Blood-Based SOX2-Promoter Methylation in Relation to Exercise and PM2.5 Exposure among Taiwanese Adults
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Variable Assessments
4.2.1. DNA Methylation
4.2.2. PM2.5 Pollution
4.2.3. Exercise and Other Variables
4.2.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Lovinsky-Desir, S.; Jung, K.H.; Jezioro, J.R.; Torrone, D.Z.; De Planell-Saguer, M.; Yan, B.; Perera, F.; Rundle, A.; Perzanowski, M.; Chillrud, S.N.; et al. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter. Clin. Epigenet. 2017, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Koutsokera, A.; Kiagia, M.; Saif, M.W.; Souliotis, K.; Syrigos, K. Nutrition Habits, Physical Activity, and Lung Cancer: An Authoritative Review. Clin. Lung Cancer 2013, 14, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Winters-Stone, K.; Lee, A.; Schmitz, K.H. Cancer, physical activity, and exercise. Compr. Physiol. 2012, 2, 2775–2809. [Google Scholar]
- Bade, B.C.; Thomas, D.D.; Scott, J.B.; Silvestri, G.A. Increasing Physical Activity and Exercise in Lung Cancer: Reviewing Safety, Benefits, and Application. J. Thorac. Oncol. 2015, 10, 861–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, C.P.; Wai, J.P.M.; Tsai, M.K.; Yang, Y.C.; Cheng, T.Y.D.; Lee, M.-C.; Chan, H.T.; Tsao, C.K.; Tsai, S.P.; Wu, X. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet 2011, 378, 1244–1253. [Google Scholar] [CrossRef]
- Arem, H.; Moore, S.C.; Park, Y.; Ballard-Barbash, R.; Hollenbeck, A.; Leitzmann, M.; Matthews, C. Physical activity and cancer-specific mortality in the NIH-AARP Diet and Health Study cohort. Int. J. Cancer 2014, 135, 423–431. [Google Scholar] [CrossRef]
- Michaels, C. The importance of exercise in lung cancer treatment. Transl. Lung Cancer Res. 2016, 5, 235–238. [Google Scholar] [CrossRef] [Green Version]
- O’Malley, N.; Stout, B.; Wonders, K. The Effects and Efficacy of Exercise in Lung Cancer Patients: An Overview. Health Sci. J. 2018, 12, 553. [Google Scholar]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air pollution and non-communicable diseases: A review by the forum of international respiratory societies’ environmental committee. Part 2: Air pollution and organ systems. Chest 2018, 155, 417–426. [Google Scholar] [CrossRef]
- Oravisjärvi, K.; Pietikäinen, M.; Ruuskanen, J.; Rautio, A.; Voutilainen, A.; Keiski, R.L. Effects of physical activity on the deposition of traffic-related particles into the human lungs in silico. Sci. Total Environ. 2011, 409, 4511–4518. [Google Scholar] [CrossRef]
- Cutrufello, P.T.; Smoliga, J.; Rundell, K.W. Small Things Make a Big Difference. Sports Med. 2012, 42, 1041–1058. [Google Scholar] [CrossRef] [PubMed]
- Rundell, K.W.; Slee, J.B.; Caviston, R.; Hollenbach, A.M. Decreased Lung Function After Inhalation of Ultrafine and Fine Particulate Matter During Exercise is Related to Decreased Total Nitrate in Exhaled Breath Condensate. Inhal. Toxicol. 2008, 20, 1–9. [Google Scholar] [CrossRef]
- Lovinsky-Desir, S.; Jung, K.H.; Rundle, A.G.; Hoepner, L.A.; Bautista, J.B.; Perera, F.P.; Chillrud, S.N.; Perzanowski, M.S.; Miller, R.L. Physical activity, black carbon exposure and airway inflammation in an urban adolescent cohort. Environ. Res. 2016, 151, 756–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinharay, R.; Gong, J.; Barratt, B.; Ohman-Strickland, P.; Ernst, S.; Kelly, F.J.; Zhang, J.J.; Collins, P.; Cullinan, P.; Chung, K.F. Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: A randomised, crossover study. Lancet 2018, 391, 339–349. [Google Scholar] [PubMed] [Green Version]
- IARC. Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths. 2013. Available online: http://www.iarc.fr/en/media-centre/pr/2013/pdfs/pr221_E.pdf (accessed on 8 August 2019).
- Ahmad Kiadaliri, A.; Norrving, B. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; WHO: Geneva, Switzerland, 2016; pp. 1–121. [Google Scholar]
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. J. Environ. Sci. Health Part C 2008, 26, 339–362. [Google Scholar] [CrossRef]
- Kile, M.L.; Fang, S.C.; Baccarelli, A.A.; Tarantini, L.; Cavallari, J.; Christiani, D.C. A panel study of occupational exposure to fine particulate matter and changes in DNA methylation over a single workday and years worked in boilermaker welders. Environ. Health 2013, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wan, X.; Yang, G.; Zou, X. Traffic-related air pollution and lung cancer: A meta-analysis. Thorac. Cancer 2015, 6, 307–318. [Google Scholar] [CrossRef]
- Tomczak, A.; Miller, A.B.; Weichenthal, S.A.; To, T.; Wall, C.; Van Donkelaar, A.; Martin, R.V.; Crouse, D.L.; Villeneuve, P.J. Long-term exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian National Breast Screening Study. Int. J. Cancer 2016, 139, 1958–1966. [Google Scholar] [CrossRef] [Green Version]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.; Brunekreef, B.; et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- Lo, W.-C.; Shie, R.-H.; Chan, C.-C.; Lin, H.-H. Burden of disease attributable to ambient fine particulate matter exposure in Taiwan. J. Formos. Med. Assoc. 2017, 116, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soberanes, S.; Gonzalez, A.; Urich, D.; Chiarella, S.; Radigan, K.A.; Osornio-Vargas, A.R.; Joseph, J.; Kalyanaraman, B.; Ridge, K.M.; Chandel, N.S.; et al. Particulate matter Air Pollution induces hypermethylation of the p16 promoter Via a mitochondrial ROS-JNK-DNMT1 pathway. Sci. Rep. 2012, 2, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Liang, F.; Cheng, W.; Zhou, R.; Wu, X.; Feng, Y.; Wang, Y. The mechanisms for lung cancer risk of PM2.5: Induction of epithelial-mesenchymal transition and cancer stem cell properties in human non-small cell lung cancer cells. Environ. Toxicol. 2017, 32, 2341–2351. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Baccarelli, A.A.; Wright, R.O.; Bollati, V.; Tarantini, L.; Litonjua, A.A.; Suh, H.H.; Zanobetti, A.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Rapid DNA Methylation Changes after Exposure to Traffic Particles. Am. J. Respir. Crit. Care Med. 2009, 179, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Herceg, Z.; Ghantous, A.; Wild, C.P.; Sklias, A.; Casati, L.; Duthie, S.; Fry, R.C.; Issa, J.-P.J.; Kellermayer, R.; Koturbash, I.; et al. Roadmap for investigating epigenome deregulation and environmental origins of cancer. Int. J. Cancer 2018, 142, 874–882. [Google Scholar] [CrossRef] [Green Version]
- Martin, E.M.; Fry, R.C. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu. Rev. Public Health 2018, 39, 309–333. [Google Scholar] [CrossRef] [Green Version]
- Wright, R.O.; Schwartz, J.; Wright, R.J.; Bollati, V.; Tarantini, L.; Park, S.K.; Hu, H.; Sparrow, D.; Vokonas, P.; Baccarelli, A.A. Biomarkers of Lead Exposure and DNA Methylation within Retrotransposons. Environ. Health Perspect. 2010, 118, 790–795. [Google Scholar] [CrossRef] [Green Version]
- De Prins, S.; Koppen, G.; Jacobs, G.; Dons, E.; Van De Mieroop, E.; Nelen, V.; Fierens, F.; Panis, L.I.; De Boever, P.; Cox, B.; et al. Influence of ambient air pollution on global DNA methylation in healthy adults: A seasonal follow-up. Environ. Int. 2013, 59, 418–424. [Google Scholar] [CrossRef]
- Bellavia, A.; Urch, B.; Speck, M.; Brook, R.D.; Scott, J.; Albetti, B.; Behbod, B.; North, M.; Valeri, L.; Bertazzi, P.A.; et al. DNA Hypomethylation, Ambient Particulate Matter, and Increased Blood Pressure: Findings From Controlled Human Exposure Experiments. J. Am. Hear. Assoc. 2013, 2, e000212. [Google Scholar] [CrossRef] [Green Version]
- Mostafavi, N.; Vermeulen, R.; Ghantous, A.; Hoek, G.; Probst-Hensch, N.; Herceg, Z.; Tarallo, S.; Naccarati, A.; Kleinjans, J.; Imboden, M.; et al. Acute changes in DNA methylation in relation to 24 h personal air pollution exposure measurements: A panel study in four European countries. Environ. Int. 2018, 120, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhou, R.; Zhang, J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol. Lett. 2018, 15, 7506–7514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weina, K.; Utikal, J. SOX2 and cancer: Current research and its implications in the clinic. Clin. Transl. Med. 2014, 3, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santini, R.; Pietrobono, S.; Pandolfi, S.; Montagnani, V.; D’Amico, M.; Penachioni, J.Y.; Vinci, M.C.; Borgognoni, L.; Stecca, B. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells. Oncogene 2014, 33, 4697–4708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, O.G.-W.; Huo, Z.; Siu, M.K.-Y.; Zhang, H.; Jiang, L.; Wong, E.S.-Y.; Cheung, A.N.-Y. Hypermethylation of SOX2 Promoter in Endometrial Carcinogenesis. Obstet. Gynecol. Int. 2010, 2010, 682504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, H.I.; Park, K.H.; Lee, E.-J.; Keum, K.C.; Lee, C.G.; Kim, C.H.; Kim, Y.B. Overexpression of SOX2 Is Associated with Better Overall Survival in Squamous Cell Lung Cancer Patients Treated with Adjuvant Radiotherapy. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2016, 48, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Maehara, R.; Fujikura, K.; Takeuchi, K.; Akita, M.; Abe-Suzuki, S.; Karbanova, J.; Corbeil, D.; Itoh, T.; Kakeji, Y.; Zen, Y. SOX2-silenced squamous cell carcinoma: A highly malignant form of esophageal cancer with SOX2 promoter hypermethylation. Mod. Pathol. 2018, 31, 83–92. [Google Scholar] [CrossRef]
- Ren, Z.-H.; Zhang, C.-P.; Ji, T. Expression of SOX2 in oral squamous cell carcinoma and the association with lymph node metastasis. Oncol. Lett. 2016, 11, 1973–1979. [Google Scholar] [CrossRef]
- Aydın, E.B.; Sezgintürk, M.K. A sensitive and disposable electrochemical immunosensor for detection of SOX2, a biomarker of cancer. Talanta 2017, 172, 162–170. [Google Scholar] [CrossRef]
- Ying, J.; Shi, C.; Li, C.-S.; Hu, L.-P.; Zhang, W.-D. Expression and significance of SOX2 in non-small cell lung carcinoma. Oncol. Lett. 2016, 12, 3195–3198. [Google Scholar] [CrossRef]
- Marycz, K.; Mierzejewska, K.; Śmieszek, A.; Suszyńska, E.; Malicka, I.; Kucia, M.; Ratajczak, M.Z. Endurance Exercise Mobilizes Developmentally Early Stem Cells into Peripheral Blood and Increases Their Number in Bone Marrow: Implications for Tissue Regeneration. Stem Cells Int. 2016, 2016, 5756901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voisin, S.; Eynon, N.; Yan, X.; Bishop, D. Exercise training and DNA methylation in humans. Acta Physiol. 2015, 213, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Horsburgh, S.; Robson-Ansley, P.; Adams, R.; Smith, C. Exercise and inflammation-related epigenetic modifications: Focus on DNA methylation. Exerc. Immunol. Rev. 2015, 21, 26–41. [Google Scholar] [PubMed]
- Tantoh, D.M.; Wu, M.-F.; Ho, C.-C.; Lung, C.-C.; Lee, K.-J.; Nfor, O.N.; Hsu, S.-Y.; Chen, P.-H.; Lin, C.; Chu, H.-W.; et al. SOX2 promoter hypermethylation in non-smoking Taiwanese adults residing in air pollution areas. Clin. Epigenet. 2019, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.E.; Loft, S.; Ulrik, C.S.; Raaschou-Nielsen, O.; Hertel, O.; Tjønneland, A.; Overvad, K.; Nieuwenhuijsen, M.J.; Andersen, Z.J. Physical Activity, Air Pollution, and the Risk of Asthma and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2016, 194, 855–865. [Google Scholar] [CrossRef]
- Tainio, M.; de Nazelle, A.J.; Götschi, T.; Kahlmeier, S.; Rojas-Rueda, D.; Nieuwenhuijsen, M.J.; de Sá, T.H.; Kelly, P.; Woodcock, J. Can air pollution negate the health benefits of cycling and walking? Prev. Med. 2016, 87, 233–236. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Hernández, A.; Kuo, C.-C.; Rentero-Garrido, P.; Tang, W.-Y.; Redón, J.; Ordovas, J.M.; Navas-Acien, A.; Tellez-Plaza, M. Environmental chemicals and DNA methylation in adults: A systematic review of the epidemiologic evidence. Clin. Epigenet. 2015, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- Martin, E.M.; Fry, R.C. A cross-study analysis of prenatal exposures to environmental contaminants and the epigenome: Support for stress-responsive transcription factor occupancy as a mediator of gene-specific CpG methylation patterning. Environ. Epigenet. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Subach, O.M.; Maltseva, D.V.; Shastry, A.; Kolbanovskiy, A.; Klimašauskas, S.; Geacintov, N.E.; Gromova, E.S. The stereochemistry of benzo [a] pyrene-2′-deoxyguanosine adducts affects DNA methylation by SssI and HhaI DNA methyltransferases. FEBS J. 2007, 274, 2121–2134. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, Y.; Hou, T.; Liao, J.; Zhang, C.; Sun, C.; Wang, G. PM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitro. Ecotoxicol. Environ. Saf. 2019, 178, 159–167. [Google Scholar] [CrossRef]
- Metz, E.P.; Rizzino, A. Sox2 dosage: A critical determinant in the functions of Sox2 in both normal and tumor cells. J. Cell. Physiol. 2019, 234, 19298–19306. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, Y.; Chen, Y.; Li, X.; Mou, W.; Wang, L.; Liu, Y.; Reisfeld, R.A.; Xiang, R.; Lv, D.; et al. SOX2 Gene Regulates the Transcriptional Network of Oncogenes and Affects Tumorigenesis of Human Lung Cancer Cells. PLoS ONE 2012, 7, e36326. [Google Scholar] [CrossRef] [Green Version]
- Xiang, R.; Liao, D.; Cheng, T.; Zhou, H.; Shi, Q.; Chuang, T.S.; Markowitz, D.; Reisfeld, R.A.; Luo, Y. Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer. Br. J. Cancer 2011, 104, 1410–1417. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.M.; Diez-Valle, R.; Manterola, L.; Rubio, A.; Liu, D.; Cortes-Santiago, N.; Urquiza, L.; Jauregi, P.; De Munain, A.L.; Sampron, N.; et al. Genetic and Epigenetic Modifications of Sox2 Contribute to the Invasive Phenotype of Malignant Gliomas. PLoS ONE 2011, 6, e26740. [Google Scholar] [CrossRef] [PubMed]
- Velcheti, V.; Schalper, K.; Yao, X.; Cheng, H.; Kocoglu, M.; Dhodapkar, K.; Deng, Y.; Gettinger, S.; Rimm, D.L. High SOX2 Levels Predict Better Outcome in Non-Small Cell Lung Carcinomas. PLoS ONE 2013, 8, e61427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilbertz, T.; Wagner, P.; Petersen, K.; Stiedl, A.-C.; Scheble, V.J.; Maier, S.; Reischl, M.; Mikut, R.; Altorki, N.K.; Moch, H.; et al. SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Mod. Pathol. 2011, 24, 944–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sholl, L.M.; Barletta, J.A.; Yeap, B.Y.; Chirieac, L.R.; Hornick, J.L. Sox2 protein expression is an independent poor prognostic indicator in stage I lung adenocarcinoma. Am. J. Surg. Pathol. 2010, 34, 1193–1198. [Google Scholar] [CrossRef]
- Brcic, L.; Sherer, C.K.; Shuai, Y.; Hornick, J.L.; Chirieac, L.R.; Dacic, S. Morphologic and Clinicopathologic Features of Lung Squamous Cell Carcinomas ExpressingSox2. Am. J. Clin. Pathol. 2012, 138, 712–718. [Google Scholar] [CrossRef] [Green Version]
- Avinçsal, M.O.; Jimbo, N.; Fujikura, K.; Shinomiya, H.; Otsuki, N.; Morimoto, K.; Furukawa, T.; Morita, N.; Maehara, R.; Itoh, T.; et al. Epigenetic down-regulation of SOX2 is an independent poor prognostic factor for hypopharyngeal cancers. Histopathology 2018, 72, 826–837. [Google Scholar] [CrossRef]
- Li, X.-L.; Eishi, Y.; Bai, Y.-Q.; Sakai, H.; Akiyama, Y.; Tani, M.; Takizawa, T.; Koike, M.; Yuasa, Y. Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma. Int. J. Oncol. 2004, 24, 257–263. [Google Scholar] [CrossRef]
- Tantoh, D.M.; Lee, K.-J.; Nfor, O.N.; Liaw, Y.-C.; Lin, C.; Chu, H.-W.; Chen, P.-H.; Hsu, S.-Y.; Liu, W.-H.; Ho, C.-C.; et al. Methylation at cg05575921 of a smoking-related gene (AHRR) in non-smoking Taiwanese adults residing in areas with different PM2.5 concentrations. Clin. Epigenet. 2019, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.-T.; Lin, J.-C.; Lee, C.-H. Taiwan Biobank: A project aiming to aid Taiwan’s transition into a biomedical island. Pharmacogenomics 2008, 9, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Solomon, O.; MacIsaac, J.; Quach, H.; Tindula, G.; Kobor, M.; Huen, K.; Meaney, M.J.; Eskenazi, B.; Barcellos, L.F.; Holland, N. Comparison of DNA methylation measured by Illumina 450K and EPIC BeadChips in blood of newborns and 14-year-old children. Epigenetics 2018, 13, 655–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bojovic, B.; Blancher, C. Epigenetic analysis on Illumina EPIC arrays. Epigenetics 2017, 28, 3. [Google Scholar]
- Rahmani, E.; Zaitlen, N.; Baran, Y.; Eng, C.; Hu, N.; Galanter, J.; Oh, S.; Burchard, E.G.; Eskin, E.; Zou, J.; et al. Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies. Nat. Methods 2016, 13, 443–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | No Exercise | Exercise | p-Value |
---|---|---|---|
(n = 534) | (n = 414) | ||
SOX2-promoter methylation (beta-value) | 0.159600 ± 0.000556 | 0.163500 ± 0.000657 | <0.0001 * |
Residential area/mean PM2.5 in μg/m3 (%) | 0.7951 | ||
Northern/26.557 | 186(34.83) | 144(34.78) | |
North-Central/30.055 | 92(17.23) | 69(16.67) | |
Central/36.907 | 111(20.79) | 78(18.84) | |
Southern/40.683 | 145(27.15) | 123(29.71) | |
Sex (%) | 0.6106 | ||
Women | 263(49.25) | 197(47.58) | |
Men | 271(50.75) | 217(52.42) | |
Age (years) | 46.1105 ± 0.4613 | 54.4010 ± 0.4969 | <0.0001 * |
BMI (Kg/m2) | 24.3257 ± 0.1673 | 24.3130 ± 0.1549 | 0.9557 |
Cigarette smoking status (%) | 0.0143 | ||
Never | 397(74.34) | 311(75.12) | |
Former | 66(12.36) | 69(16.67) | |
Current | 71(13.30) | 34(8.21) | |
Second-hand smoke exposure (%) | 0.0032 * | ||
No | 457(85.58) | 380(91.79) | |
Yes | 77(14.42) | 34(8.21) | |
Alcohol drinking status (%) | 0.4811 | ||
Never | 479(89.70) | 369(89.13) | |
Former | 17(3.18) | 19(4.59) | |
Current | 38(7.12) | 26(6.28) |
Variable | β | p-Value |
---|---|---|
Exercise (Ref: No) | ||
Yes | −0.000538 | 0.4181 |
PM2.5 | 0.000216 | <0.0001 |
Sex (Ref: Women) | ||
Men | 0.004940 | <0.0001 |
Age | 0.000208 | <0.0001 |
BMI | 0.000004 | 0.9651 |
Cigarette smoking status (Ref: Never) | ||
Former | 0.001090 | 0.2553 |
Current | −0.000789 | 0.4668 |
Second-hand smoke exposure (Ref: No) | ||
Yes | 0.000853 | 0.3847 |
Alcohol drinking status (ref: Never) | ||
Former | −0.002490 | 0.1355 |
Current | −0.003010 | 0.0192 |
Exercise*PM2.5 | p-value = 0.0146 |
Variable | No Exercise | Exercise | ||
---|---|---|---|---|
β | p-Value | β | p-Value | |
PM2.5 | 0.000106 | 0.1576 | 0.000349 | <0.0001 |
Sex (Ref: Women) | ||||
Men | 0.005010 | <0.0001 | 0.004840 | <0.0001 |
Age | 0.000203 | <0.0001 | 0.000220 | <0.0001 |
BMI | −0.000006 | 0.9577 | 0.000060 | 0.6793 |
Cigarette smoking status (Ref: Never) | ||||
Former | 0.002440 | 0.0737 | 0.000052 | 0.9694 |
Current | 0.000160 | 0.9078 | −0.002450 | 0.1678 |
Second-hand smoke exposure (Ref: No) | ||||
Yes | 0.000604 | 0.6232 | 0.001100 | 0.5107 |
Alcohol drinking status (ref: Never) | ||||
Former | −0.006370 | 0.0091 | 0.001220 | 0.5906 |
Current | −0.003700 | 0.0310 | −0.002030 | 0.2932 |
Variable | β | p-Value |
---|---|---|
Exercise and PM2.5 area (Ref: No exercise in the Northern area) | ||
No exercise in the North-Central area | 0.001100 | 0.3663 |
No exercise in the Central area | −0.000913 | 0.4208 |
No exercise in the Southern area | 0.002610 | 0.0162 |
Exercise in the Northern area | −0.003140 | 0.0036 |
Exercise in the North-Central area | 0.001530 | 0.2678 |
Exercise in the Central area | 0.001190 | 0.3595 |
Exercise in the Southern area | 0.002720 | 0.0172 |
Sex (Ref: Women) | ||
Men | 0.005050 | <0.0001 |
Age | 0.000209 | <0.0001 |
BMI | −0.000034 | 0.6980 |
Cigarette smoking status (Ref: Never) | ||
Former | 0.001390 | 0.1470 |
Current | −0.000829 | 0.4415 |
Second-hand smoke exposure (Ref: No) | ||
Yes | 0.000743 | 0.4466 |
Alcohol drinking status (Ref: Never) | ||
Former | −0.002160 | 0.1917 |
Current | −0.003280 | 0.0104 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, C.-L.; Tantoh, D.M.; Chou, Y.-H.; Wang, L.; Ho, C.-C.; Chen, P.-H.; Lee, K.-J.; Nfor, O.N.; Hsu, S.-Y.; Liang, W.-M.; et al. Blood-Based SOX2-Promoter Methylation in Relation to Exercise and PM2.5 Exposure among Taiwanese Adults. Cancers 2020, 12, 504. https://doi.org/10.3390/cancers12020504
Su C-L, Tantoh DM, Chou Y-H, Wang L, Ho C-C, Chen P-H, Lee K-J, Nfor ON, Hsu S-Y, Liang W-M, et al. Blood-Based SOX2-Promoter Methylation in Relation to Exercise and PM2.5 Exposure among Taiwanese Adults. Cancers. 2020; 12(2):504. https://doi.org/10.3390/cancers12020504
Chicago/Turabian StyleSu, Chun-Lang, Disline Manli Tantoh, Ying-Hsiang Chou, Lee Wang, Chien-Chang Ho, Pei-Hsin Chen, Kuan-Jung Lee, Oswald Ndi Nfor, Shu-Yi Hsu, Wen-Miin Liang, and et al. 2020. "Blood-Based SOX2-Promoter Methylation in Relation to Exercise and PM2.5 Exposure among Taiwanese Adults" Cancers 12, no. 2: 504. https://doi.org/10.3390/cancers12020504
APA StyleSu, C. -L., Tantoh, D. M., Chou, Y. -H., Wang, L., Ho, C. -C., Chen, P. -H., Lee, K. -J., Nfor, O. N., Hsu, S. -Y., Liang, W. -M., & Liaw, Y. -P. (2020). Blood-Based SOX2-Promoter Methylation in Relation to Exercise and PM2.5 Exposure among Taiwanese Adults. Cancers, 12(2), 504. https://doi.org/10.3390/cancers12020504