y.; et al. First-in-human CLL1-CD33 compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: Update on phase 1 clinical trial. Blood 2018, 132, 901. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Sakura, T.; Miyawaki, S.; Toga, K.; Sogo, S.; Heike, Y. A new peptide vaccine OCV-501: In vitro pharmacology and phase 1 study in patients with acute myeloid leukemia. Cancer Immunol. Immunother. 2017, 66, 851–863. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M.; Takezako, N.; Kiguchi, T.; Miyawaki, S.; Heike, Y.; Mitsuki, K.; Yoshida, T.; Liew, E.L.; Naoe, T. Phase II trial of a peptide vaccine, Ocv-501 in elderly patients with acute myeloid leukemia. Blood 2018, 132, 29. [Google Scholar] [CrossRef]
- Janssen, L.L.G.; Westers, T.M.; Rovers, J.; Valk, P.; Cloos, J.; de Gruijl, T.D.; Van de Loosdrecht, A.A. Durable responses and survival in high risk AML and MDS patients treated with an allogeneic leukemia-derived dendritic cell vaccine. Blood 2019, 134, 1381. [Google Scholar] [CrossRef]
- Maslak, P.G.; Dao, T.; Bernal, Y.; Chanel, S.M.; Zhang, R.; Frattini, M.; Rosenblat, T.; Jurcic, J.G.; Brentjens, R.J.; Arcila, M.E.; et al. Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv. 2018, 2, 224–234. [Google Scholar] [CrossRef]
- Nahas, M.; Stroopinsky, D.; Capelletti, M.; Rosenblatt, J.; Orr, S.; Ghiasuddin, H.; Morin, A.; Liegel, J.; Kufe, D.; Avigan, D.E. CD155-tigit pathway modulation in dendritic cell/acute myeloid leukemia fusion vaccine model. Blood 2019, 134, 1386. [Google Scholar] [CrossRef]
- Stroopinsky, D.; Liegel, J.; Mahoney, K.M.; Rosenblatt, J.; Ebert, B.L.; Stone, R.M.; Rahimian, M.; Nahas, M.; Orr, S.; Capelletti, M.; et al. A novel monoclonal antibody combination plus DC/AML fusion vaccine eradicates AML in an immunocompetent murine model. Blood 2018, 132, 1446. [Google Scholar] [CrossRef]
- Klossowski, S.; Miao, H.; Kempinska, K.; Wu, T.; Purohit, T.; Kim, E.; Linhares, B.M.; Chen, D.; Jih, G.; Perkey, E.; et al. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. J. Clin. Investig. 2020, 130, 981–997. [Google Scholar] [CrossRef] [Green Version]
- Syndax Announces First Patient Dosed in Phase 1/2 AUGMENT-101 Trial of SNDX-5613 for the Treatment of Adults with Relapsed/Refractory Acute Leukemias. Available online: https://www.prnewswire.com/news-releases/syndax-announces-first-patient-dosed-in-phase-12-augment-101-trial-of-sndx-5613-for-the-treatment-of-adults-with-relapsedrefractory-acute-leukemias-300952320.html (accessed on 25 April 2020).
- Brunetti, L.; Gundry, M.C.; Sorcini, D.; Guzman, A.G.; Huang, Y.-H.; Ramabadran, R.; Gionfriddo, I.; Mezzasoma, F.; Milano, F.; Nabet, B.; et al. Mutant NPM1 maintains the leukemic state through HOX expression. Cancer Cell 2018, 34, 499–512.e499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lachowiez, C.A.; Loghavi, S.; Kadia, T.M.; Daver, N.; Borthakur, G.; Pemmaraju, N.; Naqvi, K.; Alvarado, Y.; Yilmaz, M.; Short, N.; et al. Outcomes of older patients with NPM1-mutated AML: Current treatments and the promise of venetoclax-based regimens. Blood Adv. 2020, 4, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Lyle, L.; Daver, N. Current and emerging therapies for patients with acute myeloid leukemia: A focus on MCL-1 and the CDK9 pathway. Am. J. Manag. Care 2018, 24, S356–S365. [Google Scholar] [PubMed]
- PARK, J.; Yoon, S.-S.; Koh, Y. Abstract 854: Combination effect of low dose cytarabine and pan-RAF inhibitor LY3009120 in AML cells with RAS mutations. Cancer Res. 2019, 79, 854. [Google Scholar] [CrossRef]
Drug Name | Target | Date Approved | Approved Use | Trial | Title |
---|---|---|---|---|---|
Midostaurin | FLT3 | 1 April 2017 | 7 + 3 + Midostaurin in Newly Diagnosed FLT3 AML in Patients <60 | NCT00651261/CALGB-RATIFY | A Phase III Randomized, Double-Blind Study of Induction (Daunorubicin/Cytarabine) and Consolidation (High-Dose Cytarabine) Chemotherapy + Midostaurin (PKC412) (IND #101261) or Placebo in Newly Diagnosed Patients <60 Years of Age with FLT3 Mutated Acute Myeloid Leukemia (AML) |
Enasidenib | IDH2 | 1 August 2017 | R/R AML with IDH2 Mutation | NCT01915498 | A Phase I/II, Multicenter, Open-Label, Dose-Escalation and Expansion, Safety, Pharmacokinetic, Pharmacodynamic, and Clinical Activity Study of Orally Administered AG-221 in Subjects with Advanced Hematologic Malignancies with an IDH2 Mutation |
Vyxeos | Liposomal Daunorubicin, Cytarabine | 1 August 2017 | AML-MRC or t-AML | NCT01696084 | Phase III, Multicenter, Randomized, Trial of CPX-351 (Cytarabine:Daunorubicin) Liposome Injection Versus Cytarabine and Daunorubicin in Patients 60–75 Years of Age with Untreated High Risk (Secondary) AML |
Mylotarg | CD33 | 1 September 2017 | R/R AML with CD33 in Patients ≥2 years of age; Newly Diagnosed AML with CD33 | MyloFrance 1 | High Efficacy and Safety Profile of Fractionated Doses of Mylotarg as Induction Therapy in Patients with Relapsed Acute Myeloblastic Leukemia: a Prospective Study of the Alfa Group |
Ivosidenib | IDH1 | 1 July 2018 | R/R AML with IDH1 Mutation | NCT02074839 | A Phase I, Multicenter, Open-Label, Dose-Escalation and Expansion, Safety, Pharmacokinetic, Pharmacodynamic, and Clinical Activity Study of Orally Administered AG-120 in Subjects with Advanced Hematologic Malignancies with an IDH1 Mutation |
Gilteritinib | FLT3-ITD, FLT3- TKD | 28 November 2018 | R/R AML with FLT3 Mutation | NCT02421939; ADMIRAL | A Phase III Open-Label, Multicenter, Randomized Study of ASP2215 Versus Salvage Chemotherapy in Patients with Relapsed or Refractory Acute Myeloid Leukemia (AML) with FLT3 Mutation |
Venetoclax | BCL2 | 21 November 2018 | In Combination with HMA in DeNovo AML in Patients >75 Unfit for Standard 7 + 3 | NCT02203773 | Phase Ib Study of ABT-199 (GDC-0199) in Combination with Azacitidine or Decitabine in Treatment-Naive Subjects with Acute Myelogenous Leukemia Who Are Greater Than or Equal to 60 Years of Age and Who Are Not Eligible for Standard Induction Therapy |
Glasdegib | Smoothened (SMO) receptor | 21 November 2018 | In Combination with LDAC in Newly Diagnosed AML in Patients ≥ 75 | NCT01546038 | A Study to Evaluate PF-04449913 with Chemotherapy in Patients with Acute Myeloid Leukemia or Myelodysplastic Syndrome |
Oral Azacitidine | DNA methyltransferase | 1 September 2020 | Maintenance Therapy After Achieving First CR or CRi in Adult Patients | NCT01757535 | Efficacy of Oral Azacitidine Plus Best Supportive Care as Maintenance Therapy in Subjects with Acute Myeloid Leukemia in Complete Remission (QUAZAR AML-001) |
Drug Name | Target | Title | Trial |
---|---|---|---|
Crenolanib | FLT3-ITD, FLT3-TKD | Phase III Randomized Study of Crenolanib Versus Midostaurin Administered Following Induction Chemotherapy and Consolidation Therapy in Newly Diagnosed Subjects with FLT3 Mutated Acute Myeloid Leukemia | NCT03258931 |
Gilteritinib | FLT3-ITD, FLT3-TKD | Open-Label, Randomized Trial of Daunorubicin/Cytarabine and High Dose Cytarabine + Gilteritinib vs. Midostaurin for Induction and Consolidation. FLT3 mutated patients will be stratified based on TKD vs. ITD. Patients who are FLT3 ITD will be further stratified by Signal Ratio (High vs. Low of FLT3 Wild Type) and Nucleophosmin 1-Mutated (NPM1) (Positive vs. Negative). | NCT03836209 |
Quizartinib | FLT3-ITD | A Phase III, Double-Blind, Placebo-controlled Study of Quizartinib Administered in Combination with Induction and Consolidation Chemotherapy, and Administered as Continuation Therapy in Subjects 18 to 75 Years Old with Newly Diagnosed FLT3-ITD (+) Acute Myeloid Leukemia (QuANTUM First) | NCT02668653 |
Midostaurin | multitarget-kinase, FLT3 | A Phase I/II Study of Midostaurin (PKC412) and 5-Azacitidine for Elderly Patients with Acute Myelogenous Leukemia. | NCT01093573 |
Midostaurin | multitarget-kinase, FLT3 | A Randomized Phase II Multicenter Study to Assess the Tolerability and Efficacy of the Addition of Midostaurin to 10-day Decitabine Treatment in Unfit Adult Acute Myeloid Leukemia and High-Risk Myelodysplasia Patients | NCT04097470 |
Gilteritinib | FLT3-ITD, FLT3-TKD | A Phase III Multicenter, Open-label, Randomized Study of ASP2215 (Gilteritinib), Combination of ASP2215 Plus Azacitidine and Azacitidine Alone in the Treatment of Newly Diagnosed Acute Myeloid Leukemia with FLT3 Mutation in Patients Not Eligible for Intensive Induction Chemotherapy | NCT02752035 |
Sorafenib | FLT3-ITD | Phase II Study of Sorafenib Plus 5-Azacitidine for the Initial Therapy of Patients with Acute Myeloid Leukemia and High-Risk Myelodysplastic Syndrome with FLT3-ITD Mutation | NCT02196857 |
Sorafenib | FLT3-ITD | Phase I Study of The Combination of Bortezomib and Sorafenib Followed by Decitabine in Patients with Acute Myeloid Leukemia | NCT01861314 |
SEL24 | FLT3, PIM | A Phase I/II Study of SEL24 in Patients with Acute Myeloid Leukemia | NCT03008187 |
MAX-40279 | FGFR, FLT3-ITD and D835 | A Phase I Trial of MAX-40279 Given Orally to Subjects with Acute Myelogenous Leukemia (AML) | NCT03412292 |
Ivosidenib, Enasidenib | IDH1/IDH2 | A Phase III, Multicenter, Double-blind, Randomized, Placebo-controlled Study of Ivosidenib or Enasidenib in Combination with Induction Therapy and Consolidation Therapy Followed by Maintenance Therapy in Patients with Newly Diagnosed Acute Myeloid Leukemia or Myelodysplastic Syndrome with Excess Blasts-2, with an IDH1 or IDH2 Mutation, Respectively, Eligible for Intensive Chemotherapy. | NCT03839771 |
APR-246 | TP53 | A Phase III Multicenter, Randomized, Open Label Study of APR-246 in Combination with Azacitidine Versus Azacitidine Alone for the Treatment of (Tumor Protein) TP53 Mutant Myelodysplastic Syndromes | NCT03745716 |
AMG-232 | MDM2 Antagonist | A Phase IB Study of KRT-232 (AMG-232) in Combination with Decitabine in Acute Myeloid Leukemia | NCT03041688 |
HDM201 | MDM2 Antagonist | A Phase I/II Multi-center Study of HDM201 Added to Chemotherapy in Adult Subjects with Relapsed/Refractory (R/R) or Newly Diagnosed Acute Myeloid Leukemia (AML) | NCT03760445 |
DS 3032b | MDM2 Antagonist | A Phase I Study of Milademetan (DS 3032b), an Oral MDM2 Inhibitor, in Dose Escalation as a Single Agent and in Dose Escalation/Expansion in Combination with 5 Azacitidine in Subjects with Acute Myelogenous Leukemia (AML) or High-Risk Myelodysplastic Syndrome (MDS) | NCT02319369 |
Milademetan | MDM2 Antagonist, FLT3 | A Phase I Study of Milademetan in Combination with Quizartinib in Subjects with FLT3-ITD Mutant Acute Myeloid Leukemia That Are Relapsed/Refractory, or Newly Diagnosed and Unfit for Intensive Chemotherapy | NCT03552029 |
Venetoclax | BCL2 | A Randomized, Double-Blind, Placebo Controlled Phase III Study of Venetoclax in Combination with Azacitidine Versus Azacitidine in Treatment Naïve Subjects with Acute Myeloid Leukemia Who Are Ineligible for Standard Induction Therapy | NCT02993523 |
Venetoclax | BCL2 | A Randomized, Double-Blind, Placebo Controlled Phase III Study of Venetoclax Co-Administered with Low Dose Cytarabine Vs. Low Dose Cytarabine in Treatment Naïve Patients with Acute Myeloid Leukemia Who Are Ineligible for Intensive Chemotherapy | NCT03069352 |
Venetoclax + Decitabine + Quizartinib | FLT3, BCL2 | Quizartinib, Decitabine, and Venetoclax in Treating Participants with Untreated or Relapsed Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome | NCT03661307 |
Venetoclax + S64315 | MCL1-I, BCL2 | An International Phase Ib Multicentre Study to Characterize the Safety and Tolerability of Intravenously Administered S64315, a Selective Mcl-1 Inhibitor, in Combination with Orally Administered Venetoclax, a Selective BCL2 Inhibitor in Patients with Acute Myeloid Leukaemia (AML). | NCT03672695 |
Glasdegib | Hedgehog pathway (Hh) | A Study Evaluating Intensive Chemotherapy with or without Glasdegib or Azacitidine with or without Glasdegib in Patients with Previously Untreated Acute Myeloid Leukemia (BRIGHT AML1019) | NCT03416179 |
7 + 3 + midostaurin + GO | CD33, TKI | A Phase I Study to Evaluate the Safety and Preliminary Efficacy of Gemtuzumab Ozogamicin and Midostaurin When Used in Combination with Standard Cytarabine and Daunorubicin Induction for Newly Diagnosed FLT3-mutated AML. | NCT03900949 |
Tagraxofusp | CD123 | A Phase I/II Study of SL-401 as Consolidation Therapy for Adult Patients with Adverse Risk Acute Myeloid Leukemia in First CR, and/or Evidence of Minimal Residual Disease (MRD) in First CR | NCT02270463 |
Alvocidib | CDK9-i | A Phase I, Open-label, Dose-Escalation, Safety and Biomarker Prediction of Alvocidib and Cytarabine/Daunorubicin (7 + 3) in Patients with Newly Diagnosed Acute Myeloid Leukemia (AML) | NCT03298984 |
Alvocidib | CDK9-i | A Phase Ib/II, Open-label Clinical Study to Determine Preliminary Safety and Efficacy of Alvocidib When Administered in Sequence After Decitabine or Azacitidine in Patients with MDS | NCT03593915 |
Maintenance Therapy | |||
Sorafenib | FLT3-ITD | Phase II Trial (SORMAIN), a Randomized, Double-Blind, Placebo-Controlled Study, Evaluating Sorafenib as Maintenance Therapy After allo-SCT in Patients with FLT3-ITD-Positive AML. | EudraCT 2010-018539-16 |
Midostaurin | multi-kinase | A Phase II, Randomized Trial of Standard of Care, with or without Midostaruin to Prevent Relapse Following Allogeneic Hematopoietic Stem Cell Transplantation in Patients with FLT3-ITD Mutated Acute Myeloid Leukemia (RADIUS) | NCT01883362 |
Gilteritinib | FLT3-ITD, FLT3-TKD | A Multi-center, Randomized, Double-blind, Placebo-controlled Phase III Trial of the FLT3 Inhibitor Gilteritinib Administered as Maintenance Therapy Following Allogeneic Transplant for Patients with FLT3/ITD AML | NCT02997202 |
Enasidenib | IDH2 | Pilot Trial of Enasidenib (AG-221) Maintenance Post Allogeneic Hematopoietic Cell Transplantation in Patients with IDH2 Mutation | NCT03728335 |
APR-246 | TP53 | Phase II Trial of APR-246 in Combination with Azacitidine as Maintenance Therapy for TP53 Mutated AML or MDS Following Allogeneic Stem Cell Transplant | NCT03931291 |
Venetoclax + Selinexor | BCL2, XPO1 | An Investigator-Sponsored Phase Ib Trial of Venetoclax and SINE: Selective Inhibition of Nuclear Export in Patients with High-Risk Hematologic Malignancies | NCT03955783 |
Nivolumab | checkpoint inhib | PD-1 Inhibition with Nivolumab for the Treatment of Patients with Acute Myeloid Leukemia in Remission at High-Risk for Relapse | NCT02532231 |
Relapsed- Refractory AML | |||
FF-10101-01 | ITD, ITD-691L and D835 | A First-in-Human Phase I/IIa Study to Assess the Safety, Tolerability, Efficacy, and Pharmacokinetics of FF-10101-01 in Subjects with Relapsed or Refractory Acute Myeloid Leukemia | NCT03194685 |
Enasidenib | IDH2 | CPX-351 (Vyxeos) Plus Enasidenib for Relapsed Acute Myelogenous Leukemia Characterized by the IDH2 Mutation | NCT03825796 |
Idasanutlin | MDM2 Antagonist | A Multicenter, Double-Blind, Randomized, Placebo-Controlled, Phase III Study of Idasanutlin, an MDM2 Antagonist, with Cytarabine Versus Cytarabine Plus Placebo in Patients with Relapsed or Refractory Acute Myeloid Leukemia (AML) | NCT02545283 |
Idasanutlin | MDM2 Antagonist | A Phase IB Multi-Arm Study with Venetoclax in Combination with Cobimetinib and Venetoclax in Combination with Idasanutlin in Patients with Relapsed or Refractory Acute Myeloid Leukemia Who Are Not Eligible for Cytotoxic Therapy | NCT02670044 |
AMG-232 | MDM2 Antagonist | A Phase IB Study of KRT-232 (AMG-232) in Combination with Decitabine in Acute Myeloid Leukemia | NCT03041688 |
HDM201 | MDM2 Antagonist | A Phase I/II Multi-center Study of HDM201 Added to Chemotherapy in Adult Subjects with Relapsed/Refractory (R/R) or Newly Diagnosed Acute Myeloid Leukemia (AML) | NCT03760445 |
Milademetan + Quizartinib | MDM2 Antagonist, FLT3 | A Phase I Study of Milademetan in Combination with Quizartinib in Subjects with FLT3-ITD Mutant Acute Myeloid Leukemia That Are Relapsed/Refractory, or Newly Diagnosed and Unfit for Intensive Chemotherapy | NCT03552029 |
ALRN-6924 wih ARA-C | MDMX | A Phase I/Ib Open-Label Study to Determine the Safety and Tolerability of ALRN-6924 Alone and in Combination with Cytarabine (Ara-C) in Patients with Relapsed/Refractory Acute Myeloid Leukemia or Advanced Myelodysplastic Syndrome with Wild-Type TP53 | NCT02909972 |
Enasidenib + Vyxeos | IDH2 | CPX-351 Plus Enasidenib for Relapsed Acute Myelogenous Leukemia Characterized by the IDH2 Mutation | NCT03825796 |
Quizartinib+ Vyxeos | FLT3-ITD | A Phase II Study Assessing CPX-351 (Vyxeos™) with Quizartinib for the Treatment of Relapsed or Refractory FLT3-ITD Mutation-Positive AML | NCT04209725 |
Venetoclax + Vyxeos | BCL2 | Phase II Study of CPX-351 in Combination with Venetoclax in Patients with Acute Myeloid Leukemia (AML) | NCT03629171 |
Venetoclax + GO | CD33, BCL2 | Phase Ib Study of the Safety and Efficacy of Gemtuzumab Ozogamicin (GO) and Venetoclax in Patients with Relapsed or Refractory CD33+ Acute Myeloid Leukemia: Big Ten Cancer Research Consortium BTCRC-AML17-113 | NCT04070768 |
OX40 | Anti-PDL1, SMO, Anti-CD33, BCL2 | An Open-Label Phase Ib/II Multi-Arm Study of OX40 Agonist Monoclonal Antibody (mAb), Anti-PDL1 mAb, Smoothened (SMO) Inhibitor, Anti-CD33 mAb, Bcl-2 Inhibitor and Azacitidine as Single-Agents and/or Combinations for the Treatment of Patients with Acute Myeloid Leukemia (AML) | NCT03390296 |
Venetoclax + Ivosidenib | IDH1, BCL2 | Phase Ib/II Investigator Sponsored Study of the IDH1-Mutant Inhibitor Ivosidenib (AG120) with the BCL2 Inhibitor Venetoclax in IDH1-Mutated Hematologic Malignancies | NCT03471260 |
Venetoclax + Alvocidib | CDK-9, BCL2 | Phase Ib Study of Venetoclax and Alvocidib in Patients with Relapsed/Refractory Acute Myeloid Leukemia; A Phase II, Open-label, Randomized, Two-stage Clinical Study of Alvocidib in Patients with Relapsed/Refractory Acute Myeloid Leukemia Following Treatment with Venetoclax Combination Therapy | NCT03441555, NCT03969420 |
Venetoclax + Quizartinib | FLT3, BCL2 | A Phase Ib/II Study of Venetoclax in Combination with Quizartinib in FLT3-Mutated Acute Myelogenous Leukemia (AML) | NCT03735875 |
Venetoclax + Decitabine + Quizartinib | FLT3, BCL2 | Quizartinib, Decitabine, and Venetoclax in Treating Participants with Untreated or Relapsed Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome | NCT03661307 |
Venetoclax + Gilteritinib | FLT3, BCL2 | A Phase I/II Study of Azacitidine, Venetoclax, and Gilteritinib for Patients with Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome with an Activating FLT3 Mutation | NCT04140487 |
Venetoclax + Gilteritinib | FLT3, BCL2 | A Multicenter, Open-Label Phase Ib Study to Assess Safety and Efficacy of Venetoclax in Combination with Gilteritinib in Subjects with Relapsed/Refractory Acute Myeloid Leukemia | NCT03625505 |
Venetoclax + Ruxolitinib | BCL2, JAK2 | Phase I Study to Evaluate Safety of Ruxolitinib in Combination with Venetoclax in Patients with Relapsed/Refractory Acute Myeloid Leukemia | NCT03874052 |
Venetoclax + Cobimetinib + Idasanutlin | BCL2, MEK/MDM2 | A Phase IB Multi-Arm Study with Venetoclax in Combination with Cobimetinib and Venetoclax in Combination with Idasanutlin in Patients with Relapsed or Refractory Acute Myeloid Leukemia Who Are Not Eligible for Cytotoxic Therapy | NCT02670044 |
Venetoclax + Lintuzumab | CD33, BCL2 | A Phase I/II Study of Venetoclax and Lintuzumab-Ac225 in Patients with Refractory or Relapsed AML | NCT03867682 |
Ivosidenib + Nivolumab | IDH1, Check point-inhibitor | A Study of the IDH1 Inhibitor AG-120 in Combination with the Checkpoint Blockade Inhibitor, Nivolumab, for Patients with IDH1 Mutated Relapsed/Refractory AML and High-Risk MDS | NCT04044209 |
Magolimab +/- AZA | CD47 | A Phase Ib Trial of Hu5F9-G4 Monotherapy or Hu5F9-G4 in Combination with Azacitidine in Patients with Hematological Malignancies | NCT03248479 |
XmAv14045 | CD123-CD3 BiTE | A Phase I Multiple Dose Study to Evaluate the Safety and Tolerability of XmAb®14045 in Patients with CD123-Expressing Hematologic Malignancies | NCT02730312 |
NKR-2 | investigational CAR-T | A Multi-national, Open-label, Dose Escalation Phase I Study to Assess the Safety and Clinical Activity of Multiple Administrations of NKR-2 in Patients with Different Metastatic Tumor Types (THINK - THerapeutic Immunotherapy with NKR-2) | NCT03018405 |
CD33, CLL-1 cCAR | CD33, CLL-1 | Phase I, Interventional, Single Arm, Open Label, Treatment Study to Evaluate the Safety and Tolerability of CLL1-CD33 cCAR in Patients with Relapsed and/or Refractory, High-Risk Hematologic Malignancies. | NCT03795779 |
DCP-001 | Dendritic cells | An International, Multicentre, Open-label Study To Evaluate the Efficacy and Safety of Two Different Vaccination Regimens of Immunotherapy with Allogeneic Dendritic Cells, DCP-001, in Patients with Acute Myeloid Leukaemia That Are In Remission with Persistent MRD | NCT03697707 |
SNDX-5613 | Menin-inhibitor | AUGMENT-101: A Phase I/II, Open-label, Dose-Escalation and Dose-Expansion Cohort Study of SNDX 5613 in Patients with Relapsed/Refractory Leukemias, Including Those Harboring an MLL/KMT2A Gene Rearrangement or Nucleophosmin 1 (NPM1) Mutation | NCT04065399 |
CC-95251 | SIRPα antagonist/CD47 | A Phase I, Open-Label, Dose Finding Study of CC-95251, A Monoclonal Antibody Directed Against SIRPα, Alone and in Combination with Cetuximab or Rituximab in Subjects with Advanced Solid and Hematologic Cancers | NCT03783403 |
TTI-621 | CD47 | A Phase Ia/Ib Dose Escalation and Expansion Trial of TTI-621, a Novel Biologic Targeting CD47, in Subjects with Relapsed or Refractory Hematologic Malignancies and Selected Solid Tumors | NCT02663518 |
TTI-622 | CD47 | A Phase Ia/Ib Dose Escalation and Expansion Trial of TTI-622 in Patients with Advanced Relapsed or Refractory Lymphoma or Myeloma | NCT03530683 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanchina, M.; Soong, D.; Zheng-Lin, B.; Watts, J.M.; Taylor, J. Advances in Acute Myeloid Leukemia: Recently Approved Therapies and Drugs in Development. Cancers 2020, 12, 3225. https://doi.org/10.3390/cancers12113225
Stanchina M, Soong D, Zheng-Lin B, Watts JM, Taylor J. Advances in Acute Myeloid Leukemia: Recently Approved Therapies and Drugs in Development. Cancers. 2020; 12(11):3225. https://doi.org/10.3390/cancers12113225
Chicago/Turabian StyleStanchina, Michele, Deborah Soong, Binbin Zheng-Lin, Justin M. Watts, and Justin Taylor. 2020. "Advances in Acute Myeloid Leukemia: Recently Approved Therapies and Drugs in Development" Cancers 12, no. 11: 3225. https://doi.org/10.3390/cancers12113225
APA StyleStanchina, M., Soong, D., Zheng-Lin, B., Watts, J. M., & Taylor, J. (2020). Advances in Acute Myeloid Leukemia: Recently Approved Therapies and Drugs in Development. Cancers, 12(11), 3225. https://doi.org/10.3390/cancers12113225