Multimodal Percutaneous Thermal Ablation of Small Hepatocellular Carcinoma: Predictive Factors of Recurrence and Survival in Western Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
Patient and Tumor Data
2.2. Percutaneous Thermal Ablation
Guidance and Ablation
2.3. Complications
2.4. Follow-Up and Outcome
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Technical/Treatment Success
3.3. Complications and Follow-Up
3.4. Local Tumor Progression
3.5. Intrahepatic Distant Recurrence
3.6. Recurrence-Free Survival
3.7. Overall Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Global Burden of Disease Cancer, C.; Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-S.; Lim, H.K.; Rhim, H.; Lee, M.W.; Choi, D.; Lee, W.J.; Paik, S.W.; Koh, K.C.; Lee, J.H.; Choi, M.S.; et al. Ten-year outcomes of percutaneous radiofrequency ablation as first-line therapy of early hepatocellular carcinoma: Analysis of prognostic factors. J. Hepatol. 2013, 58, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Shiina, S.; Tateishi, R.; Arano, T.; Uchino, K.; Enooku, K.; Nakagawa, H.; Asaoka, Y.; Sato, T.; Masuzaki, R.; Kondo, Y.; et al. Radiofrequency ablation for hepatocellular carcinoma: 10-year outcome and prognostic factors. Am. J. Gastroenterol. 2012, 107, 569–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, T.W.; Kim, J.M.; Rhim, H.; Lee, M.W.; Kim, Y.S.; Lim, H.K.; Choi, D.; Song, K.D.; Kwon, C.H.; Joh, J.W.; et al. Small Hepatocellular Carcinoma: Radiofrequency Ablation versus Nonanatomic Resection--Propensity Score Analyses of Long-term Outcomes. Radiology 2015, 275, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Hocquelet, A.; Balageas, P.; Laurent, C.; Blanc, J.F.; Frulio, N.; Salut, C.; Cassinotto, C.; Saric, J.; Possenti, L.; Bernard, P.H.; et al. Radiofrequency ablation versus surgical resection for hepatocellular carcinoma within the Milan criteria: A study of 281 Western patients. Int. J. Hyperthermia 2015, 31, 749–757. [Google Scholar] [CrossRef] [PubMed]
- N’Kontchou, G.; Mahamoudi, A.; Aout, M.; Ganne-Carrié, N.; Grando, V.; Coderc, E.; Vicaut, E.; Trinchet, J.C.; Sellier, N.; Beaugrand, M.; et al. Radiofrequency ablation of hepatocellular carcinoma: Long-term results and prognostic factors in 235 Western patients with cirrhosis. Hepatology 2009, 50, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Hocquelet, A.; Aubé, C.; Rode, A.; Cartier, V.; Sutter, O.; Manichon, A.F.; Boursier, J.; N’kontchou, G.; Merle, P.; Blanc, J.-F.; et al. Comparison of no-touch multi-bipolar vs. monopolar radiofrequency ablation for small HCC. J. Hepatol. 2017, 66, 67–74. [Google Scholar] [CrossRef]
- Cui, J.; de Klerk, N.; Abramson, M.; Del Monaco, A.; Benke, G.; Dennekamp, M.; Musk, A.W.; Sim, M. Fractional polynomials and model selection in generalized estimating equations analysis, with an application to a longitudinal epidemiologic study in Australia. Am. J. Epidemiol. 2009, 169, 113–121. [Google Scholar] [CrossRef]
- Nault, J.C.; Sutter, O.; Nahon, P.; Ganne-Carrie, N.; Seror, O. Percutaneous treatment of hepatocellular carcinoma: State of the art and innovations. J. Hepatol. 2018, 68, 783–797. [Google Scholar] [CrossRef] [Green Version]
- Teratani, T.; Yoshida, H.; Shiina, S.; Obi, S.; Sato, S.; Tateishi, R.; Mine, N.; Kondo, Y.; Kawabe, T.; Omata, M. Radiofrequency ablation for hepatocellular carcinoma in so-called high-risk locations. Hepatology 2006, 43, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-E.; Kim, Y.-S.; Rhim, H.; Lim, H.K.; Lee, M.W.; Choi, D.; Shin, S.W.; Cho, S.K. Outcomes of patients with hepatocellular carcinoma referred for percutaneous radiofrequency ablation at a tertiary center: Analysis focused on the feasibility with the use of ultrasonography guidance. Eur. J. Radiol. 2011, 79, e80–e84. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.; Gorgen, A.; Muaddi, H.; Aravinthan, A.D.; Issachar, A.; Mironov, O.; Zhang, W.; Kachura, J.; Beecroft, R.; Cleary, S.P.; et al. Outcomes of radiofrequency ablation as first-line therapy for hepatocellular carcinoma less than 3cm in potentially transplantable patients. J. Hepatol. 2019, 70, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Livraghi, T.; Meloni, F.; Di Stasi, M.; Rolle, E.; Solbiati, L.; Tinelli, C.; Rossi, S. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? Hepatology 2008, 47, 82–89. [Google Scholar] [CrossRef]
- Imamura, H.; Matsuyama, Y.; Tanaka, E.; Ohkubo, T.; Hasegawa, K.; Miyagawa, S.; Sugawara, Y.; Minagawa, M.; Takayama, T.; Kawasaki, S.; et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J. Hepatol. 2003, 38, 200–207. [Google Scholar] [CrossRef]
- Okuwaki, Y.; Nakazawa, T.; Kokubu, S.; Hidaka, H.; Tanaka, Y.; Takada, J.; Watanabe, M.; Shibuya, A.; Minamino, T.; Saigenji, K. Repeat radiofrequency ablation provides survival benefit in patients with intrahepatic distant recurrence of hepatocellular carcinoma. Am. J. Gastroenterol. 2009, 104, 2747–2753. [Google Scholar] [CrossRef]
- Hermida, M.; Cassinotto, C.; Piron, L.; Assenat, E.; Pageaux, G.P.; Escal, L.; Pierredon-Foulongne, M.A.; Verzilli, D.; Jaber, S.; Guiu, B. Percutaneous thermal ablation of hepatocellular carcinomas located in the hepatic dome using artificial carbon dioxide pneumothorax: Retrospective evaluation of safety and efficacy. Int. J. Hyperthermia 2018, 35, 90–96. [Google Scholar] [CrossRef] [Green Version]
- De Baère, T.; Dromain, C.; Lapeyre, M.; Briggs, P.; Duret, J.S.; Hakime, A.; Boige, V.; Ducreux, M. Artificially induced pneumothorax for percutaneous transthoracic radiofrequency ablation of tumors in the hepatic dome: Initial experience. Radiology 2005, 236, 666–670. [Google Scholar] [CrossRef]
- Kariya, S.; Tanigawa, N.; Kojima, H.; Komemushi, A.; Shomura, Y.; Ueno, Y.; Shiraishi, T.; Sawada, S. Radiofrequency ablation combined with CO2 injection for treatment of retroperitoneal tumor: Protecting surrounding organs against thermal injury. AJR Am. J. Roentgenol. 2005, 185, 890–893. [Google Scholar] [CrossRef]
- De Baere, T.; Deschamps, F.; Briggs, P.; Dromain, C.; Boige, V.; Hechelhammer, L.; Abdel-Rehim, M.; Aupérin, A.; Goere, D.; Elias, D. Hepatic malignancies: Percutaneous radiofrequency ablation during percutaneous portal or hepatic vein occlusion. Radiology 2008, 248, 1056–1066. [Google Scholar] [CrossRef]
- Cardella, J.F.; Kundu, S.; Miller, D.L.; Millward, S.F.; Sacks, D.; Radiology, S.O.I. Society of Interventional Radiology clinical practice guidelines. J. Vasc. Interven. Radiol. 2009, 20, S189–S191. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Solbiati, L.; Brace, C.L.; Breen, D.J.; Callstrom, M.R.; Charboneau, J.W.; Chen, M.-H.; Choi, B.I.; de Baère, T.; Dodd, G.D.; et al. Image-guided tumor ablation: Standardization of terminology and reporting criteria--a 10-year update. J. Vasc. Interven. Radiol. 2014, 25. [Google Scholar] [CrossRef]
- Pan, W. Akaike’s information criterion in generalized estimating equations. Biometrics 2001, 57, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.N.; Choi, D.; Rhim, H.; Rha, S.E.; Hong, H.P.; Lee, J.; Choi, J.I.; Kim, J.W.; Seo, J.W.; Lee, E.J.; et al. Planning ultrasound for percutaneous radiofrequency ablation to treat small (≤3 cm) hepatocellular carcinomas detected on computed tomography or magnetic resonance imaging: A multicenter prospective study to assess factors affecting ultrasound visibility. J. Vasc. Interven. Radiol. 2012, 23, 627–634. [Google Scholar] [CrossRef]
- Kasugai, H.; Osaki, Y.; Oka, H.; Kudo, M.; Seki, T.; Osaka Liver Cancer Study, G. Severe complications of radiofrequency ablation therapy for hepatocellular carcinoma: An analysis of 3,891 ablations in 2,614 patients. Oncology 2007, 72 (Suppl. 1), 72–75. [Google Scholar] [CrossRef]
- Kang, T.W.; Lim, H.K.; Lee, M.W.; Kim, Y.-S.; Rhim, H.; Lee, W.J.; Paik, Y.H.; Kim, M.J.; Ahn, J.H. Long-term Therapeutic Outcomes of Radiofrequency Ablation for Subcapsular versus Nonsubcapsular Hepatocellular Carcinoma: A Propensity Score Matched Study. Radiology 2016, 280, 300–312. [Google Scholar] [CrossRef] [Green Version]
- Pompili, M.; Saviano, A.; de Matthaeis, N.; Cucchetti, A.; Ardito, F.; Federico, B.; Brunello, F.; Pinna, A.D.; Giorgio, A.; Giulini, S.M.; et al. Long-term effectiveness of resection and radiofrequency ablation for single hepatocellular carcinoma ≤3 cm. Results of a multicenter Italian survey. J. Hepatol. 2013, 59, 89–97. [Google Scholar] [CrossRef]
- Rossi, S.; Ravetta, V.; Rosa, L.; Ghittoni, G.; Viera, F.T.; Garbagnati, F.; Silini, E.M.; Dionigi, P.; Calliada, F.; Quaretti, P.; et al. Repeated radiofrequency ablation for management of patients with cirrhosis with small hepatocellular carcinomas: A long-term cohort study. Hepatology 2011, 53, 136–147. [Google Scholar] [CrossRef]
- Tateishi, R.; Shiina, S.; Teratani, T.; Obi, S.; Sato, S.; Koike, Y.; Fujishima, T.; Yoshida, H.; Kawabe, T.; Omata, M. Percutaneous radiofrequency ablation for hepatocellular carcinoma. An analysis of 1000 cases. Cancer 2005, 103, 1201–1209. [Google Scholar] [CrossRef]
- Okuwaki, Y.; Nakazawa, T.; Shibuya, A.; Ono, K.; Hidaka, H.; Watanabe, M.; Kokubu, S.; Saigenji, K. Intrahepatic distant recurrence after radiofrequency ablation for a single small hepatocellular carcinoma: Risk factors and patterns. J. Gastroenterol. 2008, 43, 71–78. [Google Scholar] [CrossRef]
- Miao, R.; Luo, H.; Zhou, H.; Li, G.; Bu, D.; Yang, X.; Zhao, X.; Zhang, H.; Liu, S.; Zhong, Y.; et al. Identification of prognostic biomarkers in hepatitis B virus-related hepatocellular carcinoma and stratification by integrative multi-omics analysis. J. Hepatol. 2014, 61, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xia, C.Y.; Lau, W.Y.; Lu, X.Y.; Dong, H.; Yu, W.L.; Jin, G.Z.; Cong, W.M.; Wu, M.C. Determination of clonal origin of recurrent hepatocellular carcinoma for personalized therapy and outcomes evaluation: A new strategy for hepatic surgery. J. Am. Coll Surg. 2013, 217, 1054–1062. [Google Scholar] [CrossRef]
- Choi, D.; Lim, H.K.; Rhim, H.; Kim, Y.-S.; Lee, W.J.; Paik, S.W.; Koh, K.C.; Lee, J.H.; Choi, M.S.; Yoo, B.C. Percutaneous radiofrequency ablation for early-stage hepatocellular carcinoma as a first-line treatment: Long-term results and prognostic factors in a large single-institution series. European Radiol. 2007, 17, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Lee, J.M.; Lee, J.Y.; Kim, S.H.; Yoon, J.H.; Kim, Y.J.; Han, J.K.; Choi, B.I. Radiofrequency ablation of hepatocellular carcinoma as first-line treatment: Long-term results and prognostic factors in 162 patients with cirrhosis. Radiology 2014, 270, 900–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-S.; Rhim, H.; Cho, O.K.; Koh, B.H.; Kim, Y. Intrahepatic recurrence after percutaneous radiofrequency ablation of hepatocellular carcinoma: Analysis of the pattern and risk factors. Eur. J. Radiol. 2006, 59, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Kutami, R.; Nakashima, Y.; Nakashima, O.; Shiota, K.; Kojiro, M. Pathomorphologic study on the mechanism of fatty change in small hepatocellular carcinoma of humans. J. Hepatol. 2000, 33, 282–289. [Google Scholar] [CrossRef]
- Chan, A.W.H.; Yu, S.; Yu, Y.-H.; Tong, J.H.M.; Wang, L.; Tin, E.K.Y.; Chong, C.C.N.; Chan, S.L.; Wong, G.L.H.; Wong, V.W.S.; et al. Steatotic hepatocellular carcinoma: A variant associated with metabolic factors and late tumour relapse. Histopathology 2016, 69, 971–984. [Google Scholar] [CrossRef]
- Salomao, M.; Yu, W.M.; Brown, R.S.; Emond, J.C.; Lefkowitch, J.H. Steatohepatitic hepatocellular carcinoma (SH-HCC): A distinctive histological variant of HCC in hepatitis C virus-related cirrhosis with associated NAFLD/NASH. Am. J. Surg. Pathol. 2010, 34, 1630–1636. [Google Scholar] [CrossRef]
- Calderaro, J.; Ziol, M.; Paradis, V.; Zucman-Rossi, J. Molecular and histological correlations in liver cancer. J. Hepatol. 2019, 71, 616–630. [Google Scholar] [CrossRef] [Green Version]
- Guiu, B.; Petit, J.M.; Loffroy, R.; Ben Salem, D.; Aho, S.; Masson, D.; Hillon, P.; Krause, D.; Cercueil, J.P. Quantification of liver fat content: Comparison of triple-echo chemical shift gradient-echo imaging and in vivo proton MR spectroscopy. Radiology 2009, 250, 95–102. [Google Scholar] [CrossRef]
- Min, J.H.; Kim, Y.K.; Lim, S.; Jeong, W.K.; Choi, D.; Lee, W.J. Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: Impact of intra-tumoral fat detected on chemical-shift images. Eur. J. Radiol. 2015, 84, 1036–1043. [Google Scholar] [CrossRef]
- Nault, J.C.; Martin, Y.; Caruso, S.; Hirsch, T.Z.; Bayard, Q.; Calderaro, J. Clinical Impact of Genomic Diversity From Early to Advanced Hepatocellular Carcinoma. Hepatology 2019. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap (Monographs on Statistics and Applied Probability); Chapman & Hall/CRC: Boca Raton, FL, USA, 1993. [Google Scholar]
Characteristic | Value |
---|---|
Patients | |
Age (mean ± SD, years) | 64.9 ± 9.9 |
Sex (n, %) | |
Male | 190 (79.8) |
Female | 48 (20.29) |
ASA score (n, %) | |
1-2 | 120 (50.4) |
3-4 | 118 (49.6) |
Diabetes (n, %) | |
No | 147 (61.8) |
Yes | 91 (38.2) |
Metformin treatment | 35 (14.7) |
Prior treatment for HCC (n, %) | |
No | 116 (48.7) |
Yes | 122 (51.3) |
Resection | 33 (27) |
PTA | 55 (45) |
TACE | 34 (28) |
Liver disease | |
Cirrhosis (n, %) | |
No | 20 (8.4) |
Yes | 218 (91.6 |
Causes for liver disease (n, %) | |
Alcohol (with or without viral hepatitis) | 135 (56.7) |
Viral hepatitis B or C | 61 (25.6) |
Hemochromatosis | 12 (5) |
Other causes, including NASH | 30 (12.6) |
Steatosis (n, %) | |
No | 153 (65.7) |
Yes | 80 (34.3) |
Child-Pugh class | |
A | 231 (97.1) |
B | 7 (2.9) |
MELD score (mean ± SD) | 8.8 ± 2.2 |
Laboratory data (mean ± SD) | |
AFP (ng/mL) | 36.1 ± 163.7 |
Total bilirubin (µmol/L) | 13.5 ± 8.7 |
Albumin (g/L) | 40.2 ± 4.9 |
Prothrombin activity (%) | 84.6 ± 13.2 |
Platelet count (× 10/mm3) | 139 ± 72 |
Creatinine (µmol/L) | 83.7 ± 31.1 |
ALBI score | |
1 | 151 (66.8) |
2 | 75 (33.2) |
HCC | |
Method for diagnosis (n, %) | |
Biopsy | 62 (15) |
Imaging | 350 (85) |
Tumor size (mean ± SD) | 15.1 ± 5 |
<20 mm | 358 (86.9) |
>20 mm | 54 (13.1) |
No. of tumors (n, %) | |
1 | 242 (72.9) |
2 | 56 (21.4) |
3 | 18 (5.4) |
4 | 1 (0.3) |
Steatotic HCC (n, %) | |
Yes | 66 (16) |
No | 317 (77) |
Unknown | 29 (7) |
Dome (n, %) | 93 (22.6) |
Subcapsular location (n, %) | 150 (36.4) |
Near large vessel (n, %) | 71 (17.2) |
Near surrounding organ (n, %) | 36 (8.7) |
PTA | |
PTA modality (n, %) | |
Radiofrequency | 174 (42.2) |
Microwave | 238 (57.8) |
Imaging guidance (n, %) | |
US | 182 (44.2) |
CT | 230 (55.8) |
Artificial CO2 pneumothorax (n, %) | 47 (11.4) |
Hydrodissection-CO2 dissection (n, %) | 36 (8.7) |
Tumor tagging (n, %) | 208 (50.5) |
Variables | Univariate Analysis | Multivariate Analysis | Bootstrapping (400 Replications) | |||
---|---|---|---|---|---|---|
Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | |
Patients | ||||||
Age | 0.968 (0.939–0.999) | 0.04 | 0.969 (0.938–1.001) | 0.054 | 0.969 (0.938–1.001) | 0.058 |
Sex female vs male | 0.487 (0.189–1.252) | 0.136 | ||||
ASA (>2 vs. ≤2) | 1.021 (0.565–1.845) | 0.944 | ||||
Diabetes | 1.665 (0.904–3.066) | 0.102 | ||||
Metformin treatment | 1.58 (0.6–4.19) | 0.36 | ||||
Treatment-naïve patient | 1.309 (0.724–2.367) | 0.372 | ||||
Liver diseases | ||||||
Cirrhosis | 4.785 (0.574–39.91) | 0.148 | ||||
Child-Pugh (B vs. A) | 1.559 (0.285–8.528) | 0.609 | ||||
Cause of liver disease (vs. alcohol) | ||||||
Viral hepatitis B or C | 0.624 (0.279–1.392) | 0.249 | ||||
Hemochromatosis | 0.92 (0.273–3.097) | 0.893 | ||||
Others (including NASH) | 0.859 (0.325–2.268) | 0.758 | ||||
Steatosis | 1.12 (0.607–2.064) | 0.717 | ||||
AFP ≥100 vs <100 ng/mL | 1.113 (0.298–4.162) | 0.873 | ||||
AFP (per unit) | 0.999 (0.995–1.003) | 0.55 | ||||
Bilirubin | 1.008 (0.977–1.04) | 0.616 | ||||
Albumin | 0.969 (0.909–1.032) | 0.33 | ||||
Prothrombin time | 1.001 (0.979–1.024) | 0.922 | ||||
Platelet count (per 1,000/mm3) | 1 (0.996–1.005) | 0.836 | ||||
Creatinine | 0.997 (0.985–1.008) | 0.552 | ||||
MELD (>9 vs. ≤9) | 1.263 (0.69–2.312) | 0.449 | ||||
ALBI score 2 vs. 1 | 1.241 (0.65–2.37) | 0.512 | ||||
HCC | ||||||
Tumor size (per mm) | 1.096 (1.04–1.154) | 0.001 | 1.108 (1.05–1.169) | <0.001 | 1.108 (1.051–1.168) | <0.001 |
Tumor size <20 mm | 0.359 (0.181–0.709) | 0.003 | ||||
Steatotic HCC | 0.487 (0.188–1.266) | 0.14 | ||||
Dome tumor | 1.747 (0.942–3.24) | .077 | ||||
Subcapsular | 0.932 (0.516–1.682) | 0.814 | ||||
Near large vessel | 1.6096 (0.809–3.202) | 0.175 | ||||
Near surrounding organ | 1.043 (0.387–2.809) | 0.934 | ||||
PTA | ||||||
PTA modality: MWA vs RF | 1.48 (0.81–2.703) | 0.202 | ||||
US vs CT guidance | 0.394 (0.208–0.749) | 0.004 | 0.294 (0.107–0.803) | 0.017 | 0.294 (0.102–0.841) | 0.023 |
Artificial pneumothorax | 1.301 (0.569–2.977) | 0.533 | ||||
Tumor tagging | 1.82 (1.01–3.28) | 0.046 | 0.827 (0.325–2.103) | 0.689 | 0.827 (0.362–1.887) | 0.651 |
Variables | Univariate Analysis | Multivariate Analysis | Bootstrapping (400 Replications) | |||
---|---|---|---|---|---|---|
Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | |
Patients | ||||||
Age | 0.98 (0.957–1.005) | 0.112 | ||||
Sex female vs male | 0.953 (0.526–1.727) | 0.874 | ||||
ASA (>2 vs. ≤2) | 0.711 (0.475–1.065) | 0.098 | ||||
Diabetes | 0.668 (0.394–1.131) | 0.133 | ||||
Metformin treatment | 0.557 (0.275–1.127) | 0.104 | ||||
Treatment-naïve patient | 0.999 (0.681–1.465) | 0.994 | ||||
Liver diseases | ||||||
Cirrhosis | 1.129 (0.464–2.748) | 0.798 | ||||
Child-Pugh (B vs. A) | 2.514 (0.668–9.459) | 0.173 | ||||
Cause of liver disease (vs. alcohol) | ||||||
Viral hepatitis B or C | 1.067 (0.605–1.88) | 0.823 | ||||
Hemochromatosis | 0.955 (0.321–2.847) | 0.934 | ||||
Others (including NASH) | 0.753 (0.351–1.618) | 0.468 | ||||
Steatosis | 1.205 (0.76–1.91) | 0.428 | ||||
AFP ≥ 100 vs < 100 ng/mL | 3.576 (1.224–10.441) | 0.02 | 3.027 (1.068–8.576) | 0.037 | 3.027 (1.032–8.876) | 0.044 |
AFP (per unit) | 1.001 (0.999–1.002) | 0.396 | ||||
Bilirubin | 0.993 (0.968–1.018) | 0.581 | ||||
Albumin | 0.955 (0.914–0.998) | 0.04 | 0.966 (0.923–1.011) | 0.139 | 0.966 (0.896–1.042) | 0.37 |
Prothrombin time | 0.996 (0.98–1.012) | 0.668 | ||||
Platelet count (per 1000/mm3) | 1 (0.997–1.003) | 0.952 | ||||
Creatinine | 0.992 (0.984–1.002) | 0.087 | ||||
MELD (>9 vs. ≤9) | 0.756 (0.493–1.161) | 0.202 | ||||
ALBI score 2 vs. 1 | 1.406 (0.909–2.175) | 0.125 | ||||
HCC | ||||||
Tumor size (per mm) | 1.053 (1.02–1.087) | 0.002 | 1.06 (1.025–1.097) | 0.001 | 1.06 (1.014–1.108) | 0.01 |
Tumor size < 20 mm | 0.615 (0.388–0.975) | 0.039 | ||||
Steatotic HCC | 0.714 (0.431–1.184) | 0.192 | ||||
Dome tumor | 0.736 (0.502–1.082) | 0.12 | ||||
Subcapsular | 0.991 (0.713–1.376) | 0.955 | ||||
Near large vessel | 0.973 (0.613–1.544) | 0.908 | ||||
Near surrounding organ | 1.22 (0.696–2.138) | 0.488 | ||||
PTA | ||||||
PTA modality: MWA vs RF | 1.363 (0.956–1.943) | 0.087 | ||||
US vs CT guidance | 1.006 (0.712–1.423) | 0.973 | ||||
Artificial pneumothorax | 1.301 (0.569–2.977) | 0.533 | ||||
Tumor tagging | 0.864 (.616–1.212) | 0.399 |
Variables | Univariate Analysis | Multivariate Analysis | Bootstrapping (200 Replications) | |||
---|---|---|---|---|---|---|
Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | Odds Ratio (95%CI) | p Value | |
Patients | ||||||
Age | 1.012 (0.978–1.046) | 0.496 | ||||
Sex female vs. male | 0.431 (0.150–1.238) | 0.118 | ||||
ASA (>2 vs. ≤2) | 2.404 (1.248–4.628) | 0.009 | 4.273 (1.386–13.171) | 0.011 | 4.273 (1.097–16.646) | 0.036 |
Diabetes | 1.563 (0.839–2.912) | 0.16 | ||||
Metformin treatment | 1.092 (0.434–2.752) | 0.851 | ||||
Treatment-naïve patient | 0.692 (0.361–1.326) | 0.267 | ||||
Local recurrence | 1.016 (0.515–2.004) | 0.964 | ||||
IDR | 1.97 (0.988–3.931) | 0.054 | ||||
Liver diseases | ||||||
Cirrhosis | 1.397 (0.312–6.258) | 0.662 | ||||
Child-Pugh (B vs. A) | 1.003 (0.094–10.707) | 0.998 | ||||
Cause of liver disease (vs. alcohol) | ||||||
Viral hepatitis B or C | 0.994 (0.493–2.005) | 0.986 | ||||
Hemochromatosis | 0.407 (0.062–2.671) | 0.349 | ||||
Others (including NASH) | 0.537 (0.177–1.631) | 0.273 | ||||
Steatosis | 1.255 (0.654–2.406) | 0.495 | ||||
AFP ≥ 100 vs < 100 ng/mL | 4.435 (1.456–13.513) | 0.009 | ||||
AFP (per unit) | 1.0012 (1.001–1.003) | <0.001 | 1.002 (1.001–1.003) | <0.001 | 1.002 (0.998–1.006) | 0.293 |
Bilirubin | 1.039 (1.002–1.077) | 0.038 | ||||
Albumin | 0.915 (0.86–0.978) | 0.009 | ||||
Prothrombin time | 0.973 (0.949–0.998) | 0.031 | ||||
Platelet count (per 1,000/mm3) | 0.999 (0.994–1.003) | 0.615 | ||||
Creatinine | 1.007 (1.002–1.011) | 0.003 | ||||
MELD (>9 vs. ≤9) | 2.361 (1.253–4.448) | 0.008 | 2.014 (0.772–5.255) | 0.153 | 2.014 (0.669–6.063) | 0.213 |
ALBI score 2 vs. 1 | 1.675 (0.869–3.23) | 0.123 | ||||
HCC | ||||||
Tumor size (per mm) | 1.023 (0.975–1.074) | 0.35 | ||||
Tumor size < 20 mm | 1.159 (0.498–2.697) | 0.731 | ||||
Nb. of HCC (1 vs. >1) | 1.979 (1.003–3.903) | 0.049 | 3.939 (1.601–9.69) | 0.003 | 3.939 (1.198–12.947) | 0.024 |
Steatotic HCC | 4.15x10-16 (2.44 × 10-16–7.07 × 10-16) | <0.001 | 1.81 × 10-16 (7.96 × 10-17–4.13 × 10-16) | <0.001 | 1.81x10-16 (5.47 × 10-20–6.02 × 10-13) | <0.001 |
Dome tumor | 1.152 (0.575–2.307) | 0.691 | ||||
Subcapsular | 0.813 (0.41–1.609) | 0.552 | ||||
Near large vessel | 1.334 (0.683–2.605) | 0.399 | ||||
Near surrounding organ | 0.404 (0.09–1.822) | 0.238 | ||||
PTA | ||||||
PTA modality: MWA vs RF | 1.19 (0.845–1.69) | 0.08 | ||||
US vs CT guidance | 0.797 (0.418–1.517) | 0.489 | ||||
Artificial pneumothorax | 1.301 (0.569–2.977) | 0.533 | ||||
Tumor tagging | 0.774 (0.4–1.499) | 0.448 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermida, M.; Cassinotto, C.; Piron, L.; Aho-Glélé, S.; Guillot, C.; Schembri, V.; Allimant, C.; Jaber, S.; Pageaux, G.-P.; Assenat, E.; et al. Multimodal Percutaneous Thermal Ablation of Small Hepatocellular Carcinoma: Predictive Factors of Recurrence and Survival in Western Patients. Cancers 2020, 12, 313. https://doi.org/10.3390/cancers12020313
Hermida M, Cassinotto C, Piron L, Aho-Glélé S, Guillot C, Schembri V, Allimant C, Jaber S, Pageaux G-P, Assenat E, et al. Multimodal Percutaneous Thermal Ablation of Small Hepatocellular Carcinoma: Predictive Factors of Recurrence and Survival in Western Patients. Cancers. 2020; 12(2):313. https://doi.org/10.3390/cancers12020313
Chicago/Turabian StyleHermida, Margaux, Christophe Cassinotto, Lauranne Piron, Serge Aho-Glélé, Chloé Guillot, Valentina Schembri, Carole Allimant, Samir Jaber, Georges-Philippe Pageaux, Eric Assenat, and et al. 2020. "Multimodal Percutaneous Thermal Ablation of Small Hepatocellular Carcinoma: Predictive Factors of Recurrence and Survival in Western Patients" Cancers 12, no. 2: 313. https://doi.org/10.3390/cancers12020313
APA StyleHermida, M., Cassinotto, C., Piron, L., Aho-Glélé, S., Guillot, C., Schembri, V., Allimant, C., Jaber, S., Pageaux, G. -P., Assenat, E., & Guiu, B. (2020). Multimodal Percutaneous Thermal Ablation of Small Hepatocellular Carcinoma: Predictive Factors of Recurrence and Survival in Western Patients. Cancers, 12(2), 313. https://doi.org/10.3390/cancers12020313