Optimal Clinical Management and the Molecular Biology of Angiosarcomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Aetiology of Angiosarcomas
3. Treatments for Localized Angiosarcoma
Neoadjuvant Systemic Treatment for Localized Angiosarcoma
4. Advanced Angiosarcoma
4.1. Chemotherapy in the Treatment for Advanced Angiosarcoma
4.1.1. Anthracycline-Based Regimens
4.1.2. Anti-Microtubule Agent-Based Regimen
4.1.3. Other Chemotherapeutic Agents
4.2. Targeting the Anti-Angiogenic Pathway in Advanced Angiosarcoma
The Rise and Fall of Anti-Endoglin Antibody in Angiosarcoma
4.3. Immunotherapy in Angiosarcomas
Combination of Viral Therapy and Immune Checkpoint Inhibitor
5. Molecular Biology and Translational Research in Angiosarcoma
5.1. MYC Amplification
5.2. TP53 Alterations
5.3. Alterations in Angiogenic Signaling Pathways
5.4. Molecular Features of Angiosarcoma Associated with Aetiology
5.5. The Future of Angiosarcoma Research: The Angiosarcoma Project
6. Future Perspectives
7. Conclusions
Funding
Conflicts of Interest
References
- Young, R.J.; Brown, N.J.; Reed, M.W.; Hughes, D.; Woll, P.J. Angiosarcoma. Lancet Oncol. 2010, 11, 983–991. [Google Scholar] [CrossRef]
- Gladdy, R.A.; Qin, L.-X.; Moraco, N.; Edgar, M.A.; Antonescu, C.R.; Alektiar, K.M.; Brennan, M.F.; Singer, S. Do Radiation-Associated Soft Tissue Sarcomas Have the Same Prognosis As Sporadic Soft Tissue Sarcomas? J. Clin. Oncol. 2010, 28, 2064–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salminen, S.H.; Sampo, M.M.; Böhling, T.O.; Tuomikoski, L.; Tarkkanen, M.; Blomqvist, C.P. Radiation-associated sarcoma after breast cancer in a nationwide population: Increasing risk of angiosarcoma. Cancer Med. 2018, 7, 4825–4835. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.C.; Chuang, S.-K.; Philipone, E.M.; Peters, S.M. Characteristics and Prognosis of Primary Head and Neck Angiosarcomas: A Surveillance, Epidemiology, and End Results Program (SEER) Analysis of 1250 Cases. Head Neck Pathol. 2018, 13, 378–385. [Google Scholar] [CrossRef]
- Hamidi, M.; Moody, J.S.; Weigel, T.L.; Kozak, K.R. Primary cardiac sarcoma. Ann. Thorac. Surg. 2010, 90, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Esposito, E.; Avino, F.; Di Giacomo, R.; Donzelli, I.; Marone, U.; Melucci, M.T.; Rinaldo, C.; Ruffolo, F.; Saponara, R.; Siani, C.; et al. Angiosarcoma of the breast, the unknown—a review of the current literature. Transl. Cancer Res. 2019, 8, S510–S517. [Google Scholar] [CrossRef]
- Palmerini, E.; Leithner, A.; Windhager, R.; Gosheger, G.; Boye, K.; Laitinen, M.; Hardes, J.; Traub, F.; Jutte, P.; Willegger, M.; et al. Angiosarcoma of bone: A retrospective study of the European Musculoskeletal Oncology Society (EMSOS). Sci. Rep. 2020, 10, 10853. [Google Scholar] [CrossRef]
- Turcotte, L.M.; Liu, Q.; Yasui, Y.; Henderson, T.O.; Gibson, T.M.; Leisenring, W.; Arnold, M.A.; Howell, R.M.; Green, D.M.; Armstrong, G.T.; et al. Chemotherapy and Risk of Subsequent Malignant Neoplasms in the Childhood Cancer Survivor Study Cohort. J. Clin. Oncol. 2019, 37, 3310–3319. [Google Scholar] [CrossRef]
- Zhang, A.Y.; Judson, I.; Benson, C.; Wunder, J.S.; Ray-Coquard, I.; Grimer, R.J.; Quek, R.; Wong, E.; Miah, A.B.; Ferguson, P.C.; et al. Chemotherapy with radiotherapy influences time-to-development of radiation-induced sarcomas: A multicenter study. Br. J. Cancer 2017, 117, 326–331. [Google Scholar] [CrossRef]
- West, J.G.; Weitzel, J.N.; Tao, M.L.; Carpenter, M.; West, J.E.; Fanning, C. BRCA Mutations and the Risk of Angiosarcoma After Breast Cancer Treatment. Clin. Breast Cancer 2008, 8, 533–537. [Google Scholar] [CrossRef]
- Schlosser, S.; Rabinovitch, R.; Shatz, Z.; Galper, S.; Shahadi-Dromi, I.; Finkel, S.; Jacobson, G.; Rasco, A.; Friedman, E.; Laitman, Y.; et al. Radiation-Associated Secondary Malignancies in BRCA Mutation Carriers Treated for Breast Cancer. Int. J. Radiat. Oncol. 2020, 107, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Mirjolet, C.; Merlin, J.; Truc, G.; Noël, G.; Thariat, J.; Domont, J.; Sargos, P.; Renard-Oldrini, S.; Ray-Coquard, I.; Liem, X.; et al. RILA blood biomarker as a predictor of radiation-induced sarcoma in a matched cohort study. EBioMedicine 2019, 41, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Bosetti, C.; La Vecchia, C.; Lipworth, L.; McLaughlin, J.K. Occupational exposure to vinyl chloride and cancer risk: A review of the epidemiologic literature. Eur. J. Cancer Prev. 2003, 12, 427–430. [Google Scholar] [CrossRef]
- Locker, G.Y.; Doroshow, J.H.; Zwelling, L.A.; Chabner, B.A. The Clinical Features of Hepatic Angiosarcoma: A Report of Four Cases and A Review of the English Literature. Medicine 1979, 58, 48–64. [Google Scholar] [CrossRef]
- Ragavan, S.; Lim, H.J.; Tan, J.W.-S.; Hendrikson, J.; Chan, J.Y.; Farid, M.; Chia, C.S.; Tan, G.H.C.; Soo, K.C.; Teo, M.C.-C.; et al. Axillary Lymph Node Dissection in Angiosarcomas of the Breast: An Asian Institutional Perspective. Sarcoma 2020, 2020, 4890803-5. [Google Scholar] [CrossRef] [PubMed]
- Hong, N.J.L.; Pandalai, P.K.; Hornick, J.L.; Shekar, P.S.; Harmon, D.C.; Chen, Y.-L.; Butrynski, J.E.; Baldini, E.H.; Raut, C.P. Cardiac Angiosarcoma Management and Outcomes: 20-Year Single-institution Experience. Ann. Surg. Oncol. 2012, 19, 2707–2715. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.W.-W.; Loong, H.H.; Srikanthan, A.; Zer, A.; Barua, R.; Butany, J.; Cusimano, R.J.; Liang, Y.-C.; Chang, C.-H.; Iakobishvili, Z.; et al. Primary cardiac sarcomas: A multi-national retrospective review. Cancer Med. 2018, 8, 104–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandyopadhyay, D.; Panchabhai, T.S.; Bajaj, N.S.; Patil, P.D.; Bunte, M.C. Primary pulmonary artery sarcoma: A close associate of pulmonary embolism—20-year observational analysis. J. Thorac. Dis. 2016, 8, 2592–2601. [Google Scholar] [CrossRef] [Green Version]
- Fayette, J.; Martin, E.; Piperno-Neumann, S.; Le Cesne, A.; Robert, C.; Bonvalot, S.; Ranchère, D.; Pouillart, P.; Coindre, J.M.; Blay, J.Y. Angiosarcomas, a heterogeneous group of sarcomas with specific behavior depending on primary site: A retrospective study of 161 cases. Ann. Oncol. 2007, 18, 2030–2036. [Google Scholar] [CrossRef]
- Oxenberg, J.; Khushalani, N.I.; Salerno, K.E.; Attwood, K.; Kane, J.M. Neoadjuvant chemotherapy for primary cutaneous/soft tissue angiosarcoma: Determining tumor behavior prior to surgical resection. J. Surg. Oncol. 2015, 111, 829–833. [Google Scholar] [CrossRef]
- Constantinidou, A.; Sauve, N.; Stacchiotti, S.; Blay, J.-Y.; Vincenzi, B.; Grignani, G.; Rutkowski, P.; Guida, M.; Hindi, N.; Klein, A.; et al. Evaluation of the use and efficacy of (neo)adjuvant chemotherapy in angiosarcoma: A multicentre study. ESMO Open 2020, 5, e000787. [Google Scholar] [CrossRef] [PubMed]
- Abu Saleh, W.K.; Ramlawi, B.; Shapira, O.M.; Al Jabbari, O.; Ravi, V.; Benjamin, R.; Durand, J.-B.; Leja, M.J.; Blackmon, S.H.; Bruckner, B.A.; et al. Improved Outcomes With the Evolution of a Neoadjuvant Chemotherapy Approach to Right Heart Sarcoma. Ann. Thorac. Surg. 2017, 104, 90–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravi, V.; Wagner, M.; Chen, T.W.-W.; Loong, H.H.F.; Mennel, R.G.; Yen, C.-C.; Clack, G.; Cutler, D.; Kwan, M.-F.R.; Chan, W.K. A phase II study of oraxol in the treatment of unresectable cutaneous angiosarcoma. J. Clin. Oncol. 2020, 38, 11517. [Google Scholar] [CrossRef]
- Casali, P.; Abecassis, N.; Bauer, S.; Biagini, R.; Bielack, S.; Bonvalot, S.; Boukovinas, I.; Bovee, J.V.M.G.; Brodowicz, T.; Broto, J.; et al. Soft tissue and visceral sarcomas: ESMO–EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv51–iv67. [Google Scholar] [CrossRef] [PubMed]
- Penel, N.; Bui, B.N.; Bay, J.-O.; Cupissol, D.; Ray-Coquard, I.; Piperno-Neumann, S.; Kerbrat, P.; Fournier, C.; Taïeb, S.; Jimenez, M.; et al. Phase II Trial of Weekly Paclitaxel for Unresectable Angiosarcoma: The ANGIOTAX Study. J. Clin. Oncol. 2008, 26, 5269–5274. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Ravi, V.; Brohl, A.; Chawla, S.; Ganjoo, K.; Italiano, A.; Attia, S.; Burgess, M.; Thornton, K.; Cranmer, L.; et al. Results of the TAPPAS trial: An adaptive enrichment phase III trial of TRC105 and pazopanib (P) versus pazopanib alone in patients with advanced angiosarcoma (AS). Ann. Oncol. 2019, 30, v683. [Google Scholar] [CrossRef]
- Young, R.; Natukunda, A.; Litière, S.; Woll, P.; Wardelmann, E.; Van Der Graaf, W. First-line anthracycline-based chemotherapy for angiosarcoma and other soft tissue sarcoma subtypes: Pooled analysis of eleven European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group trials. Eur. J. Cancer 2014, 50, 3178–3186. [Google Scholar] [CrossRef]
- Xing, M.; Yan, F.; Yu, S.; Shen, P. Efficacy and Cardiotoxicity of Liposomal Doxorubicin-Based Chemotherapy in Advanced Breast Cancer: A Meta-Analysis of Ten Randomized Controlled Trials. PLOS ONE 2015, 10, e0133569. [Google Scholar] [CrossRef] [Green Version]
- Chidiac, T.; Budd, G.T.; Pelley, R.; Sandstrom, K.; McLain, D.; Elson, P.; Crownover, R.; Marks, K.; Muschler, G.; Joyce, M.; et al. Phase II trial of liposomal doxorubicin (Doxil) in advanced soft tissue sarcomas. Investig. New Drugs 2000, 18, 253–259. [Google Scholar] [CrossRef]
- Garcia, A.; Kempf, R.; Rogers, M.; Muggia, F. A phase II study of Doxil (liposomal doxorubicin): Lack of activity in poor prognosis soft tissue sarcomas. Ann. Oncol. 1998, 9, 1131–1133. [Google Scholar] [CrossRef]
- Northfelt, D.W.; Dezube, B.J.; Thommes, J.A.; Miller, B.J.; Fischl, M.A.; Friedman-Kien, A.; Kaplan, L.D.; Du Mond, C.; Mamelok, R.D.; Henry, D.H. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: Results of a randomized phase III clinical trial. J. Clin. Oncol. 1998, 16, 2445–2451. [Google Scholar] [CrossRef] [PubMed]
- Gabizon, A.A.; Patil, Y.; La-Beck, N.M. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist. Updat. 2016, 29, 90–106. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, S.P.; Munhoz, R.R.; Kuk, D.; Landa, J.; Hartley, E.W.; Bonafede, M.; Dickson, M.A.; Gounder, M.; Keohan, M.L.; Crago, A.M.; et al. Outcomes of Systemic Therapy for Patients with Metastatic Angiosarcoma. Oncology 2015, 89, 205–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.-W.; Pang, A.; Puhaindran, M.; Maw, M.; Loong, H.H.; Sriuranpong, V.; Chang, C.-C.; Teo, S.; Mingmalairak, S.; Hirose, T.; et al. 502O_PR Optimal first line systemic therapy in patients (pts) with metastatic angiosarcoma: A report from the Asian Sarcoma Consortium. Ann. Oncol. 2016, 27, 27. [Google Scholar] [CrossRef] [Green Version]
- Leu, K.M.; Ostruszka, L.J.; Shewach, D.; Zalupski, M.; Sondak, V.; Biermann, J.S.; Lee, J.S.-J.; Couwlier, C.; Palazzolo, K.; Baker, L.H.; et al. Laboratory and Clinical Evidence of Synergistic Cytotoxicity of Sequential Treament With Gemcitabine Followed by Docetaxel in the Treatment of Sarcoma. J. Clin. Oncol. 2004, 22, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
- Schlemmer, M.; Reichardt, P.; Verweij, J.; Hartmann, J.; Judson, I.; Thyss, A.; Hogendoorn, P.; Marreaud, S.; Van Glabbeke, M.; Blay, J. Paclitaxel in patients with advanced angiosarcomas of soft tissue: A retrospective study of the EORTC soft tissue and bone sarcoma group. Eur. J. Cancer 2008, 44, 2433–2436. [Google Scholar] [CrossRef]
- Fujisawa, Y.; Fujimura, T.; Matsushita, S.; Yamamoto, Y.; Uchi, H.; Otsuka, A.; Funakoshi, T.; Miyagi, T.; Hata, H.; Gosho, M.; et al. The efficacy of eribulin mesylate for patients with cutaneous angiosarcoma previously treated with taxane: A multicentre prospective observational study. Br. J. Dermatol. 2020. [Google Scholar] [CrossRef]
- Anderson, S.E.; Keohan, M.L.; D’Adamo, D.R.; Maki, R.G. A Retrospective Analysis of Vinorelbine Chemotherapy for Patients With Previously Treated Soft-Tissue Sarcomas. Sarcoma 2006, 2006, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Pasquier, E.; André, N.; Street, J.; Chougule, A.; Rekhi, B.; Ghosh, J.; Philip, D.S.; Meurer, M.; MacKenzie, K.L.; Kavallaris, M.; et al. Effective Management of Advanced Angiosarcoma by the Synergistic Combination of Propranolol and Vinblastine-based Metronomic Chemotherapy: A Bench to Bedside Study. EBioMedicine 2016, 6, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Stacchiotti, S.; Palassini, E.; Sanfilippo, R.; Vincenzi, B.; Arena, M.; Bochicchio, A.; De Rosa, P.; Nuzzo, A.; Turano, S.; Morosi, C.; et al. Gemcitabine in advanced angiosarcoma: A retrospective case series analysis from the Italian Rare Cancer Network. Ann. Oncol. 2012, 23, 501–508. [Google Scholar] [CrossRef]
- Dickson, M.A.; D’Adamo, D.R.; Keohan, M.L.; D’Angelo, S.P.; Carvajal, R.D.; Gounder, M.M.; Maki, R.G.; Qin, L.-X.; Lefkowitz, R.A.; McKennon, O.R.; et al. Phase II Trial of Gemcitabine and Docetaxel with Bevacizumab in Soft Tissue Sarcoma. Sarcoma 2015, 2015, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Behjati, S.; Tarpey, P.S.; Sheldon, H.; Martincorena, I.; Van Loo, P.; Gundem, G.; Wedge, D.C.; Ramakrishna, M.; Cooke, S.L.; Pillay, N.; et al. Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nat. Genet. 2014, 46, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-C.; Zhang, L.; Sung, Y.-S.; Chen, C.-L.; Kao, Y.-C.; Agaram, N.P.; Singer, S.; Tap, W.D.; D’Angelo, S.; Antonescu, C.R. Recurrent CIC Gene Abnormalities in Angiosarcomas. Am. J. Surg. Pathol. 2016, 40, 645–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agulnik, M.; Yarber, J.; Okuno, S.; Von Mehren, M.; Jovanovic, B.; Brockstein, B.; Evens, A.; Benjamin, R. An open-label, multicenter, phase II study of bevacizumab for the treatment of angiosarcoma and epithelioid hemangioendotheliomas. Ann. Oncol. 2013, 24, 257–263. [Google Scholar] [CrossRef]
- Ray-Coquard, I.L.; Dômont, J.; Tresch-Bruneel, E.; Bompas, E.; Cassier, P.A.; Mir, O.; Piperno-Neumann, S.; Italiano, A.; Chevreau, C.; Cupissol, D.; et al. Paclitaxel Given Once Per Week With or Without Bevacizumab in Patients With Advanced Angiosarcoma: A Randomized Phase II Trial. J. Clin. Oncol. 2015, 33, 2797–2802. [Google Scholar] [CrossRef]
- Maki, R.G.; D’Adamo, D.R.; Keohan, M.L.; Saulle, M.; Schuetze, S.M.; Undevia, S.D.; Livingston, M.B.; Cooney, M.M.; Hensley, M.L.; Mita, M.M.; et al. Phase II Study of Sorafenib in Patients With Metastatic or Recurrent Sarcomas. J. Clin. Oncol. 2009, 27, 3133–3140. [Google Scholar] [CrossRef] [Green Version]
- Ray-Coquard, I.; Italiano, A.; Bompas, E.; Le Cesne, A.; Robin, Y.; Chevreau, C.; Bay, J.; Bousquet, G.; Piperno-Neumann, S.; Isambert, N.; et al. Sorafenib for Patients with Advanced Angiosarcoma: A Phase II Trial from the French Sarcoma Group (GSF/GETO). Oncology 2012, 17, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Van Der Graaf, W.T.A.; Blay, J.-Y.; Chawla, S.P.; Kim, D.-W.; Bui-Nguyen, B.; Casali, P.G.; Schöffski, P.; Aglietta, M.; Staddon, A.; Beppu, Y.; et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2012, 379, 1879–1886. [Google Scholar] [CrossRef]
- Kollár, A.; Jones, R.L.; Stacchiotti, S.; Gelderblom, H.; Guida, M.; Grignani, G.; Steeghs, N.; Safwat, A.; Katz, D.; Duffaud, F.; et al. Pazopanib in advanced vascular sarcomas: An EORTC Soft Tissue and Bone Sarcoma Group (STBSG) retrospective analysis. Acta Oncol. 2016, 56, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Weidema, M.; Versleijen-Jonkers, Y.M.; Flucke, U.; Desar, I.; Van Der Graaf, W. Targeting angiosarcomas of the soft tissues: A challenging effort in a heterogeneous and rare disease. Crit. Rev. Oncol. 2019, 138, 120–131. [Google Scholar] [CrossRef]
- Buehler, D.; Rush, P.; Hasenstein, J.R.; Rice, S.R.; Hafez, G.R.; Longley, B.J.; Kozak, K.R. Expression of angiopoietin-TIE system components in angiosarcoma. Mod. Pathol. 2013, 26, 1032–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelo, S.P.D.; Mahoney, M.R.; Van Tine, B.A.; Adkins, D.R.; Perdekamp, M.T.G.; Condy, M.M.; Luke, J.J.; Hartley, E.W.; Antonescu, C.R.; Tap, W.D.; et al. Alliance A091103 a phase II study of the angiopoietin 1 and 2 peptibody trebananib for the treatment of angiosarcoma. Cancer Chemother. Pharmacol. 2015, 75, 629–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.L.; Ratain, M.J.; O’Dwyer, P.J.; Siu, L.L.; Jassem, J.; Medioni, J.; Dejonge, M.; Rudin, C.; Sawyer, M.; Khayat, D.; et al. Phase II randomised discontinuation trial of brivanib in patients with advanced solid tumours. Eur. J. Cancer 2019, 120, 132–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, L.S.; Gordon, M.S.; Robert, F.; Matei, D.E. Endoglin for Targeted Cancer Treatment. Curr. Oncol. Rep. 2014, 16, 1–9. [Google Scholar] [CrossRef]
- Pardali, E.; Van Der Schaft, D.D.; Wiercinska, E.; Gorter, A.; Hogendoorn, P.C.W.; Griffioen, A.W.; Dijke, P.T. Critical role of endoglin in tumor cell plasticity of Ewing sarcoma and melanoma. Oncogene 2010, 30, 334–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attia, S.; Sankhala, K.K.; Riedel, R.F.; Robinson, S.I.; Conry, R.M.; Boland, P.M.; Barve, M.A.; Fritchie, K.; Seon, B.K.; Alvarez, D.; et al. A phase 1B/phase 2A study of TRC105 (Endoglin Antibody) in combination with pazopanib (P) in patients (pts) with advanced soft tissue sarcoma (STS). J. Clin. Oncol. 2016, 34, 11016. [Google Scholar] [CrossRef]
- Mehta, C.R.; Liu, L.; Theuer, C. An adaptive population enrichment phase III trial of TRC105 and pazopanib versus pazopanib alone in patients with advanced angiosarcoma (TAPPAS trial). Ann. Oncol. 2019, 30, 103–108. [Google Scholar] [CrossRef]
- Gambichler, T.; Koim, S.; Wrobel, M.; Käfferlein, H.U.; Brüning, T.; Stockfleth, E.; Becker, J.C.; Lang, K. Expression of Programmed Cell Death Proteins in Kaposi Sarcoma and Cutaneous Angiosarcoma. J. Immunother. 2020, 43, 169–174. [Google Scholar] [CrossRef]
- Honda, Y.; Otsuka, A.; Ono, S.; Yamamoto, Y.; Seidel, J.A.; Morita, S.; Hirata, M.; Kataoka, T.R.; Takenouchi, T.; Fujii, K.; et al. Infiltration of PD-1-positive cells in combination with tumor site PD-L1 expression is a positive prognostic factor in cutaneous angiosarcoma. OncoImmunology 2016, 6, e1253657. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, A.; Kaira, K.; Okubo, Y.; Utsumi, D.; Yasuda, M.; Asao, T.; Nishiyama, M.; Takahashi, K.; Ishikawa, O. Positive PD-L1 Expression Predicts Worse Outcome in Cutaneous Angiosarcoma. J. Glob. Oncol. 2017, 3, 360–369. [Google Scholar] [CrossRef]
- Fujii, H.; Arakawa, A.; Utsumi, D.; Sumiyoshi, S.; Yamamoto, Y.; Kitoh, A.; Ono, M.; Matsumura, Y.; Kato, M.; Konishi, K.; et al. CD8+tumor-infiltrating lymphocytes at primary sites as a possible prognostic factor of cutaneous angiosarcoma. Int. J. Cancer 2014, 134, 2393–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florou, V.; Rosenberg, A.E.; Wieder, E.; Komanduri, K.V.; Kolonias, D.; Uduman, M.; Castle, J.C.; Buell, J.S.; Trent, J.C.; Wilky, B.A. Angiosarcoma patients treated with immune checkpoint inhibitors: A case series of seven patients from a single institution. J. Immunother. Cancer 2019, 7, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dancsok, A.R.; Gao, D.; Lee, A.F.; Steigen, S.E.; Blay, J.-Y.; Thomas, D.M.; Maki, R.G.; Nielsen, T.O.; Demicco, E.G. Tumor-associated macrophages and macrophage-related immune checkpoint expression in sarcomas. OncoImmunology 2020, 9, 1747340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawbi, H.A.; Burgess, M.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Hu, J.; D’Angelo, S.; Attia, S.; Riedel, R.F.; Priebat, D.A.; et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): A multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1493–1501. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Mahoney, M.R.; Van Tine, B.A.; Atkins, J.; Milhem, M.M.; Jahagirdar, B.N.; Antonescu, C.R.; Horvath, E.; Tap, W.D.; Schwartz, G.K.; et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): Two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 2018, 19, 416–426. [Google Scholar] [CrossRef]
- Wilky, B.A.; Trucco, M.M.; Subhawong, T.K.; Florou, V.; Park, W.; Kwon, D.; Wieder, E.D.; Kolonias, D.; Rosenberg, A.E.; Kerr, E.D.; et al. Axitinib plus pembrolizumab in patients with advanced sarcomas including alveolar soft-part sarcoma: A single-centre, single-arm, phase 2 trial. Lancet Oncol. 2019, 20, 837–848. [Google Scholar] [CrossRef]
- Andtbacka, R.H.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J. Clin. Oncol. 2015, 33, 2780–2788. [Google Scholar] [CrossRef]
- Kelly, C.M.; Antonescu, C.R.; Bowler, T.; Munhoz, R.; Chi, P.; Dickson, M.A.; Gounder, M.M.; Keohan, M.L.; Movva, S.; Dholakia, R.; et al. Objective Response Rate Among Patients With Locally Advanced or Metastatic Sarcoma Treated With Talimogene Laherparepvec in Combination With Pembrolizumab. JAMA Oncol. 2020, 6, 402. [Google Scholar] [CrossRef]
- Fernandez, A.P.; Sun, Y.; Tubbs, R.R.; Goldblum, J.R.; Billings, S.D. FISH for MYC amplification and anti-MYC immunohistochemistry: Useful diagnostic tools in the assessment of secondary angiosarcoma and atypical vascular proliferations. J. Cutan. Pathol. 2011, 39, 234–242. [Google Scholar] [CrossRef]
- Manner, J.; Radlwimmer, B.; Hohenberger, P.; Mössinger, K.; Küffer, S.; Sauer, C.; Belharazem, D.; Zettl, A.; Coindre, J.-M.; Hallermann, C.; et al. MYC High Level Gene Amplification Is a Distinctive Feature of Angiosarcomas after Irradiation or Chronic Lymphedema. Am. J. Pathol. 2010, 176, 34–39. [Google Scholar] [CrossRef]
- Mentzel, T.; Schildhaus, H.U.; Palmedo, G.; Buttner, R.; Kutzner, H.J. Postradiation cutaneous angiosarcoma after treatment of breast carcinoma is characterized by MYC amplification in contrast to atypical vascular lesions after radiotherapy and control cases: Clinicopathological, immunohistochemical and molecular analysis of 66 cases. Mod. Pathol. 2011, 25, 75–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, J.S.; Billings, S.D.; Lanigan, C.P.; Buehler, D.; Fernandez, A.P.; Tubbs, R.R. Fully automated dual-color dual-hapten silverin situhybridization staining forMYCamplification: A diagnostic tool for discriminating secondary angiosarcoma. J. Cutan. Pathol. 2014, 41, 286–292. [Google Scholar] [CrossRef]
- Hadj-Hamou, N.-S.; Laé, M.; Almeida, A.; De La Grange, P.; Kirova, Y.; Sastre-Garau, X.; Malfoy, B. A transcriptome signature of endothelial lymphatic cells coexists with the chronic oxidative stress signature in radiation-induced post-radiotherapy breast angiosarcomas. Carcinogenesis 2012, 33, 1399–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Italiano, A.; Thomas, R.; Breen, M.; Zhang, L.; Crago, A.M.; Singer, S.; Khanin, R.; Maki, R.G.; Mihailovic, A.; Hafner, M.; et al. The miR-17-92 cluster and its target THBS1 are differentially expressed in angiosarcomas dependent on MYC amplification. Genes Chromosom. Cancer 2012, 51, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Orrock, J.; Wu, T.; Folpe, A.; William, S. Immunohistochemistry (IHC) for c-Myc in the differential diagnosis of vascular tumors of the liver. In Laboratory Investigation; Nature Publishing Group: New York, NY, USA, 2012; p. 421A. [Google Scholar]
- Shon, W.; Sukov, W.R.; Jenkins, S.M.; Folpe, A.L. MYC amplification and overexpression in primary cutaneous angiosarcoma: A fluorescence in-situ hybridization and immunohistochemical study. Mod. Pathol. 2013, 27, 509–515. [Google Scholar] [CrossRef]
- Requena, C.; Rubio, L.; Lavernia, J.; Machado, I.; Llombart, B.; Sanmartín, O.; Traves, V.; Serra-Guillén, C.; Cruz, J. Immunohistochemical and Fluorescence In Situ Hybridization Analysis of MYC in a Series of 17 Cutaneous Angiosarcomas. Am. J. Dermatopathol. 2018, 40, 349–354. [Google Scholar] [CrossRef]
- Laé, M.; Lebel, A.; Hamel-Viard, F.; Asselain, B.; Trassard, M.; Sastre, X.; Kirova, Y. Can c-myc amplification reliably discriminate postradiation from primary angiosarcoma of the breast? Cancer/Radiothérapie 2015, 19, 168–174. [Google Scholar] [CrossRef]
- Dews, M.; Homayouni, A.; Yu, D.; Murphy, D.; Sevignani, C.; Wentzel, E.; Furth, E.E.; Lee, W.M.; Enders, G.H.; Mendell, J.T.; et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat. Genet. 2006, 38, 1060–1065. [Google Scholar] [CrossRef] [Green Version]
- Dogar, A.M.; Semplicio, G.; Guennewig, B.; Hall, J. Multiple microRNAs Derived from Chemically Synthesized Precursors Regulate Thrombospondin 1 Expression. Nucleic Acid Ther. 2014, 24, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Italiano, A.; Chen, C.-L.; Thomas, R.; Breen, M.; Bonnet, F.; Sevenet, N.; Longy, M.; Maki, R.G.; Coindre, J.-M.; Antonescu, C.R. Alterations of the p53 and PIK3CA/AKT/mTOR pathways in angiosarcomas. Cancer 2012, 118, 5878–5887. [Google Scholar] [CrossRef] [Green Version]
- Naka, N.; Tomita, Y.; Nakanishi, H.; Araki, N.; Hongyo, T.; Ochi, T.; Aozasa, K. Mutations of p53 tumor-suppressor gene in angiosarcoma. Int. J. Cancer 1997, 71, 952–955. [Google Scholar] [CrossRef]
- Murali, R.; Chandramohan, R.; Möller, I.; Scholz, S.L.; Berger, M.; Huberman, K.; Viale, A.; Pirun, M.; Socci, N.D.; Bouvier, N.; et al. Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway. Oncotarget 2015, 6, 36041–36052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soini, Y.; Welsh, J.; Ishak, K.; Bennett, W. p53 Mutations in primary hepatic angiosarcomas not associated with vinyl chloride exposure. Carcinogenesis 1995, 16, 2879–2881. [Google Scholar] [CrossRef] [PubMed]
- Weihrauch, M.; Markwarth, A.; Lehnert, G.; Wittekind, C.; Wrbitzky, R.; Tannapfel, A. Abnormalities of the ARF-p53 pathway in primary angiosarcomas of the liver. Hum. Pathol. 2002, 33, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.; Hiniker, S.M.; Lucas, D.R.; Griffith, K.A.; McHugh, J.B.; Meirovitz, A.; Thomas, D.G.; Chugh, R.; Herman, J.M. Sporadic versus Radiation-Associated Angiosarcoma: A Comparative Clinicopathologic and Molecular Analysis of 48 Cases. Sarcoma 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zietz, C.; Rössle, M.; Haas, C.; Sendelhofert, A.; Hirschmann, A.; Stürzl, M.; Löhrs, U. MDM-2 Oncoprotein Overexpression, p53 Gene Mutation, and VEGF Up-Regulation in Angiosarcomas. Am. J. Pathol. 1998, 153, 1425–1433. [Google Scholar] [CrossRef] [Green Version]
- Donehower, L.A.; Harvey, M.; Slagle, B.L.; McArthur, M.J.; Jr, C.A.M.; Butel, J.S.; Bradley, A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nat. Cell Biol. 1992, 356, 215–221. [Google Scholar] [CrossRef]
- Salter, D.M.; Griffin, M.; Muir, M.; Teo, K.; Culley, J.; Smith, J.R.; Gómez-Cuadrado, L.; Matchett, K.; Sims, A.H.; Hayward, L.; et al. Development of mouse models of angiosarcoma driven by p53. Dis. Model. Mech. 2019, 12, dmm038612. [Google Scholar] [CrossRef] [Green Version]
- Jacks, T.; Remington, L.; Williams, B.O.; Schmitt, E.M.; Halachmi, S.; Bronson, R.T.; Weinberg, R.A. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 1994, 4, 1–7. [Google Scholar] [CrossRef]
- Ignatius, M.S.; Hayes, M.N.; E Moore, F.; Tang, Q.; Garcia, S.P.; Blackburn, P.R.; Baxi, K.; Wang, L.; Jin, A.; Ramakrishnan, A.; et al. tp53 deficiency causes a wide tumor spectrum and increases embryonal rhabdomyosarcoma metastasis in zebrafish. eLife 2018, 7. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, L.; Chang, N.-E.; Singer, S.; Maki, R.G.; Antonescu, C.R. Consistent MYC and FLT4 gene amplification in radiation-induced angiosarcoma but not in other radiation-associated atypical vascular lesions. Genes Chromosom. Cancer 2011, 50, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonescu, C.R.; Yoshida, A.; Guo, T.; Chang, N.-E.; Zhang, L.; Agaram, N.P.; Qin, L.-X.; Brennan, M.F.; Singer, S.; Maki, R.G. KDR Activating Mutations in Human Angiosarcomas Are Sensitive to Specific Kinase Inhibitors. Cancer Res. 2009, 69, 7175–7179. [Google Scholar] [CrossRef] [Green Version]
- Beca, F.; Krings, G.; Chen, Y.-Y.; Hosfield, E.M.; Vohra, P.; Sibley, R.K.; Troxell, M.L.; West, R.B.; Allison, K.H.; Bean, G.R. Primary mammary angiosarcomas harbor frequent mutations in KDR and PIK3CA and show evidence of distinct pathogenesis. Mod. Pathol. 2020, 33, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kunze, K.; Spieker, T.; Gamerdinger, U.; Nau, K.; Berger, J.; Dreyer, T.; Sindermann, J.R.; Hoffmeier, A.; Gattenlöhner, S.; Bräuninger, A. A Recurrent Activating PLCG1 Mutation in Cardiac Angiosarcomas Increases Apoptosis Resistance and Invasiveness of Endothelial Cells. Cancer Res. 2014, 74, 6173–6183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itakura, E.; Yamamoto, H.; Oda, Y.; Tsuneyoshi, M. Detection and characterization of vascular endothelial growth factors and their receptors in a series of angiosarcomas. J. Surg. Oncol. 2007, 97, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 2007, 26, 3279–3290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmings, B.A.; Restuccia, D.F. The PI3K-PKB/Akt Pathway. Cold Spring Harb. Perspect. Biol. 2015, 7, a026609. [Google Scholar] [CrossRef]
- Sulzmaier, F.J.; Jean, C.; Schlaepfer, D.D. FAK in cancer: Mechanistic findings and clinical applications. Nat. Rev. Cancer 2014, 14, 598–610. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer 2019, 18, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Yi, Q.; Tang, L. The roles of nuclear focal adhesion kinase (FAK) on Cancer: A focused review. J. Exp. Clin. Cancer Res. 2019, 38, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fachinger, G.; Deutsch, U.; Risau, W. Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the Angiopoietin receptor Tie-2. Oncogene 1999, 18, 5948–5953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winderlich, M.; Keller, L.; Cagna, G.; Broermann, A.; Kamenyeva, O.; Kiefer, F.; Deutsch, U.; Nottebaum, A.F.; Vestweber, D. VE-PTP controls blood vessel development by balancing Tie-2 activity. J. Cell Biol. 2009, 185, 657–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunney, T.D.; Esposito, D.; Mas-Droux, C.; Lamber, E.; Baxendale, R.W.; Martins, M.; Cole, A.; Svergun, D.; Driscoll, P.C.; Katan, M. Structural and Functional Integration of the PLCγ Interaction Domains Critical for Regulatory Mechanisms and Signaling Deregulation. Structure 2012, 20, 2062–2075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Painter, C.A.; Jain, E.; Tomson, B.N.; Dunphy, M.; Stoddard, R.E.; Thomas, B.S.; Damon, A.L.; Shah, S.; Kim, D.; Zañudo, J.G.T.; et al. The Angiosarcoma Project: Enabling genomic and clinical discoveries in a rare cancer through patient-partnered research. Nat. Med. 2020, 26, 181–187. [Google Scholar] [CrossRef]
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef]
- Conway, J.R.; Kofman, E.; Mo, S.S.; Elmarakeby, H.; Van Allen, E. Genomics of response to immune checkpoint therapies for cancer: Implications for precision medicine. Genome Med. 2018, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef]
- Knoepfler, P.S. Myc Goes Global: New Tricks for an Old Oncogene: Figure 1. Cancer Res. 2007, 67, 5061–5063. [Google Scholar] [CrossRef] [Green Version]
- Gabay, M.; Li, Y.; Felsher, D.W. MYC Activation Is a Hallmark of Cancer Initiation and Maintenance. Cold Spring Harb. Perspect. Med. 2014, 4, a014241. [Google Scholar] [CrossRef] [Green Version]
- Baudino, T.A.; McKay, C.; Pendeville-Samain, H.; Nilsson, J.A.; MacLean, K.H.; White, E.L.; Davis, A.C.; Ihle, J.N.; Cleveland, J.L. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 2002, 16, 2530–2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camarda, R.; Williams, J.; Goga, A. In vivo Reprogramming of Cancer Metabolism by MYC. Front. Cell Dev. Biol. 2017, 5, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberlin, L.S.; Gabay, M.; Fan, A.C.; Gouw, A.M.; Tibshirani, R.J.; Felsher, D.W.; Zare, R.N. Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc. Natl. Acad. Sci. 2014, 111, 10450–10455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marhin, W.W.; Chen, S.; Facchini, L.M.; Jr, A.J.F.; Penn, L.Z. Myc represses the growth arrest gene gadd45. Oncogene 1997, 14, 2825–2834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ge, Y.-L.; Tian, R.-H. The knockdown of c-myc expression by RNAi inhibits cell proliferation in human colon cancer HT-29 cells in vitro and in vivo. Cell. Mol. Biol. Lett. 2009, 14, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Abeshouse, A.; Adebamowo, C.; Adebamowo, S.N.; Akbani, R.; Akeredolu, T.; Ally, A.; Anderson, M.L.; Anur, P.; Appelbaum, E.L.; Armenia, J.; et al. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 2017, 171, 950–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérot, G.; Chibon, F.; Montero, A.; Lagarde, P.; De Thé, H.; Terrier, P.; Guillou, L.; Ranchère, D.; Coindre, J.-M.; Aurias, A. Constant p53 Pathway Inactivation in a Large Series of Soft Tissue Sarcomas with Complex Genetics. Am. J. Pathol. 2010, 177, 2080–2090. [Google Scholar] [CrossRef]
- Ito, M.; Barys, L.; O’Reilly, T.; Young, S.; Gorbatcheva, B.; Monahan, J.; Zumstein-Mecker, S.; Choong, P.F.; Dickinson, I.; Crowe, P.; et al. Comprehensive Mapping of p53 Pathway Alterations Reveals an Apparent Role for Both SNP309 and MDM2 Amplification in Sarcomagenesis. Clin. Cancer Res. 2011, 17, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef]
- Liao, H.-J.; Kume, T.; McKay, C.; Xu, M.-J.; Ihle, J.N.; Carpenter, G. Absence of Erythrogenesis and Vasculogenesis inPlcg1-deficient Mice. J. Biol. Chem. 2002, 277, 9335–9341. [Google Scholar] [CrossRef] [Green Version]
- Astigarraga, S.; Grossman, R.; Díaz-Delfín, J.; Caelles, C.; Paroush, Z.; Jiménez, G. A MAPK docking site is critical for downregulation of Capicua by Torso and EGFR RTK signaling. EMBO J. 2007, 26, 668–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dissanayake, K.; Toth, R.; Blakey, J.; Olsson, O.; Campbell, D.G.; Prescott, A.R.; Mackintosh, C. ERK/p90RSK/14-3-3 signalling has an impact on expression of PEA3 Ets transcription factors via the transcriptional repressor capicúa. Biochem. J. 2011, 433, 515–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadj-Hamou, N.-S.; Ugolin, N.; Ory, C.; Britzen-Laurent, N.; Sastre-Garau, X.; Chevillard, S.; Malfoy, B. A transcriptome signature distinguished sporadic from postradiotherapy radiation-induced sarcomas. Carcinogenesis 2011, 32, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Lesluyes, T.; Baud, J.; Pérot, G.; Charon-Barra, C.; You, A.; Valo, I.; Bazille, C.; Mishellany, F.; Leroux, A.; Renard-Oldrini, S.; et al. Genomic and transcriptomic comparison of post-radiation versus sporadic sarcomas. Mod. Pathol. 2019, 32, 1786–1794. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.-K.; Harvey, N.; Noh, Y.-H.; Schacht, V.; Hirakawa, S.; Detmar, M.; Oliver, G. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn. 2002, 225, 351–357. [Google Scholar] [CrossRef]
- Schacht, V.; Ramirez, M.I.; Hong, Y.; Hirakawa, S.; Feng, D.; Harvey, N.; Williams, M.; Dvorak, A.M.; Dvorak, H.F.; Oliver, G.; et al. T1/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003, 22, 3546–3556. [Google Scholar] [CrossRef] [PubMed]
- Bahram, F.; Claesson-Welsh, L. VEGF-mediated signal transduction in lymphatic endothelial cells. Pathophysiology 2010, 17, 253–261. [Google Scholar] [CrossRef] [PubMed]
Investigational Agent | Targeted Population | AS Specific | Single or Combo | N | Start Date | Expected Completion Date | Phase | NCT Identifier/EudraCT Number |
---|---|---|---|---|---|---|---|---|
Pazopanib | AS | Yes | Single | 30 | Nov 2011 | Jan 2019 | II | NCT01462630 |
Regorafenib | AS | Yes | Single | 31 | Jun 2014 | Oct 2019 | II | NCT02048722 |
Propranolol + metronomic cyclophosphamide | AS | Yes | Combo | 24 | Jan 2016 | Not provided | I/II | 2015-005177-21 |
Oraxol (oral paclitaxel + HM30181) | AS, cutaneous | Yes | Single | 43 | Dec 2018 | Dec 2020 | I/II | NCT03544567/2019-002085-13 |
Paclitaxel and avelumab | AS, metastatic | Yes | Combo | 32 | Jun 2018 | Nov 2022 | II | NCT03512834 |
T-VEC | AS, skin | Yes | Single | 4 | Arp 2019 | May 2021 | II | NCT03921073 |
Propranolol | AS, cutaneous and breast | Yes | Single | 14 | Dec 2019 | Dec 2021 | II | NCT04518124 |
Paclitaxel + radiotherapy | AS, cutaneous | Yes | Combo | 19 | May 2019 | Dec 2021 | I/II | NCT03921008 |
Paclitaxel + nivolumab Cabozantinib + nivolumab * | AS of skin, radiation-associated skin, and visceral | Yes | Combo | 90 | Sep 2020 | Sep 2023 | II | NCT04339738 |
AGN2034 + AGEN 1884 | AS | Yes | Combo | 55 | Oct 2020 | Oct 2021 | II | NCT01042379 |
Doxorubicin + dexrazoxane | STS, including AS | No | Combo | 73 | Feb 2016 | Oct 2023 | II | NCT02584309 |
Nivolumab + ipilimumab | Rare cancers, including AS | No | Combo | 818 | Jan 2017 | Aug 2021 | II | NCT02834013 |
T-VEC + pembrolizumab | STS, including AS | No | Combo | 60 | Mar 2017 | Mar 2021 | II | NCT03069378 |
Sunitinib + nivolumab | STS and bone sarcoma, including AS | No | Combo | 270 | Mar 2017 | Sep 2022 | I/II | NCT03277924/2016-004040-10 |
Ribociclib and doxorubicin | STS, including AS | No | Combo | 16 | Mar 2017 | Oct 2019 | I | NCT03009201 |
L19TNF + doxorubicin vs. doxorubicin | STS, including AS | No | Combo | 102 | July 2017 | Not provided | III | 2016-003239-38 |
Durvalumab + tremelimumab | Sarcoma, including AS | No | Combo | 62 | Aug 2017 | Aug 2020 | II | NCT02815995 |
RP1 +/− pembrolizumab | Solid tumor, including AS | No | Combo | 293 | Aug 2017 | Not provided | I/II | 2016-004548-12 |
Durvalumab + trememlimumab vs. doxorubicin | STS, including AS | No | Combo | 100 | Oct 2017 | Not provided | II | 2016-004750-15 |
Eribulin | AS and EHE | No | Single | 16 | Jan 2018 | May 2021 | II | NCT03331250 |
Atezolizumab + radiotherapy | STS, including AS | No | Combo | 69 | Feb 2018 | Not provided | II | 2016-005019-42 |
SPM-011 + Boron Neutron Capture Therapy | AS and melanoma | No | Combo | 9 | Nov 2019 | Dec 2021 | NA | NCT04293289 |
Cobimetinib + atezolizumab | STS, including AS | No | Combo | 80 | Oct 2019 | Not provided | I/II | 2019-000987-80 |
Molecular Feature | Genomic Alteration | Frequency | Biological Consequence | Clinical Consequence |
---|---|---|---|---|
MYC transcription factor | MYC amplification | 50–100% secondary AS; 7–8% primary AS [69,70,71,72,73,74,75,76,77,78,79] | Hypothesised to promote the angiogenic phenotype through upregulation of miRNAs in the miR-17-92 cluster, leading to reduced expression of anti-angiogenic THBS1 and CTGF [79,80]. | − |
MYC overexpression | 17–24% primary AS [76,77] | − | ||
TP53 | TP53 mutations | 4–52% AS [42,81,82,83,84,85,86,87] | Exact biological consequence in AS unknown. Animal models with TP53 alterations go on to develop AS [88,89,90,91]. | − |
Vascular endothelial growth factor (VEGF) & VEGF receptor (VEGFR) signaling | VEGFR-3 amplification (MYC amplification co-occurrence) | 18–25% secondary AS [76,92] | Uncontrolled VEGF/VEGFR signaling leads to dysregulated angiogenic activity, however exact mechanism in AS remains unknown. | − |
VEGFR-2 mutations (68% at T771) | 0–33% AS; 70% breast primary AS [42,43,93,94,95] | − | ||
VEGF/VEGFR family overexpression | 94% AS (VEGF-A); 94% AS (VEGFR-1); 65% AS (VEGFR-2); 79% AS (VEGFR-3) [96] | Potential prognostic value: lower VEGFR-2 expression associated with significantly poorer OS [96] | ||
Tyrosine kinase with Ig like and EGF domains (Tie) and Angiopoietin (Ang) signaling | Tie/Ang system overexpression | 68% AS (Tie-1); 80% AS (Tie-2); 86% AS (Ang-1); 42% AS (Ang-2) [51] | Exact biological consequence in AS unknown. Increased signaling activity through the Tie/Ang system is likely to trigger a cascade of increased activity through the downstream FAK, MAPK, PKB/PI3K/mTOR axes [97,98,99,100,101]. | Potential prognostic value: lower Ang-1 expression associated with significantly poorer OS [51] |
Receptor-type tyrosine-protein phosphatase beta (PTPRB) | PTPRB mutations | 26% secondary AS [42] | Loss of function mutations are most commonly observed and are hypothesised to lead to unmodulated Tie-2 and VEGFR-2 signaling [102,103]. | − |
Phospholipase C gamma 1 (PLCG1) | PLCG1 mutation (R707Q) | 7–9% secondary AS; 30% cardiac primary AS [42,43,95] | Mutation results in constitutively active PLCG1 leading to increased MAPK pathway signaling [95,104]. | − |
Capicua transcriptional repressor (CIC) | CIC mutations | 8% AS; enriched for young primary AS patients [43] | Exact biological consequence in AS unknown. CIC-rearrangements hypothesised to reduce CIC activity, leading to upregulation of CIC-target PEA3 family transcription factors [43]. | − |
CIC re-arrangements | 3% AS; enriched for primary AS cases with epithelioid histology [43] | − | ||
Phosphatidylinositol-4,5-bisphosphate 3-kinase subunit alpha (PIK3CA) | PIK3CA mutations | 21% AS; enriched for breast primary AS cases [105] | Exact biological consequence in AS unknown, however activating mutations were observed, and likely lead to increased signaling activity. | Potential treatment option: subset of patients may respond to PI3Kalpha inhibition [106] |
Tumour mutation burden (TMB) | High TMB | 21% AS; enriched for head, neck, face & scalp cases [105] | Exact biological consequence in AS unknown. High TMB present alongside COSMIC UV signature [105]. | Potential treatment option: subset of patients may respond to immune checkpoint inhibition [105,107,108,109] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.W.-W.; Burns, J.; Jones, R.L.; Huang, P.H. Optimal Clinical Management and the Molecular Biology of Angiosarcomas. Cancers 2020, 12, 3321. https://doi.org/10.3390/cancers12113321
Chen TW-W, Burns J, Jones RL, Huang PH. Optimal Clinical Management and the Molecular Biology of Angiosarcomas. Cancers. 2020; 12(11):3321. https://doi.org/10.3390/cancers12113321
Chicago/Turabian StyleChen, Tom Wei-Wu, Jessica Burns, Robin L. Jones, and Paul H. Huang. 2020. "Optimal Clinical Management and the Molecular Biology of Angiosarcomas" Cancers 12, no. 11: 3321. https://doi.org/10.3390/cancers12113321
APA StyleChen, T. W.-W., Burns, J., Jones, R. L., & Huang, P. H. (2020). Optimal Clinical Management and the Molecular Biology of Angiosarcomas. Cancers, 12(11), 3321. https://doi.org/10.3390/cancers12113321