Optimization of Predictive Performance for the Therapeutic Response Using Iodine Scan-Corrected Serum Thyroglobulin in Patients with Differentiated Thyroid Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Stepwise Categorization Based on the Combination of Thyroglobulin and Post-Therapeutic I-131 Whole Body Scan
2.2. Prediction of the Therapeutic Response Based on Clinicopathologic Variables
2.3. Comparision of the Predictive Performance for ER between Sigle Cutoff D0Tg and Scan-Corrected Tg
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. RAI Therapy and Tg Measurement
4.3. Study Design
4.4. Follow-Up and Evaluation of the Therapeutic Response
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Park, H.J.; Jeong, G.C.; Kwon, S.Y.; Min, J.J.; Bom, H.S.; Park, K.S.; Cho, S.G.; Kang, S.R.; Kim, J.; Song, H.C.; et al. Stimulated Serum Thyroglobulin Level at the Time of First Dose of Radioactive Iodine Therapy Is the Most Predictive Factor for Therapeutic Failure in Patients With Papillary Thyroid Carcinoma. Nucl. Med. Mol. Imaging 2014, 48, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Min, J.J.; Bom, H.S.; Kim, J.; Song, H.C.; Kwon, S.Y. Early stimulated thyroglobulin for response prediction after recombinant human thyrotropin-aided radioiodine therapy. Ann. Nucl. Med. 2017, 31, 616–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, M.; Costa, G.; Ribeiro, C.; Carrilho, F.; Martins, M.J.; da Rocha, A.G.; Sobrinho-Simoes, M.; Carvalheiro, M.; Soares, P. Stimulated thyroglobulin at recombinant human TSH-aided ablation predicts disease-free status one year later. J. Clin. Endocrinol. Metab. 2013, 98, 4364–4372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacini, F.; Lari, R.; Mazzeo, S.; Grasso, L.; Taddei, D.; Pinchera, A. Diagnostic value of a single serum thyroglobulin determination on and off thyroid suppressive therapy in the follow-up of patients with differentiated thyroid cancer. Clin. Endocrinol. 1985, 23, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Grogan, R.H.; Mitmaker, E.J.; Clark, O.H. The evolution of biomarkers in thyroid cancer-from mass screening to a personalized biosignature. Cancers 2010, 2, 885–912. [Google Scholar] [CrossRef] [Green Version]
- Barres, B.; Kelly, A.; Kwiatkowski, F.; Batisse-Lignier, M.; Fouilhoux, G.; Aubert, B.; Dutheil, F.; Tauveron, I.; Cachin, F.; Maqdasy, S. Stimulated Thyroglobulin and Thyroglobulin Reduction Index Predict Excellent Response in Differentiated Thyroid Cancers. J. Clin. Endocrinol. Metab. 2019, 104, 3462–3472. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Yoon, J.H.; Cho, J.S.; Kwon, S.Y.; Yoo, S.W.; Kang, H.C. The clinical meaning of pre-and post-ablation thyroglobulin levels at first radioiodine therapy in patients with papillary thyroid cancer. Korean J. Intern. Med. 2019. [Google Scholar] [CrossRef]
- Stevic, I.; Dembinski, T.C.; Pathak, K.A.; Leslie, W.D. Transient early increase in thyroglobulin levels post-radioiodine ablation in patients with differentiated thyroid cancer. Clin. Biochem. 2015, 48, 658–661. [Google Scholar] [CrossRef]
- Kim, Y.I.; Im, H.J.; Paeng, J.C.; Cheon, G.J.; Kang, K.W.; Lee, D.S.; Joon Park, D.; Park, Y.J.; Chung, J.K. Serum thyroglobulin level after radioiodine therapy (Day 3) to predict successful ablation of thyroid remnant in postoperative thyroid cancer. Ann. Nucl. Med. 2015, 29, 184–189. [Google Scholar] [CrossRef]
- Bernier, M.O.; Morel, O.; Rodien, P.; Muratet, J.P.; Giraud, P.; Rohmer, V.; Jeanguillaume, C.; Bigorgne, J.C.; Jallet, P. Prognostic value of an increase in the serum thyroglobulin level at the time of the first ablative radioiodine treatment in patients with differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 1418–1421. [Google Scholar] [CrossRef]
- Jeong, G.C.; Song, M.; Park, H.J.; Min, J.J.; Bom, H.S.; Cho, S.G.; Park, K.S.; Kang, S.R.; Kim, J.; Song, H.C.; et al. Iodine Uptake Patterns on Post-ablation Whole Body Scans are Related to Elevated Serum Thyroglobulin Levels After Radioactive Iodine Therapy in Patients with Papillary Thyroid Carcinoma. Nucl. Med. Mol. Imaging 2016, 50, 329–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.Y.; Kim, W.B.; Kim, E.S.; Ryu, J.S.; Yeo, J.S.; Kim, S.C.; Hong, S.J.; Shong, Y.K. Serum thyroglobulin levels at the time of 131I remnant ablation just after thyroidectomy are useful for early prediction of clinical recurrence in low-risk patients with differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 2005, 90, 1440–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandeira, L.; Padovani, R.D.P.; Ticly, A.L.; Cury, A.N.; Scalissi, N.M.; Marone, M.M.S.; Ferraz, C. Thyroglobulin levels before radioactive iodine therapy and dynamic risk stratification after 1 year in patients with differentiated thyroid cancer. Arch. Endocrinol. Metab. 2017, 61, 590–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzaferri, E.L.; Robbins, R.J.; Spencer, C.A.; Braverman, L.E.; Pacini, F.; Wartofsky, L.; Haugen, B.R.; Sherman, S.I.; Cooper, D.S.; Braunstein, G.D.; et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 2003, 88, 1433–1441. [Google Scholar] [CrossRef] [Green Version]
- Boudourakis, L.D.; Wang, T.S.; Roman, S.A.; Desai, R.; Sosa, J.A. Evolution of the surgeon-volume, patient-outcome relationship. Ann. Surg. 2009, 250, 159–165. [Google Scholar] [CrossRef]
- Adkisson, C.D.; Howell, G.M.; McCoy, K.L.; Armstrong, M.J.; Kelley, M.L.; Stang, M.T.; Joyce, J.M.; Hodak, S.P.; Carty, S.E.; Yip, L. Surgeon volume and adequacy of thyroidectomy for differentiated thyroid cancer. Surgery 2014, 156, 1453–1459. [Google Scholar] [CrossRef]
- Gourin, C.G.; Tufano, R.P.; Forastiere, A.A.; Koch, W.M.; Pawlik, T.M.; Bristow, R.E. Volume-based trends in thyroid surgery. Arch. Otolaryngol. Head Neck Surg. 2010, 136, 1191–1198. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, N.; McClain, D.E.; Catravas, G.N. Membranes as sensitive targets in thymocyte apoptosis. Int. J. Radiat. Biol. 1993, 63, 693–701. [Google Scholar] [CrossRef]
- Cramp, W.A.; Yatvin, M.B.; Harms-Ringdahl, M. Recent developments in the radiobiology of cellular membranes. Acta Oncol. 1994, 33, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Lim, I.; Lee, I.; Byun, B.H.; Kim, B.I.; Choi, C.W.; Lim, S.M. An enhanced treatment effect can be expected from a higher serum thyroglobulin level after radioactive iodine therapy. Ann. Nucl. Med. 2019, 33, 128–134. [Google Scholar] [CrossRef]
- Lee, M.; Lee, Y.K.; Jeon, T.J.; Chang, H.S.; Kim, B.W.; Lee, Y.S.; Park, C.S.; Ryu, Y.H. Frequent visualization of thyroglossal duct remnant on post-ablation 131I-SPECT/CT and its clinical implications. Clin. Radiol. 2015, 70, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.; Walters, A.; Hage, R.; Zurada, A.; Michalak, M.; Tubbs, R.S.; Loukas, M. Thyroglossal duct cysts: Anatomy, embryology and treatment. Surg. Radiol. Anat. 2013, 35, 875–881. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, J.; Lee, H.J.; Seo, J.H.; Kang, S.M.; Bae, J.H.; Ahn, B.C. Enhanced scintigraphic visualization of thyroglossal duct remnant during hypothyroidism after total thyroidectomy: Prevalence and clinical implication in patients with differentiated thyroid cancer. Thyroid 2007, 17, 341–346. [Google Scholar] [CrossRef]
- Jung, J.S.; Lee, S.M.; Kim, S.J.; Choi, J.; Han, S.W. Prediction of the success of thyroid remnant ablation using preablative 99mTc pertechnetate scintigraphy and postablative dual 131I scintigraphy. Nucl. Med. Commun. 2015, 36, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Indrasena, B.S. Use of thyroglobulin as a tumour marker. World J. Biol. Chem. 2017, 8, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Lind, P.; Kohlfurst, S. Respective roles of thyroglobulin, radioiodine imaging, and positron emission tomography in the assessment of thyroid cancer. Semin. Nucl. Med. 2006, 36, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Zucchelli, G.; Iervasi, A.; Ferdeghini, M.; Iervasi, G. Serum thyroglobulin measurement in the follow-up of patients treated for differentiated thyroid cancer. Q. J. Nucl. Med. Mol. Imaging 2009, 53, 482–489. [Google Scholar]
- Ma, C.; Kuang, A.; Xie, J.; Ma, T. Possible explanations for patients with discordant findings of serum thyroglobulin and 131I whole-body scanning. J. Nucl. Med. 2005, 46, 1473–1480. [Google Scholar]
- Robbins, R.J.; Schlumberger, M.J. The evolving role of (131)I for the treatment of differentiated thyroid carcinoma. J. Nucl. Med. 2005, 46 (Suppl. 1), 28S–37S. [Google Scholar]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
Parameters | No. of Patients |
---|---|
Age (years) | |
Mean (range) | 47.2 ± 11.5 (22–83) |
Male/female | 84 (26.3%)/235 (73.7%) |
Histology | |
Papillary thyroid carcinoma | 319 (100.0%) |
Diameter of the largest tumor (mm) | |
Mean (range) | 12.2 ± 8.9 (2–70) |
<10 | 148 (46.4%) |
≥10 | 171 (53.6%) |
Presence of ETE 1 | |
No ETE/microscopic ETE/gross ETE | 181 (56.8%)/107 (33.5%)/31 (9.7%) |
Multiplicity | |
Solitary/multiple | 163 (51.1%)/156 (48.9%) |
T stage | |
T1 | 169 (53.0%) |
T2 | 9 (2.8%) |
T3 | 122 (38.2%) |
T4 | 19 (6.0%) |
N stage | |
N0 | 13 (4.1%) |
N1a | 230 (72.1%) |
N1b | 76 (23.8%) |
Interval between the operation and RAI 2 therapy (days) | |
Mean (range) | 98.4 ± 16 (57–160) |
Dose of administered I-131 (GBq) | |
3.70 | 192 (60.2%) |
5.55 | 9 (2.8%) |
6.66 | 118 (37.0%) |
Presence of midline uptake on RxWBS 3 | |
Negative | 210 (65.8%) |
Positive | 109 (34.2%) |
Variables | Excellent Response (%) n = 229 | Non-Excellent Response (%) n = 90 | p-Value |
---|---|---|---|
Age (years) | |||
<45 | 91 (39.7) | 47 (52.2) | 0.043 * |
≥45 | 138 (60.3) | 43 (47.8) | |
Sex | |||
Male | 61 (26.6) | 23 (25.6) | 0.843 |
Female | 168 (73.4) | 67 (74.4) | |
Tumor size (mm) | |||
<10 | 105 (45.9) | 43 (47.8) | 0.756 |
≥10 | 124 (54.1) | 47 (52.2) | |
Presence of ETE 1 | |||
No | 129 (56.3) | 52 (57.8) | 0.815 |
Yes | 100 (43.7) | 38 (42.2) | |
Multiplicity | |||
Solitary | 116 (50.7) | 47 (52.2) | 0.843 |
Multiple | 113 (49.3) | 43 (47.8) | |
T stage | |||
T1 | 120 (52.4) | 49 (54.4) | 0.691 |
T2 | 8 (3.5) | 1 (1.1) | |
T3 | 88 (38.4) | 34 (37.8) | |
T4 | 13 (5.7) | 6 (6.7) | |
N stage | |||
N0/Nx | 11 (4.8) | 2 (2.2) | 0.275 |
N1a | 168 (73.4) | 62 (68.9) | |
N1b | 50 (21.8) | 26 (28.9) | |
Presence of midline uptake on RxWBS 2 | |||
Negative | 143 (62.4) | 67 (74.4) | 0.042 * |
Positive | 86 (37.6) | 23 (25.6) | |
Stimulated Tg before RAI 3 therapy (D0Tg 4, ng/mL) | 1.22 ± 1.94 | 11.73 ± 34.71 | <0.001 * |
Single cutoff of D0Tg (ng/mL) | |||
<2.0 | 189 (82.5) | 29 (32.2) | <0.001 * |
≥2.0 | 40 (17.5) | 61 (67.8) | |
Scan-corrected Tg | |||
Favorable (good Px 5) | 208 (90.8) | 32 (35.6) | <0.001 * |
Unfavorable (poor Px) | 21 (9.2) | 58 (64.4) |
Variables | Sensitivity | Specificity | PPV 1 | NPV 2 | Accuracy | p-Value |
---|---|---|---|---|---|---|
Single cutoff D0Tg 3 (2 ng/mL) | 82.5 | 67.8 | 86.7 | 60.4 | 78.4 | <0.001 |
Scan-corrected Tg 4 | 90.8 | 64.4 | 86.7 | 73.4 | 83.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, S.W.; Chowdhury, M.S.A.; Jeon, S.; Kang, S.-R.; Cho, S.-G.; Kim, J.; Lee, C.; Ryu, Y.J.; Song, H.-C.; Bom, H.-S.; et al. Optimization of Predictive Performance for the Therapeutic Response Using Iodine Scan-Corrected Serum Thyroglobulin in Patients with Differentiated Thyroid Carcinoma. Cancers 2020, 12, 262. https://doi.org/10.3390/cancers12020262
Yoo SW, Chowdhury MSA, Jeon S, Kang S-R, Cho S-G, Kim J, Lee C, Ryu YJ, Song H-C, Bom H-S, et al. Optimization of Predictive Performance for the Therapeutic Response Using Iodine Scan-Corrected Serum Thyroglobulin in Patients with Differentiated Thyroid Carcinoma. Cancers. 2020; 12(2):262. https://doi.org/10.3390/cancers12020262
Chicago/Turabian StyleYoo, Su Woong, Md. Sunny Anam Chowdhury, Subin Jeon, Sae-Ryung Kang, Sang-Geon Cho, Jahae Kim, Changho Lee, Young Jae Ryu, Ho-Chun Song, Hee-Seung Bom, and et al. 2020. "Optimization of Predictive Performance for the Therapeutic Response Using Iodine Scan-Corrected Serum Thyroglobulin in Patients with Differentiated Thyroid Carcinoma" Cancers 12, no. 2: 262. https://doi.org/10.3390/cancers12020262
APA StyleYoo, S. W., Chowdhury, M. S. A., Jeon, S., Kang, S.-R., Cho, S.-G., Kim, J., Lee, C., Ryu, Y. J., Song, H.-C., Bom, H.-S., Min, J.-J., & Kwon, S. Y. (2020). Optimization of Predictive Performance for the Therapeutic Response Using Iodine Scan-Corrected Serum Thyroglobulin in Patients with Differentiated Thyroid Carcinoma. Cancers, 12(2), 262. https://doi.org/10.3390/cancers12020262