Exploring the Role of Novel Medical Therapies for Aggressive Pituitary Tumors: A Review of the Literature—“Are We There Yet?”
Abstract
:1. Introduction
2. Targeted Therapies
3. Growth Factor-Targeted Therapies
3.1. Inhibition of Vascular Endothelial Growth Factor (VEGF)
3.2. Inhibition of Epidermal Growth Factor Receptors (EGFRs)
3.3. Inhibition of Fibroblast Growth Factor
4. Targets of Intracellular Signaling Pathways
4.1. PI3K/Akt/mTOR and Raf/Mek/ERK Pathways
4.2. Notch and Hedgehog Signaling Pathways
5. Cell Cycle-Targeted Therapy
6. Pituitary Tumor-Transforming Gene (PTTG)
7. Pituitary Tumor Epigenetics
8. Immune Checkpoint Inhibitor Therapies
9. Active Clinical Trials
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dworakowska, D.; Grossman, A.B. Aggressive and malignant pituitary tumours: State-of-the-art. Endocr. Relat. Cancer 2018, 25, R559–R575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raverot, G.; Burman, P.; McCormack, A.; Heaney, A.; Petersenn, S.; Popovic, V.; Trouillas, J.; Dekkers, O.M.; Endocrinology, T.E.S.O. European Society of Endocrinology Clinical Practice Guidelines for the management of aggressive pituitary tumours and carcinomas. Eur. J. Endocrinol. 2018, 178, G1–G24. [Google Scholar] [CrossRef] [PubMed]
- McCormack, A.; Dekkers, O.M.; Petersenn, S.; Popovic, V.; Trouillas, J.; Raverot, G.; Burman, P.; Hubalewska-Dydejezky, A.; Assie, G.; Bach, L.; et al. Treatment of aggressive pituitary tumours and carcinomas: Results of a European Society of Endocrinology (ESE) survey 2016. Eur. J. Endocrinol. 2018, 178, 265–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IARC; World Health Organization; IA. Pathology and Genetics of Tumours of Endocrine Organs; IARC: Lyon, France, 2004; p. 324. [Google Scholar]
- Lloyd, R.; Osamura, R.; Kloppel, G.; Rosai, J. WHO Classification of Tumours of Endocrine Organs, 4th ed.; IARC: Lyon, France, 2017; Volume 10. [Google Scholar]
- Inoshita, N.; Nishioka, H. The 2017 WHO classification of pituitary adenoma: Overview and comments. Brain Tumor Pathol. 2018, 35, 51–56. [Google Scholar] [CrossRef]
- Mete, O.; Lopes, M.B. Overview of the 2017 WHO Classification of Pituitary Tumors. Endocr. Pathol. 2017, 28, 228–243. [Google Scholar] [CrossRef]
- Yoo, F.; Kuan, E.C.; Heaney, A.P.; Bergsneider, M.; Wang, M.B. Corticotrophic pituitary carcinoma with cervical metastases: Case series and literature review. Pituitary 2018, 21, 290–301. [Google Scholar] [CrossRef]
- Pernicone, P.J.; Scheithauer, B.W.; Sebo, T.J.; Kovacs, K.T.; Horvath, E.; Young, W.F.; Lloyd, R.V.; Davis, D.H.; Guthrie, B.L.; Schoene, W.C. Pituitary carcinoma: A clinicopathologic study of 15 cases. Cancer 1997, 79, 804–812. [Google Scholar] [CrossRef]
- McCormack, A.I.; Wass, J.A.H.; Grossman, A.B. Aggressive pituitary tumours: The role of temozolomide and the assessment of MGMT status. Eur. J. Clin. Investig. 2011, 41, 1133–1148. [Google Scholar] [CrossRef]
- Lasolle, H.; Cortet, C.; Castinetti, F.; Cloix, L.; Caron, P.; Delemer, B.; Desailloud, R.; Jublanc, C.; Lebrun-Frenay, C.; Sadoul, J.-L.; et al. Temozolomide treatment can improve overall survival in aggressive pituitary tumors and pituitary carcinomas. Eur. J. Endocrinol. 2017, 176, 769–777. [Google Scholar] [CrossRef]
- Chae, Y.K.; Pan, A.P.; Davis, A.A.; Patel, S.P.; Carneiro, B.A.; Kurzrock, R.; Giles, F.J. Path toward Precision Oncology: Review of Targeted Therapy Studies and Tools to Aid in Defining “Actionability” of a Molecular Lesion and Patient Management Support. Mol. Cancer Ther. 2017, 16, 2645–2655. [Google Scholar] [CrossRef] [Green Version]
- Re, A.; Nardella, C.; Quattrone, A.; Lunardi, A. Editorial: Precision Medicine in Oncology. Front. Oncol. 2018, 8, 479. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, L.D.; Syro, L.V.; Scheithauer, B.W.; Ersen, A.; Uribe, H.; Fadul, C.E.; Rotondo, F.; Horvath, E.; Kovacs, K. Anti-VEGF therapy in pituitary carcinoma. Pituitary 2011, 15, 445–449. [Google Scholar] [CrossRef]
- O’Riordan, L.M.; Greally, M.; Coleman, N.; Breathnach, O.S.; Hennessy, B.; Thompson, C.J.; Grogan, W. Metastatic ACTH-producing pituitary carcinoma managed with combination pasireotide and bevacizumab following failure of temozolamide therapy: A case report. JCO 2013, 31, e13022. [Google Scholar]
- Rotman, L.E.; Vaughan, T.B.; Hackney, J.R.; Riley, K.O. Long-Term Survival After Transformation of an Adrenocorticotropic Hormone–Secreting Pituitary Macroadenoma to a Silent Corticotroph Pituitary Carcinoma. World Neurosurg. 2019, 122, 417–423. [Google Scholar] [CrossRef]
- Touma, W.; Hoostal, S.; Peterson, R.A.; Wiernik, A.; Santacruz, K.S.; Lou, E. Successful treatment of pituitary carcinoma with concurrent radiation, temozolomide, and bevacizumab after resection. J. Clin. Neurosci. 2017, 41, 75–77. [Google Scholar] [CrossRef]
- Kurowska, M.; Nowakowski, A.; Zieliński, G.; Malicka, J.; Tarach, J.S.; Maksymowicz, M.; Denew, P. Temozolomide-Induced Shrinkage of Invasive Pituitary Adenoma in Patient with Nelson’s Syndrome: A Case Report and Review of the Literature. Case Rep. Endocrinol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, Q.; Meng, X.; Zhou, S.; Zhu, Y.; Xu, J.; Tao, R. Apatinib (YN968D1) and Temozolomide in Recurrent Invasive Pituitary Adenoma: Case Report and Literature Review. World Neurosurg. 2019, 124, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Cooper, O.; Bonert, V.; Rudnick, J.; Pressman, B.; Melmed, S. SUN-442 EGFR/ErbB2 Targeted Therapy for Aggressive Prolactinomas. J. Endocr. Soc. 2019, 3, 442. [Google Scholar] [CrossRef]
- Zhang, N.; Way, J.S.; Zhang, X.; Sergey, M.; Bergsneider, M.; Wang, M.B.; Yong, W.H.; Heaney, A.P. Effect of Everolimus in Treatment of Aggressive Prolactin-Secreting Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2019, 104, 1929–1936. [Google Scholar] [CrossRef] [PubMed]
- Donovan, L.E.; Arnal, A.V.; Wang, S.-H.; Odia, Y. Widely metastatic atypical pituitary adenoma with mTOR pathway STK11(F298L) mutation treated with everolimus therapy. CNS Oncol. 2016, 5, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Jouanneau, E.; Wierinckx, A.; Ducray, F.; Favrel, V.; Borson-Chazot, F.; Honnorat, J.; Trouillas, J.; Raverot, G. New targeted therapies in pituitary carcinoma resistant to temozolomide. Pituitary 2012, 15, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.; Heller, R.S.; Lechan, R.M.; Heilman, C.B. Regression of a nonfunctioning pituitary macroadenoma on the CDK4/6 inhibitor palbociclib: Case report. Neurosurg. Focus 2018, 44, E9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, A.L.; Jonsson, P.; Tabar, V.; Yang, T.J.; Cuaron, J.; Beal, K.; Cohen, M.; Postow, M.; Rosenblum, M.; Shia, J.; et al. Marked Response of a Hypermutated ACTH-Secreting Pituitary Carcinoma to Ipilimumab and Nivolumab. J. Clin. Endocrinol. Metab. 2018, 103, 3925–3930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. Nat. Rev. Cancer 2013, 13, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Gerber, H.-P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Voron, T.; Colussi, O.; Marcheteau, E.; Pernot, S.; Nizard, M.; Pointet, A.L.; Latreche, S.; Bergaya, S.; Benhamouda, N.; Tanchot, C.; et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 2015, 212, 139–148. [Google Scholar] [CrossRef]
- Yang, J.; Yan, J.; Liu, B. Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Front. Immunol. 2018, 9, 978. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, N. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 2004, 9, 2–10. [Google Scholar] [CrossRef]
- Zirlik, K.; Duyster, J. Anti-Angiogenics: Current Situation and Future Perspectives. Oncol. Res. Treat. 2018, 41, 166–171. [Google Scholar] [CrossRef]
- Zhang, H. Apatinib for molecular targeted therapy in tumor. Drug Des. Devel. Ther. 2015, 9, 6075–6081. [Google Scholar] [CrossRef] [Green Version]
- Ellis, L.M.; Hicklin, D.J. VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat. Rev. Cancer 2008, 8, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.V.; Scheithauer, B.W.; Kuroki, T.; Vidal, S.; Kovacs, K.; Stefaneanu, L. Vascular Endothelial Growth Factor (VEGF) Expression in Human Pituitary Adenomas and Carcinomas. Endocr. Pathol. 1999, 10, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Tohti, M.; Hu, Y.; Wang, S.; Li, W.; Lu, Z.; Ma, C. The expression profile of Dopamine D2 receptor, MGMT and VEGF in different histological subtypes of pituitary adenomas: A study of 197 cases and indications for the medical therapy. J. Exp. Clin. Cancer Res. 2014, 33, 56. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ortiga, R.; Sánchez-Tejada, L.; Moreno-Perez, O.; Riesgo, P.; Niveiro, M.; Picó Alfonso, A.M. Over-expression of vascular endothelial growth factor in pituitary adenomas is associated with extrasellar growth and recurrence. Pituitary 2013, 16, 370–377. [Google Scholar] [CrossRef]
- Cristina, C.; Perez-Millan, M.I.; Luque, G.; Dulce, R.A.; Sevlever, G.; Berner, S.I.; Becu-Villalobos, D. VEGF and CD31 Association in Pituitary Adenomas. Endocr. Pathol. 2010, 21, 154–160. [Google Scholar] [CrossRef]
- Kurosaki, M.; Saeger, W.; Abe, T.; Lüdecke, D.K. Expression of vascular endothelial growth factor in growth hormone-secreting pituitary adenomas: Special reference to the octreotide treatment. Neurol. Res. 2008, 30, 518–522. [Google Scholar] [CrossRef]
- Zatelli, M.C.; Piccin, D.; Vignali, C.; Tagliati, F.; Ambrosio, M.R.; Bondanelli, M.; Cimino, V.; Bianchi, A.; Schmid, H.A.; Scanarini, M.; et al. Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Endocr. Relat. Cancer 2007, 14, 91–102. [Google Scholar] [CrossRef]
- Luque, G.M.; Perez-Millan, M.I.; Ornstein, A.M.; Cristina, C.; Becu-Villalobos, D. Inhibitory Effects of Antivascular Endothelial Growth Factor Strategies in Experimental Dopamine-Resistant Prolactinomas. J. Pharmacol. Exp. Ther. 2011, 337, 766–774. [Google Scholar] [CrossRef] [Green Version]
- Korsisaari, N.; Ross, J.; Wu, X.; Kowanetz, M.; Pal, N.; Hall, L.; Eastham-Anderson, J.; Forrest, W.F.; Van Bruggen, N.; Peale, F.V.; et al. Blocking Vascular Endothelial Growth Factor-A Inhibits the Growth of Pituitary Adenomas and Lowers Serum Prolactin Level in a Mouse Model of Multiple Endocrine Neoplasia Type 1. Clin. Cancer Res. 2008, 14, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Chauvet, N.; Romanò, N.; Lafont, C.; Guillou, A.; Galibert, E.; Bonnefont, X.; Le Tissier, P.; Fedele, M.; Fusco, A.; Mollard, P.; et al. Complementary actions of dopamine D2 receptor agonist and anti-vegf therapy on tumoral vessel normalization in a transgenic mouse model. Int. J. Cancer 2017, 140, 2150–2161. [Google Scholar] [CrossRef] [Green Version]
- Wee, P.; Wang, Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers 2017, 9, 52. [Google Scholar]
- Cooper, O.; Vlotides, G.; Fukuoka, H.; Greene, M.I.; Melmed, S. Expression and function of ErbB receptors and ligands in the pituitary. Endocr. Relat. Cancer 2011, 18, R197–R211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendelsohn, J.; Baselga, J. Status of Epidermal Growth Factor Receptor Antagonists in the Biology and Treatment of Cancer. J. Clin. Oncol. 2003, 21, 2787–2799. [Google Scholar] [CrossRef] [PubMed]
- Harandi, A.; Zaidi, A.S.; Stocker, A.M.; Laber, D.A. Clinical Efficacy and Toxicity of Anti-EGFR Therapy in Common Cancers. J. Oncol. 2009, 2009, 1–14. [Google Scholar] [CrossRef]
- Bonomi, P.; Gandara, D.; Hirsch, F.; Kerr, K.; Obasaju, C.; Paz-Ares, L.; Bellomo, C.; Bradley, J.; Bunn, P.A., Jr.; Culligan, M.; et al. Predictive biomarkers for response to EGFR-directed monoclonal antibodies for advanced squamous cell lung cancer. Ann. Oncol. 2018, 29, 1701–1709. [Google Scholar] [CrossRef]
- Prudkin, L.; Wistuba, I.I. Epidermal growth factor receptor abnormalities in lung cancer. Pathogenetic and clinical implications. Ann. Diagn. Pathol. 2006, 10, 306–315. [Google Scholar] [CrossRef]
- Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors: Guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch. Pathol. Lab. Med. 2018, 142, 321–346. [Google Scholar]
- Cooper, O.; Mamelak, A.; Bannykh, S.; Carmichael, J.; Bonert, V.; Lim, S.; Cook-Wiens, G.; Ben-Shlomo, A. Prolactinoma ErbB receptor expression and targeted therapy for aggressive tumors. Endocrine 2013, 46, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Onguru, O.; Scheithauer, B.W.; Kovacs, K.; Vidal, S.; Jin, L.; Zhang, S.; Ruebel, K.H.; Lloyd, R.V. Analysis of epidermal growth factor receptor and activated epidermal growth factor receptor expression in pituitary adenomas and carcinomas. Mod. Pathol. 2004, 17, 772–780. [Google Scholar] [CrossRef]
- Liu, X.; Feng, M.; Dai, C.; Bao, X.; Deng, K.; Yao, Y.; Wang, R. Expression of EGFR in Pituitary Corticotroph Adenomas and Its Relationship with Tumor Behavior. Front. Endocrinol. 2019, 10, 785. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.Y.; Song, Z.J.; Chen, J.H.; Wang, Y.F.; Li, S.Q.; Zhou, L.F.; Mao, Y.; Li, Y.M.; Hu, R.G.; Zhang, Z.Y.; et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res. 2015, 25, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Reincke, M.; Sbiera, S.; Hayakawa, A.; Theodoropoulou, M.; Osswald, A.; Beuschlein, F.; Meitinger, T.; Mizuno-Yamasaki, E.; Kawaguchi, K.; Saeki, Y.; et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat. Genet. 2015, 47, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, H.; Cooper, O.; Ben-Shlomo, A.; Mamelak, A.; Ren, S.-G.; Bruyette, D.; Melmed, S. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J. Clin. Investig. 2011, 121, 4712–4721. [Google Scholar] [CrossRef] [Green Version]
- Fukuoka, H.; Cooper, O.; Mizutani, J.; Tong, Y.; Ren, S.G.; Bannykh, S.; Melmed, S. HER2/ErbB2 Receptor Signaling in Rat and Human Prolactinoma Cells: Strategy for Targeted Prolactinoma Therapy. Mol. Endocrinol. 2011, 25, 92–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer. 2010, 10, 116–129. [Google Scholar] [CrossRef]
- Korc, M.; Friesel, R.E. The role of fibroblast growth factors in tumor growth. Curr. Cancer Drug Targets 2009, 9, 639–651. [Google Scholar] [CrossRef]
- Ezzat, S.; Smyth, H.S.; Ramyar, L.; Asa, S.L. Heterogenous in vivo and in vitro expression of basic fibroblast growth factor by human pituitary adenomas. J. Clin. Endocrinol. Metab. 1995, 80, 878–884. [Google Scholar]
- Abbass, S.A.A.; Asa, S.L.; Ezzat, S. Altered Expression of Fibroblast Growth Factor Receptors in Human Pituitary Adenomas. J. Clin. Endocrinol. Metab. 1997, 82, 7. [Google Scholar] [CrossRef]
- Qian, Z.R.; Sano, T.; Asa, S.L.; Yamada, S.; Horiguchi, H.; Tashiro, T.; Li, C.C.; Hirokawa, M.; Kovacs, K.; Ezzat, S. Cytoplasmic Expression of Fibroblast Growth Factor Receptor-4 in Human Pituitary Adenomas: Relation to Tumor Type, Size, Proliferation, and Invasiveness. J. Clin. Endocrinol. Metab. 2004, 89, 1904–1911. [Google Scholar] [CrossRef] [Green Version]
- McCabe, C.J.; Khaira, J.S.; Boelaert, K.; Heaney, A.P.; Tannahill, L.A.; Hussain, S.; Mitchell, R.; Olliff, J.; Sheppard, M.C.; Franklyn, J.A.; et al. Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas: Relationships to clinical tumour behaviour. Clin. Endocrinol. 2003, 58, 141–150. [Google Scholar] [CrossRef]
- Zhu, X.; Lee, K.; Asa, S.L.; Ezzat, S. Epigenetic Silencing through DNA and Histone Methylation of Fibroblast Growth Factor Receptor 2 in Neoplastic Pituitary Cells. Am. J. Pathol. 2007, 170, 1618–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2019, 381, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Monsalves, E.; Juraschka, K.; Tateno, T.; Agnihotri, S.; Asa, S.L.; Ezzat, S.; Zadeh, G. The PI3K/AKT/mTOR pathway in the pathophysiology and treatment of pituitary adenomas. Endocr. Relat. Cancer 2014, 21, R331–R344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cakir, M.; Grossman, A.B. Targeting MAPK (Ras/ERK) and PI3K/Akt pathways in pituitary tumorigenesis. Expert Opin. Ther. Targets 2009, 13, 1121–1134. [Google Scholar] [CrossRef]
- Dworakowska, D.; Wlodek, E.; Leontiou, C.A.; Igreja, S.; Cakir, M.; Teng, M.; Prodromou, N.; Góth, M.I.; Grozinsky-Glasberg, S.; Gueorguiev, M.; et al. Activation of RAF/MEK/ERK and PI3K/AKT/mTOR pathways in pituitary adenomas and their effects on downstream effectors. Endocr. Relat. Cancer 2009, 16, 1329–1338. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Guan, K.-L. mTOR as a central hub of nutrient signalling and cell growth. Nature 2019, 21, 63–71. [Google Scholar] [CrossRef]
- Hua, H.; Kong, Q.; Zhang, H.; Wang, J.; Luo, T.; Jiang, Y. Targeting mTOR for cancer therapy. J. Hematol. Oncol. 2019, 12, 71. [Google Scholar] [CrossRef]
- Baselga, J.; Campone, M.; Piccart, M.; Burris, H.A., III; Rugo, H.S.; Sahmoud, T.; Noguchi, S.; Gnant, M.; Pritchard, K.I.; Lebrun, F.; et al. Everolimus in Postmenopausal Hormone-Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2012, 366, 520–529. [Google Scholar] [CrossRef] [Green Version]
- Motzer, R.J.; Escudier, B.; Oudard, S.; Hutson, T.E.; Porta, C.; Bracarda, S.; Grünwald, V.; Thompson, J.A.; Figlin, R.A.; Hollaender, N.; et al. Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial. Lancet 2008, 372, 449–456. [Google Scholar] [CrossRef]
- Hudes, G.; Carducci, M.; Tomczak, P.; Dutcher, J.; Figlin, R.; Kapoor, A.; Staroslawska, E.; Sosman, J.; McDermott, D.; Bodrogi, I.; et al. Temsirolimus, Interferon Alfa, or Both for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2007, 356, 2271–2281. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Li, X.; Zhang, J. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. Int. J. Mol. Sci. 2019, 20, 755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiatkowski, D.J.; Choueiri, T.K.; Fay, A.P.; Rini, B.I.; Thorner, A.R.; De Velasco, G.; Tyburczy, M.E.; Hamieh, L.; Albigès, L.; Agarwal, N.; et al. Mutations in TSC1, TSC2, and MTOR Are Associated with Response to Rapalogs in Patients with Metastatic Renal Cell Carcinoma. Clin. Cancer Res. 2016, 22, 2445–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Jiang, X.; Shen, Y.; Li, M.; Ma, H.; Xing, M.; Lu, Y. Frequent mutations and amplifications of the PIK3CA gene in pituitary tumors. Endocr. Relat. Cancer 2009, 16, 301–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murat, C.; Braga, P.; Fortes, M.; Bronstein, M.; Correa-Giannella, M.; Giorgi, R. Mutation and genomic amplification of the PIK3CA proto-oncogene in pituitary adenomas. Braz. J. Med Boil. Res. 2012, 45, 851–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muşat, M.; Korbonits, M.; Kola, B.; Borboli, N.; Hanson, M.R.; Nanzer, A.M.; Grigson, J.; Jordan, S.; Morris, D.G.; Gueorguiev, M.; et al. Enhanced protein kinase B/Akt signalling in pituitary tumours. Endocr. Relat. Cancer 2005, 12, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Ewing, I.; Pedder-Smith, S.; Franchi, G.; Ruscica, M.; Emery, M.; Vax, V.; Garcia, E.; Czirják, S.; Hanzely, Z.; Kola, B.; et al. A mutation and expression analysis of the oncogene BRAF in pituitary adenomas. Clin. Endocrinol. 2007, 66, 348–352. [Google Scholar] [CrossRef]
- Pei, L.; Melmed, S.; Scheithauer, B.; Kovacs, K.; Prager, D. H-ras mutations in human pituitary carcinoma metastases. J. Clin. Endocrinol. Metab. 1994, 78, 842–846. [Google Scholar]
- Chen, J.; Jian, X.; Deng, S.; Ma, Z.; Shou, X.; Shen, Y.; Zhang, Q.; Song, Z.; Li, Z.; Peng, H.; et al. Identification of recurrent USP48 and BRAF mutations in Cushing’s disease. Nat. Commun. 2018, 9, 3171. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, D.; Colombi, M.; Moroni, C.; Hall, M.N. Rapamycin passes the torch: A new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 2011, 10, 868–880. [Google Scholar] [CrossRef]
- Gorshtein, A.; Rubinfeld, H.; Kendler, E.; Theodoropoulou, M.; Cerovac, V.; Stalla, G.K.; Cohen, Z.R.; Hadani, M.; Shimon, I. Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GH-secreting pituitary tumor cells in vitro. Endocr. Relat. Cancer 2009, 16, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Pivonello, C.; Patalano, R.; Solari, D.; Auriemma, R.S.; Frio, F.; Vitulli, F.; Grasso, L.F.S.; Di Cera, M.; De Martino, M.C.; Cavallo, L.M.; et al. Effect of combined treatment with a pan-PI3K inhibitor or an isoform-specific PI3K inhibitor and everolimus on cell proliferation in GH-secreting pituitary tumour in an experimental setting. Endocrine 2018, 62, 663–680. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Wiedemann, T.; Gross, C.; Leinhauser, I.; Roncaroli, F.; Braren, R.; Pellegata, N.S. Targeting PI3K/mTOR Signaling Displays Potent Antitumor Efficacy against Nonfunctioning Pituitary Adenomas. Clin. Cancer Res. 2015, 21, 3204–3215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanal, M.; Chevallier, P.; Raverot, V.; Fonteneau, G.; Lucia, K.; Garcia, J.L.M.; Rachwan, A.; Jouanneau, E.; Trouillas, J.; Honnorat, J.; et al. Differential Effects of PI3K and Dual PI3K/mTOR Inhibition in Rat Prolactin-Secreting Pituitary Tumors. Mol. Cancer Ther. 2016, 15, 1261–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, C.; Zhang, B.; Liu, X.; Ma, S.; Yang, Y.; Yao, Y.; Feng, M.; Bao, X.; Li, G.; Wang, J.; et al. Inhibition of PI3K/AKT/mTOR Pathway Enhances Temozolomide-Induced Cytotoxicity in Pituitary Adenoma Cell Lines in Vitro and Xenografted Pituitary Adenoma in Female Nude Mice. Endocrinology 2013, 154, 1247–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takebe, N.; Miele, L.; Harris, P.J.; Jeong, W.; Bando, H.; Kahn, M.; Yang, S.X.; Ivy, S.P. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat. Rev. Clin. Oncol. 2015, 12, 445–464. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, V.; Nataraj, R.; Thangaraj, G.S.; Karthikeyan, M.; Gnanasekaran, A.; Kaginelli, S.B.; Kuppanna, G.; Kallappa, C.G.; Basalingappa, K.M. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig. 2018, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Amakye, D.; Jagani, Z.; Dorsch, M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat. Med. 2013, 19, 1410–1422. [Google Scholar] [CrossRef]
- Yavropoulou, M.P.; Maladaki, A.; Yovos, J.G. The role of Notch and Hedgehog signaling pathways in pituitary development and pathogenesis of pituitary adenomas. Hormones 2015, 14, 5–18. [Google Scholar] [CrossRef]
- Lu, R.; Gao, H.; Wang, H.; Cao, L.; Bai, J.; Zhang, Y. Overexpression of the Notch3 receptor and its ligand Jagged1 in human clinically non-functioning pituitary adenomas. Oncol. Lett. 2013, 5, 845–851. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.-O.; Moreno, C.S.; Zhan, X.; McCabe, M.T.; Vertino, P.M.; Desiderio, M.M.; Oyesiku, N.M. Molecular pathogenesis of human prolactinomas identified by gene expression profiling, RT-qPCR, and proteomic analyses. Pituitary 2008, 11, 231–245. [Google Scholar] [CrossRef]
- Vila, G.; Theodoropoulou, M.; Stalla, J.; Tonn, J.C.; Losa, M.; Renner, U.; Stalla, G.K.; Paez-Pereda, M. Expression and Function of Sonic Hedgehog Pathway Components in Pituitary Adenomas: Evidence for a Direct Role in Hormone Secretion and Cell Proliferation. J. Clin. Endocrinol. Metab. 2005, 90, 6687–6694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer 2009, 9, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Dowdy, S.F.; Hinds, P.W.; Louie, K.; Reed, S.I.; Arnold, A.; Weinberg, R.A. Physical interaction of the retinoblastoma protein with human D cyclins. Cell 1993, 73, 499–511. [Google Scholar] [CrossRef]
- Sellers, W.R.; Kaelin, W.G. Role of the retinoblastoma protein in the pathogenesis of human cancer. J. Clin. Oncol. 1997, 15, 3301–3312. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Ro, J.; André, F.; Loi, S.; Verma, S.; Iwata, H.; Harbeck, N.; Loibl, S.; Huang Bartlett, C.; Zhang, K.; et al. Palbociclib in Hormone-Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2015, 373, 209–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hortobagyi, G.N.; Stemmer, S.M.; Burris, H.A.; Yap, Y.-S.; Sonke, G.S.; Paluch-Shimon, S.; Campone, M.; Blackwell, K.L.; Andre, F.; Winer, E.P.; et al. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N. Engl. J. Med. 2016, 375, 1738–1748. [Google Scholar] [CrossRef]
- Sicinski, P.; Donaher, J.L.; Parker, S.B.; Li, T.; Fazeli, A.; Gardner, H.; Haslam, S.Z.; Bronson, R.T.; Elledge, S.J.; Weinberg, R.A. Cyclin Dl Provides a Link between Development and Oncogenesis in the Retina and Breast. Cell 1995, 82, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Sicinska, E.; Geng, Y.; Ahnström, M.; Zagozdzon, A.; Kong, Y.; Gardner, H.; Kiyokawa, H.; Harris, L.N.; Stål, O.; et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell 2006, 9, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Geng, Y.; Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature 2001, 411, 1017–1021. [Google Scholar] [CrossRef]
- Simpson, D. Aberrant expression of G1/S regulators is a frequent event in sporadic pituitary adenomas. Carcinogenesis 2001, 22, 1149–1154. [Google Scholar] [CrossRef] [Green Version]
- Hibberts, N.A.; Simpson, D.J.; Bicknell, J.E.; Broome, J.C.; Hoban, P.R.; Clayton, R.N.; E Farrell, W. Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin. Cancer Res. 1999, 5, 2133–2139. [Google Scholar] [PubMed]
- Jordan, S.; Lidhar, K.; Korbonits, M.; Lowe, D.G.; Grossman, A.B. Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur. J. Endocrinol. 2000, 143, R1–R6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roussel-Gervais, A.; Bilodeau, S.; Vallette, S.; Berthelet, F.; Lacroix, A.; Figarella-Branger, M.; Brue, T.; Drouin, J. Cooperation between Cyclin E and p27Kip1 in Pituitary Tumorigenesis. Mol. Endocrinol. 2010, 24, 1835–1845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sbiera, S.; Perez-Rivas, L.G.; Taranets, L.; Weigand, I.; Flitsch, J.; Graf, E.; Monoranu, C.M.; Saeger, W.; Hagel, C.; Honegger, J.; et al. Driver mutations in USP8 wild-type Cushing’s disease. Neuro Oncol. 2019, 21, 1273–1283. [Google Scholar] [CrossRef]
- Guo, F.; Wang, G.; Wang, F.; Xu, D.; Liu, X. Identification of Novel Genes Involved in the Pathogenesis of an ACTH-Secreting Pituitary Carcinoma: A Case Report and Literature Review. Front. Oncol. 2018, 8, 510. [Google Scholar] [CrossRef]
- Kawashima, S.T.; Usui, T.; Sano, T.; Iogawa, H.; Hagiwara, H.; Tamanaha, T.; Tagami, T.; Naruse, M.; Hojo, M.; Takahashi, J.A.; et al. P53 gene mutation in an atypical corticotroph adenoma with Cushing’s disease. Clin. Endocrinol. 2009, 70, 656–657. [Google Scholar] [CrossRef]
- Liu, N.-A.; Jiang, H.; Ben-Shlomo, A.; Wawrowsky, K.; Fan, X.-M.; Lin, S.; Melmed, S. Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc. Natl. Acad. Sci. USA 2011, 108, 8414–8419. [Google Scholar] [CrossRef] [Green Version]
- Salehi, F.; Kovacs, K.; Scheithauer, B.W.; Lloyd, R.V.; Cusimano, M. Pituitary tumor-transforming gene in endocrine and other neoplasms: A review and update. Endocr. Relat. Cancer 2008, 15, 721–743. [Google Scholar] [CrossRef]
- Trott, G.; Ongaratti, B.R.; Silva, C.B.D.O.; Abech, G.D.; Haag, T.; Rech, C.G.S.L.; Ferreira, N.P.; Oliveira, M.D.C.; Pereira-Lima, J.F.S. PTTG overexpression in non-functioning pituitary adenomas: Correlation with invasiveness, female gender and younger age. Ann. Diagn. Pathol. 2019, 41, 83–89. [Google Scholar] [CrossRef]
- Filippella, M.; Galland, F.; Kujas, M.; Young, J.; Faggiano, A.; Lombardi, G.; Colao, A.; Meduri, G.; Chanson, P. Pituitary tumour transforming gene (PTTG) expression correlates with the proliferative activity and recurrence status of pituitary adenomas: A clinical and immunohistochemical study. Clin. Endocrinol. 2006, 65, 536–543. [Google Scholar] [CrossRef]
- Zhang, X.; Horwitz, G.A.; Heaney, A.P.; Nakashima, M.; Prezant, T.R.; Bronstein, M.D.; Melmed, S. Pituitary Tumor Transforming Gene (PTTG) Expression in Pituitary Adenomas. None 1999, 84, 761–767. [Google Scholar] [CrossRef]
- Horwitz, G.A.; Miklovsky, I.; Heaney, A.P.; Ren, S.-G.; Melmed, S. Human Pituitary Tumor-Transforming Gene (PTTG1) Motif Suppresses Prolactin Expression. Mol. Endocrinol. 2003, 17, 600–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eccleston, A.; DeWitt, N.; Gunter, C.; Marte, B.; Nath, D. Epigenetics. Nature 2007, 447, 395. [Google Scholar] [CrossRef] [Green Version]
- Farrell, W.E. Epigenetics of pituitary tumours: An update. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 299. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis 2009, 31, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Yacqub-Usman, K.; Richardson, A.; Duong, C.V.; Clayton, R.N.; Farrell, W.E. The pituitary tumour epigenome: Aberrations and prospects for targeted therapy. Nat. Rev. Endocrinol. 2012, 8, 486–494. [Google Scholar] [CrossRef]
- Duong, C.V.; Yacqub-Usman, K.; Emes, R.; Clayton, R.N.; Farrell, W.E. The EFEMP1 Gene: A Frequent Target for Epigenetic Silencing in Multiple Human Pituitary Adenoma Subtypes. NEN 2013, 98, 200–211. [Google Scholar] [CrossRef]
- Yacqub-Usman, K.; Duong, C.V.; Clayton, R.N.; Farrell, W.E. Epigenomic Silencing of the BMP-4 Gene in Pituitary Adenomas: A Potential Target for Epidrug-Induced Re-expression. Endocrinology 2012, 153, 3603–3612. [Google Scholar] [CrossRef]
- Kitchen, M.O.; Yacqub-Usman, K.; Emes, R.D.; Richardson, A.; Clayton, R.N.; Farrell, W.E. Epidrug mediated re-expression of miRNA targeting the HMGA transcripts in pituitary cells. Pituitary 2015, 18, 674–684. [Google Scholar] [CrossRef] [Green Version]
- Havel, J.J.; Chowell, D.; Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 2019, 19, 133–150. [Google Scholar] [CrossRef]
- Mei, Y.; Bi, W.L.; Greenwald, N.F.; Du, Z.; Agar, N.Y.R.; Kaiser, U.B.; Woodmansee, W.W.; Reardon, D.A.; Freeman, G.J.; Fecci, P.E.; et al. Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors. Oncotarget 2016, 7, 76565–76576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.F.; Wang, T.J.; Yang, Y.K.; Yao, K.; Li, Z.; Li, Y.M.; Yan, C.X. The expression profile of PD-L1 and CD8+ lymphocyte in pituitary adenomas indicating for immunotherapy. J. Neurooncol. 2018, 139, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, T.; Yang, Y.; Yu, C.; Liu, N.; Yan, C. Detection of programmed death ligand 1 protein and CD8+ lymphocyte infiltration in plurihormonal pituitary adenomas: A case report and review of the literatures. Medicine 2017, 96, e9056. [Google Scholar] [CrossRef] [PubMed]
- Nivolumab and Ipilimumab in People with Aggressive Pituitary Tumors—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04042753 (accessed on 17 December 2019).
- Nivolumab and Ipilimumab in Treating Patients with Rare Tumors—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02834013 (accessed on 17 December 2019).
- Capecitabine and Temozolomide for Treatment of Recurrent Pituitary Adenomas—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03930771 (accessed on 17 December 2019).
- Targeted Therapy with Lapatinib in Patients with Recurrent Pituitary Tumors Resistant to Standard Therapy—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT00939523 (accessed on 17 December 2019).
Author | Age | Gender | Subtype | Tumor Molecular Targets | Previous Chemotherapy | Drug | Duration of Treatment (months) | Concurrent Treatment | Outcome | |
---|---|---|---|---|---|---|---|---|---|---|
VEGF targeted therapy | Ortiz et al. 2012 [14] | 44 | Male | Silent ACTH Carcinoma | VEGF immunoreactivity in tumor cell cytoplasm | Temozolomide | Bevacizumab | 26 | None | SD over 26 months |
O’Riordan et al. 2017 [15] | 25 | Female | ACTH Carcinoma | None | Temozolomide | Bevacizumab | 6 | Pasireotide | Reduction in ACTH SD | |
Rotman et al. 2019 [16] | 51 | Male | ACTH | NR | None | Bevacizumab | 26 | Radiotherapy Temozolomide | Biochemical cure SD >8 years | |
Touma et al. 2017 [17] | 63 | Male | ACTH | NR | None | Bevacizumab | 2 | Radiotherapy Temozolomide | CR 5 years | |
Kurowska et al. 2015 [18] | 56 | Female | ACTH | NR | Temozolomide | Bevacizumab | NR | None | SD Died from neurosurgical complications | |
McCormack et al. 2018 [3] | 9 | Male | Immuno-negative | NR | Temozolomide | Bevacizumab | 4 | Temozolomide | PR at 4 months | |
McCormack et al. 2018 [3] | 46 | Male | ACTH | NR | Temozolomide | Bevacizumab | 9 | None | PR at 9 months | |
McCormack et al. 2018 [3] | 20 | Male | PRL | NR | Temozolomide | Bevacizumab | 9 | Temozolomide | PD | |
McCormack et al. 2018 [3] | 55 | Male | Immuno-negative | NR | Temozolomide | Bevacizumab | 5 | None | SD at 5 months | |
McCormack et al. 2018 [3] | 52 | Male | ACTH | NR | Temozolomide | Bevacizumab | 2 | None | PD | |
McCormack et al. 2018 [3] | 4 | Malr | GH | NR | None | Bevacizumab | 21 | Temozolomide | PR at 21 months | |
Wang et al. 2019 [19] | 41 | Female | GH | VEGFR-2 | None | Apatinib | 12 | Temozolomide | CR | |
McCormack et al. 2018 [3] | NR | NR | NR | NR | NR | Sunitinib | NR | NR | PD | |
EGFR targeted therapy | Cooper et al. 2019 [20] | NR | Female | PRL | NR | None | Lapatanib | 6 | None | SD |
Cooper et al. 2019 [20] | NR | Female | PRL | NR | None | Lapatanib | 6 | None | SD | |
Cooper et al. 2019 [20] | NR | Female | PRL | NR | None | Lapatanib | 6 | None | SD | |
Cooper et al. 2019 [20] | NR | Female | PRL | NR | None | Lapatanib | 6 | None | PR | |
Cooper et al. 2019 [20] | NR | Male | PRL | NR | None | Lapatanib | 6 | None | PD | |
Cooper et al. 2019 [20] | NR | Male | PRL | NR | None | Lapatanib | 6 | None | PD | |
McCormack et al. 2018 [3] | NR | NR | NR | NR | NR | Lapatanib | NR | NR | PD | |
McCormack et al. 2018 [3] | NR | NR | NR | NR | NR | Lapatanib | NR | NR | PD | |
McCormack et al. 2018 [3] | NR | NR | NR | NR | NR | Erlotinib | NR | NR | PD | |
mTOR inhibition | Zhang et al. 2019 [21] | 68 | Male | PRL | Increased p-AKT, p-4EBP1 and p-S6 | None | Everolimus | 16 | Cabergoline | PR |
Donovan et al. 2016 [22] | 46 | Female | ACTH Carcinoma | STK11 (F298L) NOTCH1 (R1672H), FGFR2(P443A) and PDGRFRB (A713T) mutation | Capecitabine and temozolomide | Everolimus | 7 | Capecitabine | SD 5 months | |
Jouanneau et al. 2012 [23] | 45 | Male | ACTH Carcinoma | Activation of AKT1, inactivation of PI3K, overexpression CCND1 | Temozolomide | Everolimus | 3 | Octreotide | PD | |
McCormack et al. 2018 [3] | NR | NR | NR | NR | NR | Everolimus | NR | NR | PD | |
McCormack et al. 2018 [3] | NR | NR | NR | NR | NR | Everolimus | NR | NR | PD | |
McCormack et al. 2018 [3] | NR | NR | NR | NR | NR | Everolimus | NR | NR | PD | |
CDK4/6 inhibition | Anderson et al. 2018 [24] | 71 | Female | NR | NR | None | Palbociclib | 12 | None | PR |
ICI therapy | Lin et al. 2018 [25] | 35 | Female | ACTH | PD-L1 <1% | Capecitabine and temozolomide | Ipilimumab and Nivolumab | 4 | NR | PR sustained at 6 months |
Target | Drugs | Outcomes in Other Cancers | Results of Pre-clinical Studies | In vitro Therapeutic Studies | In vivo Therapeutic Studies |
---|---|---|---|---|---|
VEGF targeted therapy | Bevacizumab (VEGFA inhibitor) | Prolongs PFS in metastatic CRC, cervical cancer, non-small cell lung cancer, ovarian cancer, mesothelioma, and metastatic RCC. |
| N/A |
|
| |||||
Apatinib (VEGFR-2 inhibitor) | Improved PFS and OS with apatanib in gastric, breast, and lung cancer. |
| |||
EGFR targeted therapy | mABs against EGFR | Improved survival in non-small cell lung cancer, metastatic colorectal cancer, head and neck, pancreatic, and breast cancer. |
|
|
|
EGFR TKIs (e.g., Gefitinib, Lapatinib) |
|
| |||
| |||||
FGF targeted therapy | FGFR TKIs in development | Ongoing investigation in pre-clinical and clinical trials |
| N/A | N/A |
| |||||
| |||||
| |||||
Raf/Mek/ERK pathways | BRAF inhibitors (e.g., Vemurafenib, dabrafenib) | Improved PFS and OS in melanoma |
|
| |
| |||||
PI3K/Akt/mTOR | mTOR inhibitors (e.g., Rapamycin and everolimus) | mTOR inhibitors prolong PFS in renal cell carcinoma, neuroendocrine tumors and advanced breast cancer |
|
|
|
| |||||
|
| ||||
| |||||
|
| ||||
| |||||
Notch signaling pathway | Agents targeting Notch are in development | Response demonstrate in Phase 1 and 2 clinical trials in CRC, breast, lung, ovarian and papillary thyroid cancer, anaplastic astrocytoma, sarcoma, glioblastoma multiforme, and melanoma. |
| N/A | N/A |
Hedgehog signaling pathway | Vismodegib | Increased OS in metastatic BCC |
| N/A | N/A |
| |||||
| |||||
Cell cycle-targeted therapy | CDK 4/6 inhibitors | Prolong PFS in estrogen receptor positive breast cancer. |
|
|
|
| |||||
| |||||
| |||||
PTTG | N/A | N/A |
|
|
|
| |||||
Pituitary Tumor Epigenetics | Zebularine (DNMT) | N/A |
|
| N/A |
Trichostatin A (HDAC) |
| ||||
| |||||
ICI therapy | Anti PD-1, anti PD-L1, Anti CTLA4 antibodies | Effective and approved for use in the treatment of melanoma, lung cancer, RCC, head and neck SCC, lymphoma, and urothelial carcinoma |
| N/A | N/A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamb, L.S.; Sim, H.-W.; McCormack, A.I. Exploring the Role of Novel Medical Therapies for Aggressive Pituitary Tumors: A Review of the Literature—“Are We There Yet?”. Cancers 2020, 12, 308. https://doi.org/10.3390/cancers12020308
Lamb LS, Sim H-W, McCormack AI. Exploring the Role of Novel Medical Therapies for Aggressive Pituitary Tumors: A Review of the Literature—“Are We There Yet?”. Cancers. 2020; 12(2):308. https://doi.org/10.3390/cancers12020308
Chicago/Turabian StyleLamb, Lydia S., Hao-Wen Sim, and Ann I. McCormack. 2020. "Exploring the Role of Novel Medical Therapies for Aggressive Pituitary Tumors: A Review of the Literature—“Are We There Yet?”" Cancers 12, no. 2: 308. https://doi.org/10.3390/cancers12020308
APA StyleLamb, L. S., Sim, H.-W., & McCormack, A. I. (2020). Exploring the Role of Novel Medical Therapies for Aggressive Pituitary Tumors: A Review of the Literature—“Are We There Yet?”. Cancers, 12(2), 308. https://doi.org/10.3390/cancers12020308