Germline Genetic Variants of the Renin-Angiotensin System, Hypoxia and Angiogenesis in Non-Small Cell Lung Cancer Progression: Discovery and Validation Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Population: Discovery and Validation Sets
2.2. Selection of Genetic Polymorphisms
2.3. Genotyping
2.3.1. Discovery Set
2.3.2. Validation Set
2.4. Statistical Analysis
2.5. Ethics Approval
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, J.L.; Sigmund, C.D. Minireview: Overview of the Renin-Angiotensin System—An Endocrine and Paracrine System. Endocrinology 2003, 144, 2179–2183. [Google Scholar] [CrossRef] [Green Version]
- Wegman-Ostrosky, T.; Soto-Reyes, E.; Vidal-Millán, S.; Sánchez-Corona, J. The renin-angiotensin system meets the hallmarks of cancer. J. Renin-Angiotensin-Aldosterone Syst. 2015, 16, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Catarata, M.J.P.; Ribeiro, R.; Oliveira, M.J.; Robalo-Cordeiro, C.; Medeiros, R. Renin-Angiotensin System in Lung Tumor and Microenvironment Interactions. Cancers 2020, 12, 1457. [Google Scholar] [CrossRef]
- Takai, S.; Jin, D.; Miyazaki, M. New approaches to blockade of the renin-angiotensin-aldosterone system: Chymase as an important target to prevent organ damage. J. Pharmacol. Sci. 2010, 113, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Wu, Y.; Hardie, W.J.; Zhou, X. Mast cell chymase affects the proliferation and metastasis of lung carcinoma cells in vitro. Oncol. Lett. 2017, 14, 3193–3198. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, C.M.; Trask, A.J.; Jessup, J.A. Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1–7) in regulation of cardiovascular function. Am. J. Physiol. Circ. Physiol. 2005, 289, H2281–H2290. [Google Scholar] [CrossRef] [Green Version]
- Papandreou, C.N.; Usmani, B.; Geng, Y.; Bogenrieder, T.; Freeman, R.; Wilk, S.; Finstad, C.L.; Reuter, V.E.; Powell, C.T.; Scheinberg, D.; et al. Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat. Med. 1998, 4, 50–57. [Google Scholar] [CrossRef]
- Imai, N.; Hashimoto, T.; Kihara, M.; Yoshida, S.-I.; Kawana, I.; Yazawa, T.; Kitamura, H.; Umemura, S. Roles for host and tumor angiotensin II type 1 receptor in tumor growth and tumor-associated angiogenesis. Lab. Investig. 2006, 87, 189–198. [Google Scholar] [CrossRef]
- Jethon, A.; Puła, B.; Piotrowska, A.; Wojnar, A.; Ryś, J.; Dzięgiel, P.; Podhorska-Okolow, M. Angiotensin II Type 1 Receptor (AT-1R) Expression Correlates with VEGF-A and VEGF-D Expression in Invasive Ductal Breast Cancer. Pathol. Oncol. Res. 2012, 18, 867–873. [Google Scholar] [CrossRef] [Green Version]
- Lewandowska, U.; Lachowicz-Ochędalska, A.; Domińska, K.; Kaszewska, D.; Rębas, E. Angiotensin II as a factor modulating protein tyrosine kinase activity in two breast cancer lines—MCF-7 and MDA-MB-231. Endokrynol. Polska 2011, 62, 151–158. [Google Scholar]
- Li, H.; Qi, Y.; Li, C.; Braseth, L.N.; Gao, Y.; Shabashvili, A.E.; Katovich, M.J.; Sumners, C. Angiotensin type 2 receptor-mediated apoptosis of human prostate cancer cells. Mol. Cancer Ther. 2009, 8, 3255–3265. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, B.; Torti, F.M.; Gallagher, P.E.; Tallant, E.A. Angiotensin-(1-7) reduces proliferation and angiogenesis of human prostate cancer xenografts with a decrease in angiogenic factors and an increase in sFlt-1. Prostate 2013, 73, 60–70. [Google Scholar] [CrossRef]
- Menon, J.; Soto-Pantoja, D.R.; Callahan, M.F.; Cline, J.M.; Ferrario, C.M.; Tallant, E.A.; Gallagher, P.E. Angiotensin-(1-7) Inhibits Growth of Human Lung Adenocarcinoma Xenografts in Nude Mice through a Reduction in Cyclooxygenase-2. Cancer Res. 2007, 67, 2809–2815. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, P.E.; Cook, K.L.; Soto-Pantoja, D.; Menon, J.; Tallant, E.A. Angiotensin peptides and lung cancer. Curr. Cancer Drug Targets 2011, 11, 394–404. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, B.; Trivedi, M.; Speth, R.C. Alterations in Gene Expression of Components of the Renin-Angiotensin System and Its Related Enzymes in Lung Cancer. Lung Cancer Int. 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Miao, L.; Chen, W.; Zhou, L.; Wan, H.; Gao, B.; Feng, Y. Impact of Angiotensin I-converting Enzyme Inhibitors and Angiotensin II Type-1 Receptor Blockers on Survival of Patients with NSCLC. Sci. Rep. 2016, 6, 21359. [Google Scholar] [CrossRef]
- Aydiner, A.; Ciftci, R.; Sen, F. Renin-Angiotensin System Blockers May Prolong Survival of Metastatic Non-Small Cell Lung Cancer Patients Receiving Erlotinib. Medicine 2015, 94, e887. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, Z.; Li, J.; Cai, S. Angiotensin receptor blockers use and the risk of lung cancer: A meta-analysis. J. Renin-Angiotensin-Aldosterone Syst. 2015, 16, 768–773. [Google Scholar] [CrossRef] [Green Version]
- Tiret, L.; Rigat, B.; Visvikis, S.; Breda, C.; Corvol, P.; Cambien, F.; Soubrier, F. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am. J. Hum. Genet. 1992, 51, 197–205. [Google Scholar]
- Chen, J.; Guo, L.; Peiffer, D.A.; Zhou, L.; Chan, O.T.M.; Bibikova, M.; Wickham-Garcia, E.; Lu, S.-H.; Zhan, Q.; Wang-Rodriguez, J.; et al. Genomic profiling of 766 cancer-related genes in archived esophageal normal and carcinoma tissues. Int. J. Cancer 2008, 122, 2249–2254. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Feng, Y.; Wan, H.; Ni, L.; Qian, Y.; Guo, Y.; Xiang, Y.; Li, Q. Hypoxia induces dysregulation of local renin-angiotensin system in mouse Lewis lung carcinoma cells. Genet. Mol. Res. 2014, 13, 10562–10573. [Google Scholar] [CrossRef] [PubMed]
- Christopoulos, P.; Kirchner, M.; Roeper, J.; Saalfeld, F.; Janning, M.; Bozorgmehr, F.; Magios, N.; Kazdal, D.; Volckmar, A.; Brückner, L.; et al. Risk stratification of EGFR+ lung cancer diagnosed with panel-based next-generation sequencing. Lung Cancer 2020, 148, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, K.; Srivastava, A.; Mittal, B. Angiotensin I-Converting Enzyme Insertion/Deletion Polymorphism and Increased Risk of Gall Bladder Cancer in Women. DNA Cell Biol. 2010, 29, 417–422. [Google Scholar] [CrossRef]
- Huang, J.; Chen, S.; Lu, X.; Zhao, Q.; Rao, D.C.; Jaquish, C.E.; Hixson, J.E.; Chen, J.; Wang, L.; Cao, J.; et al. Polymorphisms of ACE2 are Associated with Blood Pressure Response to Cold Pressor Test: The GenSalt Study. Am. J. Hypertens. 2012, 25, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Hajjar, I.; Sorond, F.; Hsu, Y.-H.; Galica, A.; Cupples, L.A.; Lipsitz, L.A. Renin angiotensin system gene polymorphisms and cerebral blood flow regulation: The MOBILIZE Boston study. Stroke 2010, 41, 635–640. [Google Scholar] [CrossRef]
- Deckers, I.A.G.; Brandt, P.V.D.; Van Engeland, M.; Van Schooten, F.-J.; Godschalk, R.W.; Keszei, A.P.; Schouten, L.J. Polymorphisms in genes of the renin-angiotensin-aldosterone system and renal cell cancer risk: Interplay with hypertension and intakes of sodium, potassium and fluid. Int. J. Cancer 2014, 136, 1104–1116. [Google Scholar] [CrossRef]
- Ouyang, J.; Wu, Z.; Xing, J.; Yan, Y.; Zhang, G.; Wang, B.; Li, H.; Ma, X.; Zhang, X. Association of polymorphisms in angiotensin II receptor genes with aldosterone-producing adenoma. J. Huazhong Univ. Sci. Technol. Med. Sci. 2011, 31, 301. [Google Scholar] [CrossRef]
- Helisalmi, S.; Hiltunen, M.; Vepsalainen, S.; Iivonen, S.; Mannermaa, A.; Lehtovirta, M.; Koivisto, A.M.; Alafuzoff, I.; Soininen, H. Polymorphisms in neprilysin gene affect the risk of Alzheimer’s disease in Finnish patients. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1746–1748. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Liu, Q.; Song, Y.; Li, X.; Wang, Y.; Wan, S.; Zhang, Z.; Su, H. Polymorphisms of HIF1A gene are associated with prognosis of early stage non-small-cell lung cancer patients after surgery. Med. Oncol. 2014, 31, 877. [Google Scholar] [CrossRef] [Green Version]
- Masago, K.; Fujita, S.; Kim, Y.H.; Hatachi, Y.; Fukuhara, A.; Nagai, H.; Irisa, K.; Ichikawa, M.; Mio, T.; Mishima, M. Effect of vascular endothelial growth factor polymorphisms on survival in advanced-stage non-small-cell lung cancer. Cancer Sci. 2009, 100, 1917–1922. [Google Scholar] [CrossRef] [PubMed]
- Sorice, R.; Ruggiero, D.; Nutile, T.; Aversano, M.; Husemoen, L.; Linneberg, A.; Bourgain, C.; Leutenegger, A.-L.; Ciullo, M. Genetic and Environmental Factors Influencing the Placental Growth Factor (PGF) Variation in Two Populations. PLoS ONE 2012, 7, e42537. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Chen, Y.; Wu, J.; Shen, J.; Shang, Y.; Zheng, L.; Xie, X. Association between chymase gene polymorphisms and atrial fibrillation in Chinese Han population. BMC Cardiovasc. Disord. 2019, 19, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Xu, W.; Kamel-Reid, S.; Liu, X.; Jung, C.W.; Kim, S.; Lipton, J.H. Clinical relevance of vascular endothelial growth factor (VEGFA) and VEGF receptor (VEGFR2) gene polymorphism on the treatment outcome following imatinib therapy. Ann. Oncol. 2010, 21, 1179–1188. [Google Scholar] [CrossRef]
- Luo, Y.; Tanabe, E.; Kitayoshi, M.; Nishiguchi, Y.; Fujiwara, R.; Matsushima, S.; Sasaki, T.; Sasahira, T.; Chihara, Y.; Nakae, D.; et al. Expression of MAS 1 in breast cancer. Cancer Sci. 2015, 106, 1240–1248. [Google Scholar] [CrossRef]
- Paradowska-Gorycka, A.; Sowińska, A.; Pawlik, A.; Malinowski, D.; Stypińska, B.; Haladyj, E.; Romanowska-Próchnicka, K.; Olesinska, M. FLT-1 gene polymorphisms and protein expression profile in rheumatoid arthritis. PLoS ONE 2017, 12, e0172018. [Google Scholar] [CrossRef]
- Ensembl. Available online: https://www.ensembl.org/index.html (accessed on 3 July 2017).
- Brookes, A.J. The essence of SNPs. Gene 1999, 234, 177–186. [Google Scholar] [CrossRef]
- Putnam, K.; Shoemaker, R.; Yiannikouris, F.; Cassis, L.A. The renin-angiotensin system: A target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome. Am. J. Physiol. Circ. Physiol. 2012, 302, H1219–H1230. [Google Scholar] [CrossRef] [Green Version]
- Orte, C.; Polak, J.M.; Haworth, S.G.; Yacoub, M.H.; Morrell, N.W. Expression of pulmonary vascular angiotensin-converting enzyme in primary and secondary plexiform pulmonary hypertension. J. Pathol. 2000, 192, 379–384. [Google Scholar] [CrossRef]
- Molina, M.; Xaubet, A.; Li, X.; Abdul-Hafez, A.; Friderici, K.; Jernigan, K.; Fu, W.; Ding, Q.; Pereda, J.; Serrano-Mollar, A.; et al. Angiotensinogen gene G-6A polymorphism influences idiopathic pulmonary fibrosis disease progression. Eur. Respir. J. 2008, 32, 1004–1008. [Google Scholar] [CrossRef] [Green Version]
- Tzouvelekis, A.; Gomatou, G.; Bouros, E.; Trigidou, R.; Tzilas, V.; Bouros, D. Common Pathogenic Mechanisms Between Idiopathic Pulmonary Fibrosis and Lung Cancer. Chest 2019, 156, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, R.; Vasconcelos, A.; Costa, S.; Pinto, D.; Lobo, F.; Morais, A.; Oliveira, J.; Lopes, C. Linkage of angiotensin I-converting enzyme gene insertion/deletion polymorphism to the progression of human prostate cancer. J. Pathol. 2004, 202, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Srivastava, N.; Amit, S.; Prasad, S.; Misra, M.; Ateeq, B. Association of AGTR1 (A1166C) and ACE (I/D) Polymorphisms with Breast Cancer Risk in North Indian Population. Transl. Oncol. 2018, 11, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Ding, M.; Liang, N.; Li, Z.; Li, D.; Guan, L.; Liu, H. Associations of ACE I/D polymorphism with the levels of ACE, kallikrein, angiotensin II and interleukin-6 in STEMI patients. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wan, H.; Feng, Y.; Ni, L.; Fan, L.; Fei, X.; Ma, Q.; Gao, B.; Xiang, Y.; Che, J.; Li, Q.-Y. Overexpression of ACE2 produces antitumor effects via inhibition of angiogenesis and tumor cell invasion in vivo and in vitro. Oncol. Rep. 2011, 26, 1157–1164. [Google Scholar] [CrossRef]
- Lopera Maya, E.A.; van der Graaf, A.; Lanting, P.; van der Geest, M.; Fu, J.; Swertz, M.; Franke, L.; Wijmenga, C.; Deelen, P.; Zhernakova, A.; et al. Lack of Association Between Genetic Variants at ACE2 and TMPRSS2 Genes Involved in SARS-CoV-2 Infection and Human Quantitative Phenotypes. Front Genet. 2020, 11, 613. [Google Scholar] [CrossRef]
- Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol. Rev. 2018, 98, 505–553. [Google Scholar] [CrossRef] [Green Version]
- Pavo, N.; Arfsten, H.; Cho, A.; Goliasch, G.; Bartko, P.E.; Wurm, R.; Freitag, C.; Gisslinger, H.; Kornek, G.; Strunk, G.; et al. The circulating form of neprilysin is not a general biomarker for overall survival in treatment-naïve cancer patients. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kadota, K.; Buitrago, D.H.; Lee, M.-C.; Villena-Vargas, J.; Sima, C.S.; Jones, D.R.; Travis, W.D.; Adusumilli, P.S. Tumoral CD10 expression correlates with high-grade histology and increases risk of recurrence in patients with stage I lung adenocarcinoma. Lung Cancer 2015, 89, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Comings, D.E.; MacMurray, J.P. Molecular Heterosis: A Review. Mol. Genet. Metab. 2000, 71, 19–31. [Google Scholar] [CrossRef]
- Xu, K.; Kosoy, R.; Shameer, K.; Kumar, S.; Liu, L.; Readhead, B.; Belbin, G.M.; Lee, H.-C.; Chen, R.; Dudley, J.T. Genome-wide analysis indicates association between heterozygote advantage and healthy aging in humans. BMC Genet. 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Lippman, Z.B.; Zamir, D. Heterosis: Revisiting the magic. Trends Genet. 2007, 23, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, M.; Munirajan, A.K. Single Nucleotide Polymorphisms in MicroRNA Binding Sites of Oncogenes: Implications in Cancer and Pharmacogenomics. OMICS J. Integr. Biol. 2014, 18, 142–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.X.; Tan, L.; Sun, F.R.; Zhang, W.; Miao, D.; Tan, M.S.; Wan, Y.; Tan, C.-C.; Yu, J.T.; Tan, L. The Association of MME microRNA Binding Site Polymorphism with the Risk of Late Onset Alzheimer’s Disease in Northern Han Chinese. Curr. Neurovasc. Res. 2017, 14, 90–95. [Google Scholar] [CrossRef]
- Barenboim, M.; Zoltick, B.J.; Guo, Y.; Weinberger, D.R. MicroSNiPer: A web tool for prediction of SNP effects on putative microRNA targets. Hum. Mutat. 2010, 31, 1223–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MicroSNiPer. Available online: http://vm24141.virt.gwdg.de/services/microsniper/ (accessed on 20 October 2020).
- Krüger, J.; Rehmsmeier, M. RNAhybrid: MicroRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006, 34, W451–W454. [Google Scholar] [CrossRef]
- BiBiServ. Available online: http://bibiserv.techfak.uni-bielefeld.de/rnahybrid (accessed on 20 October 2020).
- Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stähler, C.; Meese, E.; et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016, 44, 3865–3877. [Google Scholar] [CrossRef]
- Miners, S.; Van Helmond, Z.; Barker, R.; A Passmore, P.; A Johnston, J.; Todd, S.; McGuinness, B.M.; Panza, F.; Seripa, D.; Solfrizzi, V.; et al. Genetic variation in MME in relation to neprilysin protein and enzyme activity, Aβ levels, and Alzheimer’s disease risk. Int. J. Mol. Epidemiol. Genet. 2012, 3, 30–38. [Google Scholar]
- Leithner, A.; Wohlkoenig, C.; Stacher, E.; Lindenmann, J.; Hofmann, N.A.; Gallé, B.; Guelly, C.; Quehenberger, F.; Stiegler, P.; Smolle-Jüttner, F.M.; et al. Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model—Role of tumor stroma cells. BMC Cancer 2014, 14, 40. [Google Scholar] [CrossRef] [Green Version]
- Muz, B.; De La Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 2015, 3, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Martin, M.G.; Tian, C.; Cui, J.; Wang, L.; Wu, S.; Gu, W. Evaluation of Detection Methods and Values of Circulating Vascular Endothelial Growth Factor in Lung Cancer. J. Cancer 2018, 9, 1287–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, A.J.; Thomas, W.G.; Hannan, R.D. The renin–angiotensin system and cancer: Old dog, new tricks. Nat. Rev. Cancer 2010, 10, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Koukourakis, M.I.; Papazoglou, D.; Giatromanolaki, A.; Bougioukas, G.; Maltezos, E.; Sivridis, E. VEGF gene sequence variation defines VEGF gene expression status and angiogenic activity in non-small cell lung cancer. Lung Cancer 2004, 46, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Scartozzi, M.; Faloppi, L.; Svegliati-Baroni, G.; Loretelli, C.; Piscaglia, F.; Iavarone, M.; Toniutto, P.; Fava, G.; De Minicis, S.; Mandolesi, A.; et al. VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: The ALICE-1 study. Int. J. Cancer 2014, 135, 1247–1256. [Google Scholar] [CrossRef] [Green Version]
- Zhai, R.; Gong, M.N.; Zhou, W.; Thompson, T.B.; Kraft, P.; Su, L.; Christiani, D.C. Genotypes and haplotypes of the VEGF gene are associated with higher mortality and lower VEGF plasma levels in patients with ARDS. Thorax 2007, 62, 718–722. [Google Scholar] [CrossRef] [Green Version]
- Krippl, P.; Langsenlehner, U.; Renner, W.; Yazdani-Biuki, B.; Wolf, G.; Wascher, T.C.; Paulweber, B.; Haas, J.; Samonigg, H. A common 936 C/T gene polymorphism of vascular endothelial growth factor is associated with decreased breast cancer risk. Int. J. Cancer 2003, 106, 468–471. [Google Scholar] [CrossRef]
- Petrovic, M.G.; Korosec, P.; Kosnik, M.; Osredkar, J.; Hawlina, M.; Peterlin, B.; Petrovič, D. Local and genetic determinants of vascular endothelial growth factor expression in advanced proliferative diabetic retinopathy. Mol. Vis. 2008, 14, 1382–1387. [Google Scholar]
- Glubb, D.M.; Cerri, E.; Giese, A.; Zhang, W.; Mirza, O.; Thompson, E.E.; Chen, P.; Das, S.; Jassem, J.; Rzyman, W.; et al. Novel Functional Germline Variants in the VEGF Receptor 2 Gene and Their Effect on Gene Expression and Microvessel Density in Lung Cancer. Clin. Cancer Res. 2011, 17, 5257–5267. [Google Scholar] [CrossRef] [Green Version]
- Keshavarz, L.; Yavarian, M. The association of Q472H variant in the KDR gene with recurrent pregnancy loss in Southern Iran: A case-control study. Int. J. Reprod. Biomed. 2019, 17, 473–480. [Google Scholar] [CrossRef]
- Meert, A.-P.; Paesmans, M.; Martin, B.; Delmotte, P.; Berghmans, T.; Verdebout, J.-M.; Lafitte, J.-J.; Mascaux, C.; Sculier, J.-P. The role of microvessel density on the survival of patients with lung cancer: A systematic review of the literature with meta-analysis. Br. J. Cancer 2002, 87, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Trivella, M.; Pezzella, F.; Pastorino, U.; Harris, A.L.; Altman, D.G.; Prognosis In Lung Cancer Collaborative Study Group. Microvessel density as a prognostic factor in non-small-cell lung carcinoma: A meta-analysis of individual patient data. Lancet Oncol. 2007, 8, 488–499. [Google Scholar] [CrossRef]
Clinical Variables. | Discovery Set (N = 167) | Validation Set (N = 190) | p |
---|---|---|---|
Gender, n | |||
Males | 123 (73.7%) | 133 (70.0%) | |
Females | 44 (26.3%) | 57 (30.0%) | 0.445 * |
Age (years) | |||
Median (IQR) | 64.0 (58.0–72.0) | 65.0 (58.0–73.0) | 0.773 ** |
Smoking Status, n (%) | |||
Never smokers | 31 (27.7%) | 20 (10.5%) | |
Previously smokers | 68 (60.7%) | 97 (51.1%) | |
Smokers | 13 (11.6%) | 73 (38.4%) | <0.0001 * |
Hypertension, n (%) | |||
Yes | 67 (48.6%) | 91 (47.9%) | |
No | 71 (51.4%) | 99 (52.1%) | 0.911 * |
Anti-hypertension drugs, n (%) | |||
No | 86 (65.2%) | 126 (67.0%) | |
iACE/ARB | 46 (34.8%) | 62 (33.0%) | 0.728 * |
ECOG PS, n (%) | |||
0–2 | 163 (97.6%) | 188 (98.9%) | |
>2 | 4 (2.4%) | 2 (1.1%) | 0.153 * |
Histology, n (%) | |||
Adenocarcinoma | 116 (69.5%) | 126 (66.3%) | |
Squamous cell carcinoma | 42 (25.1%) | 62 (32.6%) | |
Adeno + Squamous cell | 9 (5.4%) | 2 (1.1%) | 0.066 * |
cTNM Stage, n (%) | |||
IIIA | 20 (12.0%) | 27 (14.2%) | |
IIIB | 32 (19.2%) | 36 (18.9%) | |
IIIC | 21 (12.6%) | 18 (9.5%) | |
IVA | 65 (38.9%) | 66 (34.7%) | |
IVB | 29 (17.4%) | 43 (22.6%) | 0.597 * |
Treatment modality, n (%) | |||
Surgery + ChT | 12 (7.2%) | 0 (0.0%) | |
ChT + RT | 31 (18.6%) | 81 (42.6%) | |
ChT | 124 (74.3%) | 109 (57.4%) | <0.0001 * |
First-line treatment, n (%) | |||
Platinum based ChT | 145 (86.8%) | 155 (81.6%) | |
TKI | 22 (12.8%) | 35 (18.4%) | 0.194 * |
PFS (months) | |||
Median, 95% CI | 7.5 (6.1–9.0) | 8.1 (6.8–9.4) | 0.415 *** |
OS (months) | |||
median, 95% CI | 30.0 (16.9–43.2) | 20.6 (16.3–24.9) | 0.036 *** |
Variables | PFS (Multivariate Stepwise Cox Proportional Hazards Model) | Bootstrap | ||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
T | ||||
T1 | Referent | Referent | ||
T2 | ||||
T3-4 | 1.7 (1.3–2.2) | <0.0001 * | 1.7 (1.3–2.3) | <0.0001 * |
Distant metastasis | ||||
No | Referent | Referent | ||
Yes | 1.7 (1.2–2.4) | 0.005 | 1.7 (1.1–2.5) | 0.009 |
Type of Therapy | ||||
Surgery + ChT | Referent | Referent | ||
ChT | ||||
ChT + RT | 1.5 (1.1–2.1) | 0.012 * | 1.5 (1.0–2.3) | 0.053 * |
Type of Systemic Therapy, 1st line | ||||
Platinum based ChT | Referent | Referent | ||
TKi | 0.4 (0.2–0.8) | 0.003 | 0.4 (0.2–0.7) | 0.002 |
KDR rs1870377, Heterosis Model | ||||
TA | Referent | Referent | ||
TT/AA | 1.7 (1.2–2.5) | 0.005 | 1.8 (1.2–7) | 0.003 |
MME rs701109, Dominant Model | ||||
TT | Referent | Referent | ||
TC/CC | 0.5 (0.3–0.9) | 0.018 | 0.5 (0.2–0.9) | 0.030 |
Variables | OS (Multivariate Stepwise Cox Proportional Hazards Model) | Bootstrap | ||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
T | ||||
T1 | Referent | Referent | ||
T2 | ||||
T3-4 | 1.5 (1.1–2.2) | 0.018 * | 1.5 (1.0–2.2) | 0.066 * |
Distant metastasis | ||||
No | Referent | Referent | ||
Yes | 2.5 (1.5–4.3) | 0.001 | 2.6 (1.5–4.5) | 0.001 |
Age median | ||||
≤64.0 | Referent | Referent | ||
>64.0 | 1.7 (1.0–2.7) | 0.031 | 1.6 (1.0–2.8) | 0.069 |
KDR rs1870377, Heterosis Model | ||||
TA | Referent | Referent | ||
TT/AA | 2.1 (1.2–3.4) | 0.006 | 2.0 (1.2–3.3) | 0.012 |
Variables | PFS (Multivariate Stepwise Cox Proportional Hazards Model) | Bootstrap | ||
---|---|---|---|---|
HR (95%CI) | p | HR (95%CI) | p | |
Histology | ||||
Adenocarcinoma | Referent | Referent | ||
Squamous cell | 1.7 (1.2–2.4) | 0.003 ** | 1.7 (1.2–2.5) | 0.003 ** |
Other * | - | - | ||
Type of Therapy | ||||
ChT | Referent | Referent | ||
ChT + RT | 0.4 (0.3–0.6) | <0.0001 | 0.4 (0.3–0.6) | <0.0001 |
Type of Systemic Therapy, 1st line | ||||
Platinum based ChT | Referent | Referent | ||
TKi | 0.4 (0.3–0.7) | 0.001 | 0.4 (0.3–0.7) | 0.002 |
MME rs701109, Heterosis Model | ||||
TC | Referent | Referent | ||
TT/CC | 1.6 (1.2–2.3) | 0.005 | 1.6 (1.1–2.4) | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catarata, M.J.; Medeiros, R.; Oliveira, M.J.; Pêgo, A.; Frade, J.G.; Martins, M.F.; Robalo Cordeiro, C.; Herth, F.J.F.; Thomas, M.; Kriegsmann, M.; et al. Germline Genetic Variants of the Renin-Angiotensin System, Hypoxia and Angiogenesis in Non-Small Cell Lung Cancer Progression: Discovery and Validation Studies. Cancers 2020, 12, 3834. https://doi.org/10.3390/cancers12123834
Catarata MJ, Medeiros R, Oliveira MJ, Pêgo A, Frade JG, Martins MF, Robalo Cordeiro C, Herth FJF, Thomas M, Kriegsmann M, et al. Germline Genetic Variants of the Renin-Angiotensin System, Hypoxia and Angiogenesis in Non-Small Cell Lung Cancer Progression: Discovery and Validation Studies. Cancers. 2020; 12(12):3834. https://doi.org/10.3390/cancers12123834
Chicago/Turabian StyleCatarata, Maria Joana, Rui Medeiros, Maria José Oliveira, Alice Pêgo, João Gonçalo Frade, Maria Fátima Martins, Carlos Robalo Cordeiro, Felix J F Herth, Michael Thomas, Mark Kriegsmann, and et al. 2020. "Germline Genetic Variants of the Renin-Angiotensin System, Hypoxia and Angiogenesis in Non-Small Cell Lung Cancer Progression: Discovery and Validation Studies" Cancers 12, no. 12: 3834. https://doi.org/10.3390/cancers12123834
APA StyleCatarata, M. J., Medeiros, R., Oliveira, M. J., Pêgo, A., Frade, J. G., Martins, M. F., Robalo Cordeiro, C., Herth, F. J. F., Thomas, M., Kriegsmann, M., Meister, M., Schneider, M. A., Muley, T., & Ribeiro, R. (2020). Germline Genetic Variants of the Renin-Angiotensin System, Hypoxia and Angiogenesis in Non-Small Cell Lung Cancer Progression: Discovery and Validation Studies. Cancers, 12(12), 3834. https://doi.org/10.3390/cancers12123834