Epigenetic Role of Histone Lysine Methyltransferase and Demethylase on the Expression of Transcription Factors Associated with the Epithelial-to-Mesenchymal Transition of Lung Adenocarcinoma Metastasis to the Brain
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Patient and Tumor Characteristics
2.2. Results of Immunohistochemical Staining
2.3. Interpretation of the Relationship between EMT-TFs and Histone Lysine Modification
2.4. Univariate Analysis of Factors Predicting Survival
2.5. Multivariate Analysis of Factors Predicting Survival
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Clinical and Radiological Data
4.3. Immunohistochemical Staining and Its Interpretation
4.4. Quantitative Reverse Transcription Polymerase Chain Reaction for mRNA
4.5. Survival Analysis and Statistical Analysis
4.6. Ethical Statement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jung, K.W.; Won, Y.J.; Kong, H.J.; Lee, E.S. Prediction of Cancer Incidence and Mortality in Korea, 2019. Cancer Res. Treat. 2019, 51, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Yang, P. Epidemiology of lung cancer prognosis: Quantity and quality of life. Methods Mol. Biol. 2009, 471, 469–486. [Google Scholar] [PubMed] [Green Version]
- Shi, Y.; Sun, Y.; Yu, J.; Ding, C.; Ma, Z.; Wang, Z.; Wang, D.; Wang, Z.; Wang, M.; Wang, Y.; et al. China experts consensus on the diagnosis and treatment of brain metastases of lung cancer (2017 version). Zhongguo Fei Ai Za Zhi 2017, 20, 1–13. [Google Scholar] [PubMed]
- Lombardi, G.; Di Stefano, A.L.; Farina, P.; Zagonel, V.; Tabouret, E. Systemic treatments for brain metastases from breast cancer, non-small cell lung cancer, melanoma and renal cell carcinoma: An overview of the literature. Cancer Treat. Rev. 2014, 40, 951–959. [Google Scholar] [CrossRef]
- Owonikoko, T.K.; Arbiser, J.; Zelnak, A.; Shu, H.K.G.; Shim, H.; Robin, A.M.; Kalkanis, S.N.; Whitsett, T.G.; Salhia, B.; Tran, N.L.; et al. Current approaches to the treatment of metastatic brain tumours. Nat. Rev. Clin. Oncol. 2014, 11, 203–222. [Google Scholar] [CrossRef]
- Nieto, M.A.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. EMT: 2016. Cell 2016, 166, 21–45. [Google Scholar] [CrossRef] [Green Version]
- Shih, J.Y.; Yang, P.C. The EMT regulator slug and lung carcinogenesis. Carcinogenesis 2011, 32, 1299–1304. [Google Scholar] [CrossRef] [Green Version]
- Thiery, J.P.; Acloque, H.; Huang, R.Y.; Nieto, M.A. Epithelial mesenchymal transitions in development and disease. Cell 2009, 139, 871–890. [Google Scholar] [CrossRef]
- Tam, W.L.; Weinberg, R.A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 2013, 19, 1438–1449. [Google Scholar] [CrossRef] [Green Version]
- Lamouille, S.; Subramanyam, D.; Blelloch, R.; Derynck, R. Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr. Opin. Cell. Biol. 2013, 25, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Wu, Y.; Li, J.; Dong, C.; Ye, X.; Chi, Y.I.; Evers, B.M.; Zhou, B.P. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J. 2010, 29, 1803–1816. [Google Scholar] [CrossRef] [PubMed]
- Herranz, N.; Pasini, D.; Díaz, V.M.; Francí, C.; Gutierrez, A.; Dave, N.; Escrivà, M.; Hernandez-Muñoz, I.; Di Croce, L.; Helin, K.; et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell. Biol. 2008, 28, 4772–4781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Scully, K.; Zhu, X.; Cai, L.; Zhang, J.; Prefontaine, G.G.; Krones, A.; Ohgi, K.A.; Zhu, P.; Garcia-Bassets, I.; et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 2007, 446, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.S.; Göke, J.; Lu, X.; Venkatesan, N.; Feng, B.; Su, I.H.; Ng, H.H. A PRC2-dependent repressive role of PRDM14 in human embryonic stem cells and induced pluripotent stem cell reprogramming. Stem Cells 2013, 31, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.Z.; Miow, Q.H.; Miki, Y.; Noda, T.; Mori, S.; Huang, R.Y.; Thiery, J.P. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol. Med. 2014, 6, 279–293. [Google Scholar] [CrossRef]
- Ye, X.; Tam, W.L.; Shibue, T.; Kaygusuz, Y.; Reinhardt, F.; Eaton, E.N.; Weinberg, R.A. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 2015, 525, 256–260. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Sharma, A.; Dhar, S.S.; Lee, S.H.; Gu, B.; Chan, C.H.; Lin, H.K.; Lee, M.G. UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Res. 2014, 74, 1705–1717. [Google Scholar] [CrossRef] [Green Version]
- Nickerson, M.L.; Dancik, G.M.; Im, K.M.; Edwards, M.G.; Turan, S.; Brown, J.; Ruiz-Rodriguez, C.; Owens, C.; Costello, J.C.; Guo, G.; et al. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin. Cancer Res. 2014, 20, 4935–4948. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Viegas, L.; Villa, R.; Gutierrez, A.; Iriondo, O.; Shiekhattar, R.; Di Croce, L. Role of UTX in retinoic acid receptor-mediated gene regulation in leukemia. Mol. Cell. Biol. 2014, 34, 3765–3775. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.; Xu, L.; Leng, Y.; Gao, F.; Xia, H.; Zhang, D.; Ding, X. Downregulation of MLL3 in esophageal squamous cell carcinoma is required for the growth and metastasis of cancer cells. Tumor Biol. 2015, 36, 605–613. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.H.; Jang, J.H.; Kim, M.S.; Lee, E.H.; Kim, Y.Z. Increased expression of the histone H3 lysine 4 methyltransferase MLL4 and the histone H3 lysine 27 demethylase UTX prolonging the overall survival of patients with glioblastoma and a methylated MGMT promoter. J. Neurosurg. 2017, 126, 1461–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Wu, Y.; Yao, J.; Wang, Y.; Yu, Y.; Rychahou, P.G.; Evers, B.M.; Zhou, B.P. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J. Clin. Investig. 2012, 122, 1469–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, N.; Tiwari, V.K.; Waldmeier, L.; Balwierz, P.J.; Arnold, P.; Pachkov, M.; Meyer-Schaller, M.; Schübeler, D.; van Nimwegen, E.; Christofori, G. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell 2013, 23, 768–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiery, J.P.; Sleeman, J.P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 2006, 7, 131–142. [Google Scholar] [CrossRef]
- Tarin, D.; Thompson, E.W.; Newgreen, D.F. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 2005, 65, 5996–6001. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.Z.; Miow, Q.H.; Huang, R.Y.; Wong, M.K.; Ye, J.; Lau, J.A.; Wu, M.C.; Hadi, L.H.B.A.; Soong, R.; Choolani, M.; et al. Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer. EMBO Mol. Med. 2013, 5, 1051–1066. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Chao, S.T.; Sneed, P.K.; Luo, X.; Suh, J.; Roberge, D.; Bhatt, A.; Jensen, A.W.; Brown, P.D.; Shih, H.; et al. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: A multi-institutional analysis of 4259 patients. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 655–661. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Kased, N.; Roberge, D.; Xu, Z.; Shanley, R.; Luo, X.; Sneed, P.K.; Chao, S.T.; Weil, R.J.; Suh, J.; et al. Summary report on the graded prognostic assessment: An accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J. Clin. Oncol. 2012, 30, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Yoo, K.H.; Hennighausen, L. EZH2 methyltransferase and H3K27 methylation in breast cancer. Int. J. Biol. Sci. 2012, 8, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Varambally, S.; Dhanasekaran, S.M.; Zhou, M.; Barrette, T.R.; Kumar-Sinha, C.; Sanda, M.G.; Ghosh, D.; Pienta, K.J.; Sewalt, R.G.; Otte, A.P.; et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002, 419, 624–629. [Google Scholar] [CrossRef]
- Zingg, D.; Debbache, J.; Schaefer, S.M.; Tuncer, E.; Frommel, S.C.; Cheng, P.; Arenas-Ramirez, N.; Haeusel, J.; Zhang, Y.; Bonalli, M.; et al. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat. Commun. 2015, 6, 6051. [Google Scholar] [CrossRef] [Green Version]
- Arisan, S.; Buyuktuncer, E.D.; Palavan-Unsal, N.; Caşkurlu, T.; Cakir, O.O.; Ergenekon, E. Increased expression of EZH2, a polycomb group protein, in bladder carcinoma. Urol. Int. 2005, 75, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Morin, R.D.; Johnson, N.A.; Severson, T.M.; Mungall, A.J.; An, J.; Goya, R.; Paul, J.E.; Boyle, M.; Woolcock, B.W.; Kuchenbauer, F.; et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 2010, 42, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Roberts, C.W.M. Targeting EZH2 in cancer. Nat. Med. 2016, 22, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Abdel, R.S.M.; Ibrahim, T.R.; Abdelaziz, L.A.; Farid, M.I.; Mohamed, S.Y. Prognostic Value of TWIST1 and EZH2 Expression in Colon Cancer. J. Gastrointest. Cancer 2019, 1–9. [Google Scholar] [CrossRef]
- Sheikhzadeh, F.; Ward, R.K.; van Niekerk, D.; Guilldud, M. Automatic labelling of molecular biomarkers of immunohistochemistry images using fully convolutional networks. PLoS ONE 2018, 13, e0190783. [Google Scholar] [CrossRef] [Green Version]
- Peinado, H.; Olmeda, D.; Cano, A. Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nat. Rev. Cancer 2007, 7, 415–428. [Google Scholar] [CrossRef]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef] [Green Version]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef] [Green Version]
- Eng, J. Receiver operating characteristic analysis: A primer. Acad. Radiol. 2005, 12, 909–916. [Google Scholar] [CrossRef]
- Pikor, L.A.; Enfield, K.S.S.; Cameron, H.; Lam, W.L. DNA extraction from paraffin embedded material for genetic and epigenetic analyses. J. Vis. Exp. 2011, 49, 2763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clinical Features | Number (%) | |
---|---|---|
Gender | Male | 30 (65.2%) |
Female | 16 (34.8%) | |
Mean Age (Year) | 60.2 (42.6–84.5) | |
KPS | ≥70 | 34 (73.9%) |
<70 | 12 (26.1%) | |
Clinical T Stage | T1 | 2 (4.3%) |
T2 | 6 (13.0%) | |
T3 | 20 (43.6%) | |
T4 | 18 (39.1%) | |
Clinical N Stage | N0 | 0 (0.0%) |
N1 | 2 (4.3%) | |
N2 | 32 (69.6%) | |
N3 | 12 (26.1%) | |
Timing of Brain Metastasis | Synchronous | 18 (39.1%) |
Metachronous | 28 (60.9%) | |
Number of Brain Metastasis | 1 | 32 (69.6%) |
2–3 | 10 (21.7%) | |
≥4 | 4 (8.7%) | |
Metastatic Site | Brain | 46 (100.0%) |
Adrenal Gland | 24 (52.2%) | |
Liver | 6 (13.0%) | |
Bone | 18 (39.1%) | |
Opposite Lung | 28 (60.9%) | |
Others | 8 (17.4%) | |
Treatment after Brain Metastasis | Cytotoxic Chemotherapy | 10 (21.7%) |
Target Therapy | 34 (73.7%) | |
Immunotherapy | 12 (26.1%) | |
Radiotherapy | 40 (87.0%) | |
Combination | 42 (91.3%) | |
Survival after Diagnosis of Lung Adenocarcinoma (95% CI) | 19.5 (13.2–25.3) | |
Survival after Brain Metastasis (95% CI) | 5.8 (1.4–8.6) |
Factors | Lung Adenocarcinoma | Brain Metastasis | p Value |
---|---|---|---|
Epithelial Markers | |||
E-cadherin | 24.6% | 12.6% | 0.037 |
Occludins | 37.4% | 28.9% | 0.254 |
Desmoplakin | 15.6% | 2.3% | 0.007 |
α-catenin | 41.3% | 28.3% | 0.042 |
β-catenin | 38.6% | 16.9% | 0.029 |
Type IV collagen | 52.3% | 45.3% | 0.384 |
Mesenchymal Markers | |||
N-cadherin | 20.6% | 43.2% | 0.028 |
Vimentin | 15.3% | 51.6% | 0.004 |
Fibronectin | 7.6% | 39.4% | 0.002 |
α5β1 integrin | 16.3% | 18.9% | 0.843 |
αγβ6 integrin | 22.6% | 27.4% | 0.726 |
Type I collagen | 37.8% | 45.2% | 0.662 |
Transcription Factors | |||
Snail | 38.6% | 28.7% | 0.154 |
Slug | 15.6% | 42.6% | 0.005 |
Twist | 23.6% | 45.9% | 0.010 |
ZEB1 | 15.0% | 55.9% | 0.002 |
FOXC2 | 35.6% | 47.2% | 0.527 |
Histone Methyltransferase | |||
MLL4 (H3K4) | 13.9% | 46.9% | 0.018 |
RIZ (H3K9) | 38.6% | 33.3% | 0.561 |
EZH2 (H3K27) | 25.6% | 8.6% | 0.046 |
NSD2 (H3K36) | 20.5% | 22.8% | 0.837 |
Histone Demethylase | |||
LSD1 (H3K4) | 42.3% | 28.9% | 0.170 |
JMJD1 (H3K9) | 20.5% | 24.3% | 0.642 |
UTX (H3K27) | 32.4% | 70.6% | 0.003 |
JMJD5 (H3K36) | 15.6% | 22.1% | 0.389 |
Factors | Lung Adenocarcinoma | Brain Metastasis | ||||
---|---|---|---|---|---|---|
Mean% of IHC Staining Nuclei (%, ± SD) | AUC in ROC Curve | Cutoff Value (%) | Mean% of IHC Staining Nuclei (%, ± SD) | AUC in ROC Curve | Cutoff Value (%) | |
Epithelial Markers | ||||||
E-cadherin | 24.6 ± 8.6 | 0.58 | 25 | 12.6 ± 7.2 | 0.62 | 14 |
Occludins | 37.4 ± 18.9 | 0.64 | 35 | 28.9 ± 13.5 | 0.64 | 30 |
Desmoplakin | 15.6 ± 7.9 | 0.71 | 15 | 2.3 ± 1.2 | 0.72 | 2 |
α-catenin | 41.3 ± 24.0 | 0.68 | 40 | 28.3 ±10.8 | 0.70 | 28 |
β-catenin | 38.6 ± 17.5 | 0.72 | 37 | 16.9 ± 8.6 | 0.77 | 15 |
Type IV Collagen | 52.3 ± 31.9 | 0.62 | 50 | 45.3 ± 22.9 | 0.72 | 45 |
Mesenchymal Markers | ||||||
N-cadherin | 20.6 ± 11.2 | 0.71 | 20 | 43.2 ±20.7 | 0.78 | 41 |
Vimentin | 15.3 ± 8.8 | 0.69 | 15 | 51.6 ± 34.5 | 0.70 | 50 |
Fibronectin | 7.6 ± 4.6 | 0.60 | 7 | 39.4 ± 15.6 | 0.75 | 38 |
α5β1 integrin | 16.3 ± 7.0 | 0.73 | 15 | 18.9 ± 8.6 | 0.67 | 17 |
αγβ6 integrin | 22.6 ± 10.9 | 0.79 | 21 | 27.4 ± 10.5 | 0.71 | 25 |
Type I collagen | 37.8 ± 20.1 | 0.64 | 36 | 45.2 ± 22.7 | 0.68 | 45 |
Transcription Factors | ||||||
Snail | 38.6 ± 16.4 | 0.84 | 35 | 28.7 ± 13.0 | 0.72 | 27 |
Slug | 15.6 ± 4.8 | 0.75 | 15 | 42.6 ± 19.4 | 0.58 | 40 |
Twist | 23.6 ± 10.8 | 0.72 | 22 | 45.9 ± 26.8 | 0.68 | 45 |
ZEB1 | 15.0 ± 6.9 | 0.68 | 14 | 55.9 ± 31.3 | 0.61 | 54 |
FOXC2 | 35.6 ± 17.3 | 0.67 | 36 | 47.2 ± 15.9 | 0.63 | 46 |
Histone Methyltransferase | ||||||
MLL4(H3K4) | 13.9 ± 6.3 | 0.75 | 14 | 46.9 ± 20.4 | 0.73 | 43 |
RIZ(H3K9) | 38.6 ± 14.6 | 0.80 | 37 | 33.3 ± 18.1 | 0.68 | 31 |
EZH2(H3K27) | 25.6 ± 15.4 | 0.67 | 25 | 8.6 ± 4.2 | 0.59 | 10 |
NSD2(H3K36) | 20.5 ± 9.5 | 0.74 | 20 | 22.8 ± 9.8 | 0.62 | 22 |
Histone Demethylase | ||||||
LSD1(H3K4) | 42.3 ± 18.6 | 0.65 | 41 | 28.9 ± 11.3 | 0.64 | 27 |
JMJD1(H3K9) | 20.5 ± 8.2 | 0.76 | 20 | 24.3 ± 9.2 | 0.70 | 25 |
UTX(H3K27) | 32.4 ± 15.0 | 0.84 | 34 | 70.6 ± 27.3 | 0.69 | 70 |
JMJD5(H3K36) | 15.6 ± 6.7 | 0.67 | 16 | 22.1 ± 7.6 | 0.75 | 22 |
Immunoreactivity | Overall Survival (Mean, Months) | Hazard Ratio | 95% CI | p Value | |
---|---|---|---|---|---|
E-cadherin | Low | 11.3 | 1.00 | 2.46–6.18 | 0.002 |
High | 27.0 | 4.32 | |||
Occludins | Low | 18.6 | 1.00 | 0.88–1.64 | 0.724 |
High | 20.3 | 1.26 | |||
Desmoplakin | Low | 13.7 | 1.00 | 2.22–5.67 | 0.014 |
High | 24.8 | 3.94 | |||
α-catenin | Low | 17.0 | 1.00 | 0.96–3.34 | 0.062 |
High | 21.8 | 2.15 | |||
β-catenin | Low | 19.2 | 1.00 | 0.64–1.62 | 0.884 |
High | 19.8 | 1.13 | |||
Type IV collagen | Low | 20.4 | 1.00 | 0.47–1.46 | 0.903 |
High | 18.7 | 0.97 | |||
N-cadherin | Low | 21.6 | 1.00 | 0.13–1.03 | 0.067 |
High | 17.6 | 0.58 | |||
Vimentin | Low | 23.1 | 1.00 | 0.25–0.67 | 0.034 |
High | 16.2 | 0.46 | |||
Fibronectin | Low | 20.8 | 1.00 | 0.55–1.09 | 0.073 |
High | 18.3 | 0.82 | |||
α5β1 integrin | Low | 19.8 | 1.00 | 0.74–1.22 | 0.325 |
High | 19.2 | 0.98 | |||
αγβ6 integrin | Low | 21.3 | 1.00 | 0.26–1.08 | 0.091 |
High | 17.9 | 0.67 | |||
Type I collagen | Low | 22.0 | 1.00 | 0.18–1.09 | 0.069 |
High | 17.2 | 0.63 | |||
Snail | Low | 21.6 | 1.00 | 0.47–1.15 | 0.084 |
High | 17.6 | 0.81 | |||
Slug | Low | 22.9 | 1.00 | 0.42–0.95 | 0.042 |
High | 16.4 | 0.69 | |||
Twist | Low | 25.1 | 1.00 | 0.24–0.83 | 0.007 |
High | 14.4 | 0.53 | |||
ZEB1 | Low | 24.3 | 1.00 | 0.31–0.88 | 0.010 |
High | 15.1 | 0.59 | |||
FOXC2 | Low | 22.0 | 1.00 | 0.27–1.26 | 0.206 |
High | 17.2 | 0.76 |
Immunoreactivity | Overall Survival (Mean, Months) | Hazard Ratio | 95% CI | p Value | |
---|---|---|---|---|---|
E-cadherin | Low | 20.3 | 1.00 | 0.54–1.24 | 0.416 |
High | 18.7 | 0.84 | |||
Occludins | Low | 18.6 | 1.00 | 0.78–2.26 | 0.524 |
High | 20.3 | 1.52 | |||
Desmoplakin | Low | 21.6 | 1.00 | 0.36–1.14 | 0.231 |
High | 17.6 | 0.75 | |||
α-catenin | Low | 20.4 | 1.00 | 0.64–1.18 | 0.448 |
High | 18.7 | 0.91 | |||
β-catenin | Low | 19.0 | 1.00 | 0.54–1.90 | 0.643 |
High | 19.9 | 1.22 | |||
Type IV collagen | Low | 17.2 | 1.00 | 0.93–4.77 | 0.152 |
High | 21.6 | 2.85 | |||
N-cadherin | Low | 22.3 | 1.00 | 0.15–0.93 | 0.027 |
High | 16.9 | 0.54 | |||
Vimentin | Low | 25.4 | 1.00 | 0.10–0.84 | 0.004 |
High | 14.1 | 0.47 | |||
Fibronectin | Low | 23.4 | 1.00 | 0.25–0.88 | 0.020 |
High | 15.9 | 0.57 | |||
α5β1 integrin | Low | 21.7 | 1.00 | 0.34–1.08 | 0.065 |
High | 17.5 | 0.71 | |||
αγβ6 integrin | Low | 22.1 | 1.00 | 0.42–1.17 | 0.118 |
High | 17.1 | 0.79 | |||
Type I collagen | Low | 21.5 | 1.00 | 0.48–1.21 | 0.251 |
High | 17.7 | 0.84 | |||
Snail | Low | 23.5 | 1.00 | 0.25–0.92 | 0.014 |
High | 15.8 | 0.58 | |||
Slug | Low | 27.6 | 1.00 | 0.18–0.65 | 0.009 |
High | 12.1 | 0.41 | |||
Twist | Low | 28.4 | 1.00 | 0.08–0.44 | 0.005 |
High | 11.4 | 0.26 | |||
ZEB1 | Low | 32.1 | 1.00 | 0.05–0.34 | <0.001 |
High | 8.1 | 0.19 | |||
FOXC2 | Low | 24.6 | 1.00 | 0.35–0.53 | 0.012 |
High | 14.8 | 0.44 |
Factors | Hazard Ratio | 95% CI | p Value |
---|---|---|---|
Age (<60 years vs. ≥60 years) | 1.820 | 0.852–2.788 | 0.275 |
KPS (≥70 vs. <70) | 2.772 | 1.194–4.779 | 0.042 |
Number of BM (≥4 vs. <4) | 1.542 | 0.765–2.319 | 0.482 |
Timing of BM (≥2 months vs. <2 months) | 1.286 | 0.684–1.888 | 0.671 |
Clinical T Stage (4 vs. 1–3) | 2.235 | 0.917–3.553 | 0.106 |
Clinical N Stage (4 vs. 1–3) | 2.418 | 0.943–3.893 | 0.062 |
E-cadherin of lung (high vs. low) | 2.756 | 1.347–4.165 | 0.044 |
Desmoplakin of lung (high vs. low) | 1.368 | 0.886–1.850 | 0.442 |
Vimentin of lung (low vs. high) | 2.627 | 1.158–4.096 | 0.048 |
Slug of lung (low vs. high) | 3.241 | 1.873–4.609 | 0.020 |
Twist of lung (low vs. high) | 2.976 | 1.882–4.071 | 0.027 |
ZEB1 of lung (low vs. high) | 2.480 | 0.935–4.024 | 0.056 |
N-cadherin of brain (low vs. high) | 3.054 | 1.992–4.116 | 0.018 |
Vimentin of brain (low vs. high) | 4.274 | 2.607–5.941 | 0.002 |
Fibronectin of brain (low vs. high) | 1.942 | 0.907–2.978 | 0.152 |
Snail of brain (low vs. high) | 1.802 | 0.806–2.798 | 0.199 |
Slug of brain (low vs. high) | 3.547 | 2.844–4.251 | 0.011 |
Twist of the brain (low vs. high) | 3.913 | 3.007–4.819 | 0.006 |
ZEB1 of brain (low vs. high) | 2.945 | 1.523–4.367 | 0.038 |
FOXC2 of brain (low vs. high) | 2.004 | 0.897–3.111 | 0.086 |
MLL4 of brain (low vs. high) | 1.252 | 0.647–1.857 | 0.574 |
EZH2 of brain (high vs. low) | 1.674 | 0.579–2.769 | 0.306 |
UTX of brain (low vs. high) | 1.842 | 0.806–2.878 | 0.155 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.M.; Kim, S.H.; Kim, M.S.; Kim, D.C.; Lee, E.H.; Lee, J.S.; Lee, S.-H.; Kim, Y.Z. Epigenetic Role of Histone Lysine Methyltransferase and Demethylase on the Expression of Transcription Factors Associated with the Epithelial-to-Mesenchymal Transition of Lung Adenocarcinoma Metastasis to the Brain. Cancers 2020, 12, 3632. https://doi.org/10.3390/cancers12123632
Lee YM, Kim SH, Kim MS, Kim DC, Lee EH, Lee JS, Lee S-H, Kim YZ. Epigenetic Role of Histone Lysine Methyltransferase and Demethylase on the Expression of Transcription Factors Associated with the Epithelial-to-Mesenchymal Transition of Lung Adenocarcinoma Metastasis to the Brain. Cancers. 2020; 12(12):3632. https://doi.org/10.3390/cancers12123632
Chicago/Turabian StyleLee, Young Min, Seok Hyun Kim, Minseok S. Kim, Dae Cheol Kim, Eun Hee Lee, Ju Suk Lee, Sung-Hun Lee, and Young Zoon Kim. 2020. "Epigenetic Role of Histone Lysine Methyltransferase and Demethylase on the Expression of Transcription Factors Associated with the Epithelial-to-Mesenchymal Transition of Lung Adenocarcinoma Metastasis to the Brain" Cancers 12, no. 12: 3632. https://doi.org/10.3390/cancers12123632
APA StyleLee, Y. M., Kim, S. H., Kim, M. S., Kim, D. C., Lee, E. H., Lee, J. S., Lee, S. -H., & Kim, Y. Z. (2020). Epigenetic Role of Histone Lysine Methyltransferase and Demethylase on the Expression of Transcription Factors Associated with the Epithelial-to-Mesenchymal Transition of Lung Adenocarcinoma Metastasis to the Brain. Cancers, 12(12), 3632. https://doi.org/10.3390/cancers12123632