Complications after CD19+ CAR T-Cell Therapy
Abstract
:Simple Summary
Abstract
1. Background
2. Cytokine Release Syndrome
3. Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS)
4. Complications after CAR T-Cell Therapy Other than CRS or ICANS
5. Late Neurologic and Psychiatric Events
6. Cardiovascular Toxicities
7. Pulmonary Toxicity
8. Metabolic Complications
9. Secondary Macrophage-Activation Syndrome (sHLH/MAS)
10. B-Cell Aplasia
11. Prolonged Cytopenia
12. Infections and Vaccinations
13. Immune-Related Events and GVHD
14. Subsequent Malignancies
15. Potential Risk of other Long-Term Complications and Implications of the Available Evidence for Clinical Care
16. Outlook and Future Perspectives
17. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Cao, G.; Lei, L.; Zhu, X. Efficiency and safety of autologous chimeric antigen receptor T-cells therapy used for patients with lymphoma: A systematic review and meta-analysis. Medicine 2019, 98, e17506. [Google Scholar] [CrossRef] [PubMed]
- Giavridis, T.; Van der Stegen, S.J.C.; Eyquem, J.; Hamieh, M.; Piersigilli, A.; Sadelain, M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 2018, 24, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Hay, K.A.; Hanafi, L.A.; Li, D.; Gust, J.; Liles, W.C.; Wurfel, M.M.; Lopez, J.A.; Chen, J.; Chung, D.; Harju-Baker, S.; et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 2017, 130, 2295–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teachey, D.T.; Lacey, S.F.; Shaw, P.A.; Melenhorst, J.J.; Maude, S.L.; Frey, N.; Pequignot, E.; Gonzalez, V.E.; Chen, F.; Finklestein, J.; et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor t-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016, 6, 664–679. [Google Scholar] [CrossRef] [Green Version]
- Davila, M.L.; Riviere, I.; Wang, X.; Bartido, S.; Park, J.; Curran, K.; Chung, S.S.; Stefanski, J.; Borquez-Ojeda, O.; Olszewska, M.; et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 2014, 6, 224ra225. [Google Scholar] [CrossRef] [Green Version]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorashian, S.; Kramer, A.M.; Onuoha, S.; Wright, G.; Bartram, J.; Richardson, R.; Albon, S.J.; Casanovas-Company, J.; Castro, F.; Popova, B.; et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 2019, 25, 1408–1414. [Google Scholar] [CrossRef]
- Pennisi, M.; Jain, T.; Santomasso, B.D.; Mead, E.; Wudhikarn, K.; Silverberg, M.L.; Batlevi, Y.; Shouval, R.; Devlin, S.M.; Batlevi, C.; et al. Comparing CAR T-cell toxicity grading systems: Application of the ASTCT grading system and implications for management. Blood Adv. 2020, 4, 676–686. [Google Scholar] [CrossRef] [Green Version]
- Yakoub-Agha, I.; Chabannon, C.; Bader, P.; Basak, G.W.; Bonig, H.; Ciceri, F.; Corbacioglu, S.; Duarte, R.F.; Einsele, H.; Hudecek, M.; et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: Best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica 2020, 105, 297–316. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Hunter, B.D.; Redd, R.; Rodig, S.J.; Chen, P.H.; Wright, K.; Lipschitz, M.; Ritz, J.; Kamihara, Y.; Armand, P.; et al. Axicabtagene ciloleucel in the non-trial setting: Outcomes and correlates of response, resistance, and toxicity. J. Clin. Oncol. 2020, 38, 3095–3106. [Google Scholar] [CrossRef]
- Palomba, M.; Garcia, J.; Wang, L.; Dehner, C.; Chung, K.; Maloney, D. TRANSCEND: Lisocabtagene maraleucel (liso-cel; JCAR017) healthcare resource utilization in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Blood 2018, 132, 3545. [Google Scholar] [CrossRef]
- Osborne, W.; Marzolini, M.; Tholouli, E.; Ramakrishnan, A.; Bachier, C.R.; McSweeney, P.A.; Irvine, D.; Zhang, D.; Al-Hajj, M.A.; Pule, M.A.; et al. Phase I Alexander study of AUTO3, the first CD19/22 dual targeting CAR T cell therapy, with pembrolizumab in patients with relapsed/refractory (r/r) DLBCL. J. Clin. Oncol. 2020, 38, 8001. [Google Scholar] [CrossRef]
- Topp, M.; Van Meerten, T.; Houot, R.; Minnema, M.; Milpied, N.; Lugtenburg, P.; Thieblemont, C.; Wermke, M.; Song, K.; Avivi, I.; et al. earlier steroid use with axicabtagene ciloleucel (Axi-Cel) in patients with relapsed/refractory large B cell lymphoma. Blood 2019, 134, 243. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Chavez, J.C.; Sehgal, A.R.; William, B.R.; Munoz, J.; Salles, G.A.; Casulo, C.; Munshi, P.N.; Maloney, D.G.; De Vos, S.; et al. Interim analysis of ZUMA-5: A phase II study of axicabtagene ciloleucel (axi-cel) in patients (pts) with relapsed/refractory indolent non-Hodgkin lymphoma (R/R iNHL). J. Clin. Oncol. 2020, 38, 8008. [Google Scholar] [CrossRef]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transpl. 2019, 25, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Brudno, J.N.; Kochenderfer, J.N. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev. 2019, 34, 45–55. [Google Scholar] [CrossRef]
- Stahl, K.; Schmidt, B.M.W.; Hoeper, M.M.; Skripuletz, T.; Mohn, N.; Beutel, G.; Eder, M.; Welte, T.; Ganser, A.; Falk, C.S.; et al. Extracorporeal cytokine removal in severe CAR-T cell associated cytokine release syndrome. J. Crit. Care 2020, 57, 124–129. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jager, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
- Chou, C.K.; Turtle, C.J. Assessment and management of cytokine release syndrome and neurotoxicity following CD19 CAR-T cell therapy. Expert Opin. Biol. 2020, 20, 653–664. [Google Scholar] [CrossRef]
- Santomasso, B.D.; Park, J.H.; Salloum, D.; Riviere, I.; Flynn, J.; Mead, E.; Halton, E.; Wang, X.; Senechal, B.; Purdon, T.; et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018, 8, 958–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gust, J.; Hay, K.A.; Hanafi, L.A.; Li, D.; Myerson, D.; Gonzalez-Cuyar, L.F.; Yeung, C.; Liles, W.C.; Wurfel, M.; Lopez, J.A.; et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017, 7, 1404–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, K.R.; Migliorini, D.; Perkey, E.; Yost, K.E.; Bhaduri, A.; Bagga, P.; Haris, M.; Wilson, N.E.; Liu, F.; Gabunia, K.; et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 2020. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Gust, J.; Taraseviciute, A.; Turtle, C.J. Neurotoxicity associated with CD19-targeted CAR-T cell therapies. CNS Drugs 2018, 32, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Hunter, B.D.; Jacobson, C.A. CAR T-cell associated neurotoxicity: Mechanisms, clinicopathologic correlates, and future directions. J. Natl. Cancer Inst. 2019, 111, 646–654. [Google Scholar] [CrossRef]
- Landry, K.; Thomas, A.A. Neurological complications of CAR T cell therapy. Curr. Oncol. Rep. 2020, 22, 83. [Google Scholar] [CrossRef]
- Möhn, N.; Könecke, C.; Skripuletz, T. Neurotoxizität unter CAR-T-Zell-Therapie (CAR: Chimärer Antigenrezeptor). DGNeurologie 2020, 3, 241–250. [Google Scholar] [CrossRef]
- Cordeiro, A.; Bezerra, E.D.; Hirayama, A.V.; Hill, J.A.; Wu, Q.V.; Voutsinas, J.; Sorror, M.L.; Turtle, C.J.; Maloney, D.G.; Bar, M. Late events after treatment with CD19-targeted chimeric antigen receptor modified T cells. Biol. Blood Marrow Transpl. 2020, 26, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Strati, P.; Varma, A.; Adkins, S.; Nastoupil, L.J.; Westin, J.; Hagemeister, F.B.; Fowler, N.H.; Lee, H.J.; Fayad, L.E.; Samaniego, F.; et al. Hematopoietic recovery and immune reconstitution after axicabtagene ciloleucel in patients with large B-cell lymphoma. Haematologica 2020. [Google Scholar] [CrossRef] [PubMed]
- Wudhikarn, K.; Pennisi, M.; Garcia-Recio, M.; Flynn, J.R.; Afuye, A.; Silverberg, M.L.; Maloy, M.A.; Devlin, S.M.; Batlevi, C.L.; Shah, G.L.; et al. DLBCL patients treated with CD19 CAR T cells experience a high burden of organ toxicities but low nonrelapse mortality. Blood Adv. 2020, 4, 3024–3033. [Google Scholar] [CrossRef] [PubMed]
- Alvi, R.M.; Frigault, M.J.; Fradley, M.G.; Jain, M.D.; Mahmood, S.S.; Awadalla, M.; Lee, D.H.; Zlotoff, D.A.; Zhang, L.; Drobni, Z.D.; et al. Cardiovascular events among adults treated with chimeric antigen receptor T-cells (CAR-T). J. Am. Coll. Cardiol. 2019, 74, 3099–3108. [Google Scholar] [CrossRef] [PubMed]
- Burstein, D.S.; Maude, S.; Grupp, S.; Griffis, H.; Rossano, J.; Lin, K. Cardiac profile of chimeric antigen receptor T cell therapy in children: A single-institution experience. Biol. Blood Marrow Transpl. 2018, 24, 1590–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, J.C.; Weiss, S.L.; Maude, S.L.; Barrett, D.M.; Lacey, S.F.; Melenhorst, J.J.; Shaw, P.; Berg, R.A.; June, C.H.; Porter, D.L.; et al. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit. Care Med. 2017, 45, e124–e131. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, B.; Kang, Y.; Smith, A.M.; Frey, N.V.; Carver, J.R.; Scherrer-Crosbie, M. Cardiovascular effects of CAR T cell therapy: A retrospective study. JACC Cardiooncol. 2020, 2, 193–203. [Google Scholar] [CrossRef]
- Sandler, R.D.; Tattersall, R.S.; Schoemans, H.; Greco, R.; Badoglio, M.; Labopin, M.; Alexander, T.; Kirgizov, K.; Rovira, M.; Saif, M.; et al. Diagnosis and management of secondary HLH/MAS following HSCT and CAR-T cell therapy in adults. A review of the literature and a survey of practice within EBMT centres on behalf of the autoimmune diseases working party (ADWP) and transplant complications working party (TCWP). Front. Immunol. 2020, 11, 524. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric antigen receptor T-cell therapy—Assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef]
- Birndt, S.; Schenk, T.; Heinevetter, B.; Brunkhorst, F.M.; Maschmeyer, G.; Rothmann, F.; Weber, T.; Muller, M.; Panse, J.; Penack, O.; et al. Hemophagocytic lymphohistiocytosis in adults: Collaborative analysis of 137 cases of a nationwide German registry. J. Cancer Res. Clin. Oncol. 2020, 146, 1065–1077. [Google Scholar] [CrossRef] [Green Version]
- Henter, J.I.; Von Bahr Greenwood, T.; Bergsten, E. Emapalumab in primary hemophagocytic lymphohistiocytosis. N. Engl. J. Med. 2020, 383, 596–598. [Google Scholar] [CrossRef]
- Laetsch, T.W.; Myers, G.D.; Baruchel, A.; Dietz, A.C.; Pulsipher, M.A.; Bittencourt, H.; Buechner, J.; De Moerloose, B.; Davis, K.L.; Nemecek, E.; et al. Patient-reported quality of life after tisagenlecleucel infusion in children and young adults with relapsed or refractory B-cell acute lymphoblastic leukaemia: A global, single-arm, phase 2 trial. Lancet Oncol. 2019, 20, 1710–1718. [Google Scholar] [CrossRef]
- Misbah, S.A.; Weeratunga, P. Immunoglobulin replacement and quality of life after CAR T-cell therapy. Lancet Oncol. 2020, 21, e6. [Google Scholar] [CrossRef] [Green Version]
- Fried, S.; Avigdor, A.; Bielorai, B.; Meir, A.; Besser, M.J.; Schachter, J.; Shimoni, A.; Nagler, A.; Toren, A.; Jacoby, E. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transpl. 2019, 54, 1643–1650. [Google Scholar] [CrossRef] [PubMed]
- Jain, T.; Knezevic, A.; Pennisi, M.; Chen, Y.X.; Ruiz, J.D.; Purdon, T.J.; Devlin, S.M.; Smith, M.; Shah, G.L.; Halton, E.; et al. Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies. Blood Adv. 2020, 4, 3776–3787. [Google Scholar] [CrossRef]
- Wudhikarn, K.; Palomba, M.L.; Pennisi, M.; Garcia-Recio, M.; Flynn, J.R.; Devlin, S.M.; Afuye, A.; Silverberg, M.L.; Maloy, M.A.; Shah, G.N.L.; et al. Infection during the first year in patients treated with CD19 CAR T cells for diffuse large B cell lymphoma. Blood Cancer J. 2020, 10. [Google Scholar] [CrossRef]
- Shah, G.L.; DeWolf, S.; Lee, Y.J.; Tamari, R.; Dahi, P.B.; Lavery, J.A.; Ruiz, J.D.; Devlin, S.M.; Cho, C.; Peled, J.U.; et al. Favorable outcomes of COVID-19 in recipients of hematopoietic cell transplantation. J. Clin. Investig. 2020. [Google Scholar] [CrossRef]
- Bhoj, V.G.; Arhontoulis, D.; Wertheim, G.; Capobianchi, J.; Callahan, C.A.; Ellebrecht, C.T.; Obstfeld, A.E.; Lacey, S.F.; Melenhorst, J.J.; Nazimuddin, F.; et al. Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood 2016, 128, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.A.; Seo, S.K. How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies. Blood 2020, 136, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, A.J.; Schmidt-Hieber, M.; Bertz, H.; Heinz, W.J.; Kiehl, M.; Kruger, W.; Mousset, S.; Neuburger, S.; Neumann, S.; Penack, O.; et al. Infectious diseases in allogeneic haematopoietic stem cell transplantation: Prevention and prophylaxis strategy guidelines 2016. Ann. Hematol. 2016, 95, 1435–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwer, F.; Shaukat, A.A.; Zahid, U.; Husnain, M.; McBride, A.; Persky, D.; Lim, M.; Hasan, N.; Bin Riaz, I. Donor origin CAR T cells: Graft versus malignancy effect without GVHD, a systematic review. Immunotherapy 2017, 9, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, A.K.; Abend, M.; Port, M.; Dammann, E.; Homeyer, R.S.; Eder, M.; Ganser, A.; Schrem, H.; Koenecke, C. Cumulative dosages of chemotherapy and radiotherapy exposure, and risk of secondary malignancies after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transpl. 2019, 54, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Ruella, M.; Xu, J.; Barrett, D.M.; Fraietta, J.A.; Reich, T.J.; Ambrose, D.E.; Klichinsky, M.; Shestova, O.; Patel, P.R.; Kulikovskaya, I.; et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat. Med. 2018, 24, 1499. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Huang, X.F.; Xiang, X.; Liu, Y.; Kang, X.; Song, Y.; Guo, X.; Liu, H.; Ding, N.; Zhang, T.; et al. A safe and potent anti-CD19 CAR T cell therapy. Nat. Med. 2019, 25, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Munoz, J.; Locke, F.L.; Miklos, D.B.; Brown, R.; McDevitt, J.T.; Mardiros, A.; Demirhan, E.; Konto, C.; Tees, T.M. First-in-human data of ALLO-501 and ALLO-647 in relapsed/refractory large B-cell or follicular lymphoma (R/R LBCL/FL): ALPHA study. J. Clin. Oncol. 2020, 38, 8002. [Google Scholar] [CrossRef]
- Sterner, R.M.; Sakemura, R.; Cox, M.J.; Yang, N.; Khadka, R.H.; Forsman, C.L.; Hansen, M.J.; Jin, F.; Ayasoufi, K.; Hefazi, M.; et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 2019, 133, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, S.; Zhao, L.; Zhang, B.; Chen, H. IFN-gamma and TNF-alpha aggravate endothelial damage caused by CD123-targeted CAR T cell. Oncotargets Ther. 2019, 12, 4907–4925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamers, C.H.; Sleijfer, S.; Van Steenbergen, S.; Van Elzakker, P.; Van Krimpen, B.; Groot, C.; Vulto, A.; Den Bakker, M.; Oosterwijk, E.; Debets, R.; et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: Clinical evaluation and management of on-target toxicity. Mol. Ther. 2013, 21, 904–912. [Google Scholar] [CrossRef]
- Morgan, R.A.; Yang, J.C.; Kitano, M.; Dudley, M.E.; Laurencot, C.M.; Rosenberg, S.A. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 2010, 18, 843–851. [Google Scholar] [CrossRef]
Reference Year | Product | Patients (n) | NRM | CRS | ICAN |
---|---|---|---|---|---|
Phase I/IIa 2014 [6] | Tisa-Cel | 30 | 0% | All patients (100%) developed CRS 27% developed severe CRS requiring hemodynamic support | 43% of patients developed ICANS ranging from delirium to global encephalopathy |
Phase II ELIANA 2018 [18] | Tisa-Cel | 75 | 8% | 77% of patients developed CRS of any grade 47% required ICU admission 25% required high-dose vasopressorsupport | 40% of patients developed ICANS of any grade 13% grade 3 ICANS |
Zuma-1 [19] | Axi-Cel | 101 | 4% | Grade 3 or worse CRS occurred in 11% of patients | Grade 3 or worse neurological events in 32% of patients |
Juliet [20] | Tisa-Cel | 93 | 0% | Grade 3 or worse CRS occurred in 22% of patients | Grade 3 or worse neurological events in 12% of patients |
Real world (PMID: 32667831) | Axi-Cel | 122 | 6% | Grade 3 or worse occurred in 16% of patients | Grade 3 or worse neurological events in 35% |
CRS Parameter | Grade 1 | Grade 2 | Grade 3 | Grade 4 |
---|---|---|---|---|
Temperature ≥ 38 °C | Yes | Yes/# | Yes/# | Yes/# |
with | ||||
Hypotension | No | Not requiring a vasopressor | Requiring one vasopressor | Requiring more than one vasopressor |
and/or + | ||||
Hypoxia | No | Requiring low-flow oxygen | Requiring high-flow oxygen | Requiring positive pressure (CPAP, BiPAP, mechanical ventilation) |
Complication | Prevention | Management/Comments |
---|---|---|
CRS | Reduce tumor cell numbers prior to infusion Limit the number of infused CAR T-cells | Antipyretics, Fluids, Toziclizumab, Steroids |
ICANS | Reduce tumor cell numbers prior to infusion Limit the number of infused CAR T-cells Neurologic assessment and treatment of neurologic diseases prior to CAR T-cell infusion | Steroids |
Pulmonary complications | Lung function tests before CAR T-cell infusion to assess the risk | Non-invasive ventilation |
Cardiovascular toxicity | Avoid cardiotoxic chemotherapy before CAR T-cell Echo to assess cardiac function | Reduce cardiovascular risk factors in long term survivors |
Secondary macrophage-activation syndrome | Unknown how it can be prevented | Hard to differentiate from severe CRS Etoposide, Emapalumab possible drugs |
B-cell aplasia | Cannot be prevented | IgG Substitution |
Prolonged cytopenia | Preventive measures unknown | Role of growth factor substitution unclear |
Infections | Protected environment during neutropenic phase | Anti-bacterial prophylaxis during neutropenic phase PJP and herpes prophylaxis till approximately 6 months post CAR T Antifungal prophylaxis not standard |
Neurotoxicity Domain. | Grade 1 | Grade 2 | Grade 3 | Grade 4 |
---|---|---|---|---|
ICE Score + | 9–7 | 6–3 | 2–0 | 0 unable to perform ICE |
Depressed level of consciousness | Awakens spontaneously | Awakens to voice | Awakens only to tactile stimulus | Patient is unarousable or requires vigorous or repetitive tactile stimuli to arouse. Stupor or coma. |
Seizure | None | None | Seizure not fulfilling criteria for grade 4 | Life-threatening prolonged seizure (>5 min); or Repetitive clinical or electrical seizures without return to baseline in between |
Motor findings | None | None | None | Deep focal motor weakness such as hemiparesis or paraparesis |
Elevated ICP/cerebral edema | None | None | Focal/local edema on Neuroimaging # | Diffuse cerebral edema on neuroimaging; decerebrate or decorticate posturing; or cranial nerve VI palsy; or papilledema; or Cushing’s triad |
Reference Year | Product Disease | Patients (n) Trial vs. Real World | Neurologic | Pulmonary | Cardiologic | Metabolic | Prolonged Cytopenia | Infection | Immune-related | Secondary Tumor | Other |
---|---|---|---|---|---|---|---|---|---|---|---|
Phase II ELIANA 2018 [18] | Tisa-Cel | 75 trial | Hypoxia 24% | Hypokalemia 27% Hypophos-phatemia 24% | 37% at day 28 | Febrile neutro-penia 35% till week 8 | Tumor lysis syndrome 4% Aspartate-aminotransferase increased 27% Bilirubin increased 17% | ||||
Cordeiro et al. [30] | ALL NHL CLL | 86 trial | 10% | 16% after day + 90 | 61% | 8% | 29% of patients in continuous CR | Hypogammaglobulinemia (IgG < 400 mg/dL or i.v immunoglobulinm (IVIG) replacement, observed in 67% | |||
Zuma-1 and -9 [31] | LBCL | 31 trial | Fatigue 53% Headache 46% Confused state 27% Dizziness 21% Somnolece 17% | Hypoxia 31% Cough 29% Dyspnea 21% Pleural effsuion 16% | Hypotension 58% Tachycardia 40% Peripheral edema 19% Tachycardia 19% Hyper-tension 16% | Hypocalcemia 40% Hyponataemia 35% Hypokalemia 33% Hypophos-phatemia 29% Hyperglycemia 19% Hypomagnes-emia 19% | 48% by day + 30 11% at 2 years | 28% grade II or worse | |||
Juliet [20] | LBCL | 93 trial | Dizziness 13% Anxiety 12% Fatigue 28% | Dyspnea 19% Cough 19% | Hypotension 29% Tachycardia 12% Peripheral edema 17% | Hypokalemia 23% Hypomagnes-emia 19%, Hypophosphatemia 19% | D + 28 32% | D + 28 20% infections | |||
MSKCC [32] | NHL ALL | 60 Real world | 18% at 1y | 15% at 1y | 17% at 1y | 55% at 1y | 58% at 1y | 35% at 1y | Hepatic 25% at 1y |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penack, O.; Koenecke, C. Complications after CD19+ CAR T-Cell Therapy. Cancers 2020, 12, 3445. https://doi.org/10.3390/cancers12113445
Penack O, Koenecke C. Complications after CD19+ CAR T-Cell Therapy. Cancers. 2020; 12(11):3445. https://doi.org/10.3390/cancers12113445
Chicago/Turabian StylePenack, Olaf, and Christian Koenecke. 2020. "Complications after CD19+ CAR T-Cell Therapy" Cancers 12, no. 11: 3445. https://doi.org/10.3390/cancers12113445
APA StylePenack, O., & Koenecke, C. (2020). Complications after CD19+ CAR T-Cell Therapy. Cancers, 12(11), 3445. https://doi.org/10.3390/cancers12113445