Annual Hazard Rate of Recurrence in Middle Eastern Papillary Thyroid Cancer over a Long-Term Follow-Up
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Recurrence Hazard Analysis in the Entire Cohort
2.2. Recurrence Hazard Analysis Based on RAI Status.
2.3. Factors Predicting Early and Late Recurrence of PTC on Multivariate Analysis
3. Discussion
4. Materials and Methods
4.1. Patient Selection
4.2. Clinico-Pathological Data
4.3. Classification of Recurrence
4.4. Follow-Up and Study Endpoints
4.5. DNA Isolation and Sanger Sequencing Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Vecchia, C.; Malvezzi, M.; Bosetti, C.; Garavello, W.; Bertuccio, P.; Levi, F.; Negri, E. Thyroid cancer mortality and incidence: A global overview. Int. J. Cancer 2015, 136, 2187–2195. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Alzahrani, A.S.; Carson, K.A.; Shong, Y.K.; Kim, T.Y.; Viola, D.; Elisei, R.; Bendlová, B.; Yip, L.; Mian, C. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J. Clin. Oncol. 2015, 33, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, M.; Liu, R.; Liu, X.; Murugan, A.K.; Zhu, G.; Zeiger, M.A.; Pai, S.; Bishop, J. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J. Clin. Oncol. 2014, 32, 2718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nixon, I.J.; Ganly, I.; Patel, S.G.; Palmer, F.L.; Di Lorenzo, M.M.; Grewal, R.K.; Larson, S.M.; Tuttle, R.M.; Shaha, A.; Shah, J.P. The results of selective use of radioactive iodine on survival and on recurrence in the management of papillary thyroid cancer, based on Memorial Sloan-Kettering Cancer Center risk group stratification. Thyroid 2013, 23, 683–694. [Google Scholar] [CrossRef]
- Ritter, A.; Mizrachi, A.; Bachar, G.; Vainer, I.; Shimon, I.; Hirsch, D.; Diker-Cohen, T.; Duskin-Bitan, H.; Robenshtok, E. Detecting recurrence following lobectomy for thyroid cancer: Role of thyroglobulin and thyroglobulin antibodies. J. Clin. Endocrinol. Metab. 2020, 105, dgaa152. [Google Scholar] [CrossRef]
- Alrawaji, A.; Alshahrani, Z.; Alzahrani, W.; Alomran, F.; Almadouj, A.; Alshehri, S.; Alzahrani, A.; Bazarbashi, S.; Alhashmi, H.; Almutlaq, H.; et al. Cancer Incidence Report Saudi Arabia 2015. In Saudi Cancer Registry; Council, S.H., Ed.; Saudi Health Council: Riyadh, Saudi Arabia, 2018. [Google Scholar]
- Medas, F.; Canu, G.L.; Boi, F.; Lai, M.L.; Erdas, E.; Calò, P.G. Predictive Factors of Recurrence in Patients with Differentiated Thyroid Carcinoma: A Retrospective Analysis on 579 Patients. Cancers 2019, 11, 1230. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Roh, J.-L.; Gong, G.; Cho, K.-J.; Choi, S.-H.; Nam, S.Y.; Kim, S.Y. Risk factors for recurrence after treatment of N1b papillary thyroid carcinoma. Ann. Surg. 2019, 269, 966–971. [Google Scholar] [CrossRef]
- Hirsch, D.; Gorshtein, A.; Robenshtok, E.; Masri-Iraqi, H.; Akirov, A.; Duskin Bitan, H.; Shimon, I.; Benbassat, C. Second radioiodine treatment: Limited benefit for differentiated thyroid cancer with locoregional persistent disease. J. Clin. Endocrinol. Metab. 2018, 103, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Piccardo, A.; Puntoni, M.; Bottoni, G.; Treglia, G.; Foppiani, L.; Bertoli, M.; Catrambone, U.; Arlandini, A.; Dib, B.; Altrinetti, V. Differentiated thyroid cancer lymph-node relapse. Role of adjuvant radioactive iodine therapy after lymphadenectomy. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 926–934. [Google Scholar] [CrossRef]
- Durante, C.; Montesano, T.; Torlontano, M.; Attard, M.; Monzani, F.; Tumino, S.; Costante, G.; Meringolo, D.; Bruno, R.; Trulli, F. Papillary thyroid cancer: Time course of recurrences during postsurgery surveillance. J. Clin. Endocrinol. Metab. 2013, 98, 636–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grogan, R.H.; Kaplan, S.P.; Cao, H.; Weiss, R.E.; DeGroot, L.J.; Simon, C.A.; Embia, O.M.; Angelos, P.; Kaplan, E.L.; Schechter, R.B. A study of recurrence and death from papillary thyroid cancer with 27 years of median follow-up. Surgery 2013, 154, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Brassard, M.; Borget, I.; Edet-Sanson, A.; Giraudet, A.-L.; Mundler, O.; Toubeau, M.; Bonichon, F.; Borson-Chazot, F.; Leenhardt, L.; Schvartz, C. Long-term follow-up of patients with papillary and follicular thyroid cancer: A prospective study on 715 patients. J. Clin. Endocrinol. Metab. 2011, 96, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Horiuchi, K.; Tokumitsu, H.; Sakamoto, A.; Noguchi, E.; Ueda, Y.; Okamoto, T. Time-varying pattern of mortality and recurrence from papillary thyroid cancer: Lessons from a long-term follow-up. Thyroid 2019, 29, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Miyauchi, A.; Kihara, M.; Fukushima, M.; Higashiyama, T.; Miya, A. Overall survival of papillary thyroid carcinoma patients: A single-institution long-term follow-up of 5897 patients. World J. Surg. 2018, 42, 615–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.-D.; Hsueh, C.; Chao, T.-C. Long-term follow-up of the therapeutic outcomes for papillary thyroid carcinoma with distant metastasis. Medicine 2015, 94, e1063. [Google Scholar] [CrossRef]
- Lim, H.; Devesa, S.S.; Sosa, J.A.; Check, D.; Kitahara, C.M. Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA 2017, 317, 1338–1348. [Google Scholar] [CrossRef]
- Xing, M.; Alzahrani, A.S.; Carson, K.A.; Viola, D.; Elisei, R.; Bendlova, B.; Yip, L.; Mian, C.; Vianello, F.; Tuttle, R.M. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013, 309, 1493–1501. [Google Scholar] [CrossRef] [Green Version]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Garshell, J.; Miller, D.; Altekruse, S.F.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2012; National Cancer Institute: Bethesda, MD, USA, 2015.
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, R.M.; Fagin, J.A.; Minkowitz, G.; Wong, R.J.; Roman, B.; Patel, S.; Untch, B.; Ganly, I.; Shaha, A.R.; Shah, J.P. Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance. JAMA Otolaryngol. Head Neck Surg. 2017, 143, 1015–1020. [Google Scholar] [CrossRef]
- Adam, M.A.; Pura, J.; Goffredo, P.; Dinan, M.A.; Hyslop, T.; Reed, S.D.; Scheri, R.P.; Roman, S.A.; Sosa, J.A. Impact of extent of surgery on survival for papillary thyroid cancer patients younger than 45 years. J. Clin. Endocrinol. Metab. 2015, 100, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Lamartina, L.; Durante, C.; Lucisano, G.; Grani, G.; Bellantone, R.; Lombardi, C.P.; Pontecorvi, A.; Arvat, E.; Felicetti, F.; Zatelli, M.C. Are evidence-based guidelines reflected in clinical practice? An analysis of prospectively collected data of the Italian Thyroid Cancer Observatory. Thyroid 2017, 27, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet 2016, 388, 2783–2795. [Google Scholar] [CrossRef]
- Ho, A.S.; Luu, M.; Barrios, L.; Chen, I.; Melany, M.; Ali, N.; Patio, C.; Chen, Y.; Bose, S.; Fan, X. Incidence and mortality risk spectrum across aggressive variants of papillary thyroid carcinoma. JAMA Oncol. 2020, 6, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Llamas-Olier, A.E.; Cuéllar, D.I.; Buitrago, G. Intermediate-risk papillary thyroid cancer: Risk factors for early recurrence in patients with excellent response to initial therapy. Thyroid 2018, 28, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Hess, K.R.; Levin, V.A. Getting more out of survival data by using the hazard function. Clin. Cancer Res. 2014, 20, 1404–1409. [Google Scholar] [CrossRef] [Green Version]
- Hay, I.D.; Johnson, T.R.; Kaggal, S.; Reinalda, M.S.; Iniguez-Ariza, N.M.; Grant, C.S.; Pittock, S.T.; Thompson, G.B. Papillary thyroid carcinoma (PTC) in children and adults: Comparison of initial presentation and long-term postoperative outcome in 4432 patients consecutively treated at the Mayo Clinic during eight decades (1936–2015). World J. Surg. 2018, 42, 329–342. [Google Scholar] [CrossRef]
- Schneider, D.F.; Mazeh, H.; Chen, H.; Sippel, R.S. Lymph node ratio predicts recurrence in papillary thyroid cancer. Oncologist 2013, 18, 157. [Google Scholar] [CrossRef] [Green Version]
- Albasri, A.; Sawaf, Z.; Hussainy, A.S.; Alhujaily, A. Histopathological patterns of thyroid disease in Al-Madinah region of Saudi Arabia. Asian Pac. J. Cancer Prev. 2014, 15, 5565–5570. [Google Scholar] [CrossRef] [Green Version]
- Raef, H.; Alfadhli, E.; Al-Hajjaj, A.; Malabu, U.H.; Al-Sobhi, S.; Rifai, A.; Al-Nuaim, A. High rate of persistent/recurrent disease among patients with differentiated thyroid cancer in Saudi Arabia: Factors affecting non-remission. Ann. Saudi Med. 2008, 28, 277–281. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr.; Leapman, S.B.; Cotran, R.S.; Folkman, J. Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 1972, 136, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Varani, J.; Lovett, E.J., III; Lundy, J. A model of tumor cell dormancy: Effects of anesthesia and surgery. J. Surg. Oncol. 1981, 17, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Demicheli, R.; Retsky, M.W.; Hrushesky, W.J.; Baum, M. Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: Learning from failures. Nat. Clin. Pract. Oncol. 2007, 4, 699–710. [Google Scholar] [CrossRef]
- Yin, W.; Di, G.; Zhou, L.; Lu, J.; Liu, G.; Wu, J.; Shen, K.; Han, Q.; Shen, Z.; Shao, Z. Time-varying pattern of recurrence risk for Chinese breast cancer patients. Breast Cancer Res. Treat. 2009, 114, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.-Y.; Chen, Y.-B.; Wang, W.; Guan, Y.-X.; Li, Y.-F.; Chen, S.; Sun, X.-W.; Li, W.; Xu, D.-Z.; Zhan, Y.-Q. Time-varying pattern of recurrence risk for gastric cancer patients. Med Oncol. 2013, 30, 514. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-F.; Feng, X.-Y.; Zhang, X.-W.; Wen, Y.-S.; Lin, P.; Rong, T.-H.; Cai, L.; Zhang, L.-J. Time-varying pattern of postoperative recurrence risk of early-stage (T1a-T2bN0M0) non-small cell lung cancer (NSCLC): Results of a single-center study of 994 Chinese patients. PLoS ONE 2014, 9, e106668. [Google Scholar] [CrossRef] [PubMed]
- Demicheli, R.; Valagussa, P.; Bonadonna, G. Double-peaked time distribution of mortality for breast cancer patients undergoing mastectomy. Breast Cancer Res. Treat. 2002, 75, 127–134. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Li, Z.; Wei, T. The benefits of radioactive iodine ablation for patients with intermediate-risk papillary thyroid cancer. PLoS ONE 2020, 15, e0234843. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, N.K.; Choi, J.H.; Kim, S.W.; Jin, S.M.; Suh, S.; Bae, J.C.; Min, Y.K.; Chung, J.H.; Kim, S.W. Radioactive iodine ablation does not prevent recurrences in patients with papillary thyroid microcarcinoma. Clin. Endocrinol. 2013, 78, 614–620. [Google Scholar] [CrossRef]
- Kim, S.K.; Woo, J.-W.; Lee, J.H.; Park, I.; Choe, J.-H.; Kim, J.-H.; Kim, J.S. Radioactive iodine ablation may not decrease the risk of recurrence in intermediate-risk papillary thyroid carcinoma. Endocr. Relat. Cancer 2016, 23, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Abubaker, J.; Jehan, Z.; Bavi, P.; Sultana, M.; Al-Harbi, S.; Ibrahim, M.; Al-Nuaim, A.; Ahmed, M.; Amin, T.; Al-Fehaily, M. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. J. Clin. Endocrinol. Metab. 2008, 93, 611–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bu, R.; Siraj, A.K.; Al-Obaisi, K.A.; Beg, S.; Al Hazmi, M.; Ajarim, D.; Tulbah, A.; Al-Dayel, F.; Al-Kuraya, K.S. Identification of novel BRCA founder mutations in Middle Eastern breast cancer patients using capture and Sanger sequencing analysis. Int. J. Cancer 2016, 139, 1091–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clionico-Pathological Variables | n (%) |
---|---|
Age at surgery (years) | |
<55 | 979 (81.5) |
≥55 | 222 (18.5) |
Gender | |
Male | 289 (24.1) |
Female | 912 (75.9) |
Histologic subtype | |
Classical variant | 815 (67.9) |
Follicular variant | 248 (20.6) |
Tall cell variant | 114 (9.5) |
Other variants | 24 (2.0) |
Histologic subtype | |
Aggressive variants | 138 (11.5) |
Non-aggressive variants | 1063 (88.5) |
Tumor size (cm) | |
≤4 | 601 (50.8) |
>4 | 582 (49.2) |
Multifocality | |
Yes | 599 (49.9) |
No | 602 (50.1) |
Extrathyroidal extension | |
ExT0 | 700 (58.3) |
ExT1 | 411 (34.2) |
ExT2 | 90 (7.5) |
Number of lymph nodes involved | |
≤5 | 913 (80.3) |
>5 | 224 (19.7) |
Lymph node metastasis | |
N0 | 565 (47.1) |
N1a | 165 (13.7) |
N1b | 407 (33.9) |
Nx | 64 (5.3) |
Extent of thyroidectomy | |
Total thyroidectomy | 1030 (85.8) |
Less than total thyroidectomy | 171 (14.2) |
Risk class | |
Low | 183 (15.2) |
Intermediate | 430 (35.8) |
High | 588 (49.0) |
Recurrence | |
Yes | 221 (18.4) |
Local | 40 (3.3) |
Regional | 115 (9.6) |
Distant | 66 (5.5) |
No | 980 (81.6) |
TNM stage | |
I | 957 (79.7) |
II | 160 (13.3) |
III | 63 (5.2) |
IV | 21 (1.8) |
Radioactive iodine therapy | |
Yes | 937 (78.0) |
No | 264 (22.0) |
Status at last follow-up | |
Alive | 1162 (96.8) |
Deceased | 39 (3.2) |
Due to Papillary thyroid cancer | 25 (2.1) |
Due to other reasons | 14 (1.1) |
BRAF mutation | |
Present | 675 (56.2) |
Absent | 470 (39.1) |
Unknown | 56 (4.7) |
NRAS mutation | |
Present | 77 (6.4) |
Absent | 1063 (88.5) |
Unknown | 61 (5.1) |
HRAS mutation | |
Present | 22 (1.8) |
Absent | 1115 (92.9) |
Unknown | 64 (5.3) |
Follow-up duration (years) | |
Median | 9.50 |
Range | 0.01–30.01 |
Outcome | Hazard (%; SE) | p Value | |||
---|---|---|---|---|---|
Years 0–5 | Years 5–10 | Years 10–15 | Years 15–20 | ||
RFS | |||||
All patients | 2.8 (0.2) | 1.8 (0.3) | 2.4 (0.5) | 1.1 (0.5) | 0.021 * |
Low Risk | 0.2 (0.2) | 1.0 (0.4) | 0.5 (0.5) | 0.0 (0.0) | 0.354 |
Intermediate Risk | 1.8 (0.3) | 0.9 (0.3) | 0.4 (0.4) | 1.4 (1.4) | 0.177 |
High Risk | 4.6 (0.4) | 2.8 (0.5) | 3.9 (0.8) | 1.4 (0.8) | 0.003 * |
Groups | RAI Status | Annual Hazard (%; SE) | p Value |
---|---|---|---|
Entire cohort | RAI given | 1.5 (0.1) | 0.0001 * |
RAI not given | 2.7 (0.3) | ||
High risk | RAI given | 2.9 (0.3) | 0.0001 * |
RAI not given | 5.8 (0.8) | ||
Intermediate risk | RAI given | 0.7 (0.1) | 0.0001 * |
RAI not given | 2.3 (0.5) | ||
Low risk | RAI given | 0.4 (0.2) | 0.8427 |
RAI not given | 0.5 (0.3) |
Outcome | Hazard (%; SE) | |||
---|---|---|---|---|
Years 0–5 | Years 5–10 | Years 10–15 | Years 15–20 | |
RFS (Overall cohort) | ||||
RAI + | 2.2 (0.2) | 1.7 (0.3) | 2.0 (0.5) | 0.9 (0.5) |
RAI − | 5.7 (0.8) | 2.6 (0.8) | 6.0 (2.2) | 2.5 (2.5) |
p value | 0.0001 * | 0.2544 | 0.0232 * | 0.4307 |
RFS (High risk) | ||||
RAI + | 3.6 (0.4) | 2.5 (0.5) | 3.2 (0.8) | 0.7 (0.7) |
RAI − | 10.5 (1.7) | 6.0 (2.4) | 20.0 (7.8) | 40.0 (0.0) |
p value | 0.0001 * | 0.0229 * | 0.0001 * | NA |
RFS (Intermediate risk) | ||||
RAI + | 1.1 (0.3) | 0.7 (0.3) | 0.0 (0.0) | 1.7 (1.7) |
RAI − | 4.8 (1.2) | 2.2 (1.3) | 3.3 (3.3) | 0.0 (0.0) |
p value | 0.0004 * | 0.0840 | 0.0003 * | 0.6301 |
RFS (Low risk) | ||||
RAI + | 0.2 (0.2) | 1.1 (0.6) | 0.0 (0.0) | 0.0 (0.0) |
RAI − | 0.4 (0.4) | 0.7 (.7) | 1.6 (1.6) | 0.0 (0.0) |
p value | 0.6693 | 0.6724 | 0.1708 | 0.6693 |
Variables | Characteristic | Estimate (SE) | Hazard Ratio | 95% CI | p Value |
---|---|---|---|---|---|
Gender | Male (vs. Female) | −0.424 (0.190) | 0.654 | 0.451–0.949 | 0.025 * |
Age | ≥55 years (vs. <55 years) | 0.798 (0.212) | 2.222 | 1.465–3.369 | <0.001 * |
Tumor size | T3-4 (vs. T1-2) | 0.796 (0.264) | 2.216 | 1.320–3.720 | 0.003 * |
Lymph node metastasis | N1 (vs. N0) | 0.875 (0.218) | 2.399 | 1.565–3.676 | <0.001 * |
Multifocality | Yes (vs. No) | −0.148 (0.186) | 0.863 | 0.599–1.242 | 0.296 |
Extra-thyroidal extension | Microscopic (vs. absent) | 0.276 (0.261) | 1.317 | 0.791–2.195 | 0.290 |
Gross (vs. absent) | 0.522 (0.408) | 1.685 | 0.758–3.764 | 0.201 | |
Histology | Aggressive (vs. non-aggressive) | −0.192 (0.272) | 0.825 | 0.484–1.406 | 0.480 |
Stage | III–IV (vs. I–II) | 0.389 (0.331) | 1.476 | 0.772–2.822 | 0.239 |
BRAF mutation | Present (vs. absent) | −0.169 (0.206) | 0.845 | 0.564–1.264 | 0.412 |
Radioactive iodine | Given (vs. not given) | −1.341 (0.197) | 0.262 | 0.178–0.385 | <0.001 * |
Variables | Characteristic | Estimate (SE) | Hazard Ratio | 95% CI | p Value |
---|---|---|---|---|---|
Gender | Male (vs. Female) | −0.491 (0.275) | 0.612 | 0.357–1.049 | 0.074 |
Age | ≥55 years (vs. <55 years) | 1.468 (0.291) | 4.339 | 2.454–7.672 | <0.001 * |
Tumor size | T3-4 (vs. T1-2) | 0.783 (0.419) | 2.188 | 0.962–4.979 | 0.062 |
Lymph node metastasis | N1 (vs. N0) | 0.862 (0.302) | 2.368 | 1.311–4.277 | 0.004* |
Multifocality | Yes (vs. No) | −0.264 (0.262) | 0.768 | 0.459–1.284 | 0.314 |
Extra-thyroidal extension | Microscopic (vs. absent) | 0.081 (0.400) | 1.084 | 0.495–2.375 | 0.841 |
Gross (vs. absent) | −0.294 (0.827) | 0.746 | 0.147–3.773 | 0.723 | |
Histology | Aggressive (vs. non-aggressive) | −0.114 (0.456) | 0.893 | 0.365–2.183 | 0.803 |
Stage | III–IV (vs. I–II) | 1.232 (0.700) | 3.430 | 0.870–13.512 | 0.078 |
BRAF mutation | Present (vs. absent) | 0.561 (0.333) | 1.753 | 0.912–3.369 | 0.092 |
Radioactive iodine | Given (vs. not given) | −1.391 (0.328) | 0.249 | 0.131–0.473 | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siraj, A.K.; Parvathareddy, S.K.; Qadri, Z.; Siddiqui, K.; Al-Sobhi, S.S.; Al-Dayel, F.; Al-Kuraya, K.S. Annual Hazard Rate of Recurrence in Middle Eastern Papillary Thyroid Cancer over a Long-Term Follow-Up. Cancers 2020, 12, 3624. https://doi.org/10.3390/cancers12123624
Siraj AK, Parvathareddy SK, Qadri Z, Siddiqui K, Al-Sobhi SS, Al-Dayel F, Al-Kuraya KS. Annual Hazard Rate of Recurrence in Middle Eastern Papillary Thyroid Cancer over a Long-Term Follow-Up. Cancers. 2020; 12(12):3624. https://doi.org/10.3390/cancers12123624
Chicago/Turabian StyleSiraj, Abdul K., Sandeep Kumar Parvathareddy, Zeeshan Qadri, Khawar Siddiqui, Saif S. Al-Sobhi, Fouad Al-Dayel, and Khawla S. Al-Kuraya. 2020. "Annual Hazard Rate of Recurrence in Middle Eastern Papillary Thyroid Cancer over a Long-Term Follow-Up" Cancers 12, no. 12: 3624. https://doi.org/10.3390/cancers12123624
APA StyleSiraj, A. K., Parvathareddy, S. K., Qadri, Z., Siddiqui, K., Al-Sobhi, S. S., Al-Dayel, F., & Al-Kuraya, K. S. (2020). Annual Hazard Rate of Recurrence in Middle Eastern Papillary Thyroid Cancer over a Long-Term Follow-Up. Cancers, 12(12), 3624. https://doi.org/10.3390/cancers12123624