Factors in Oncogenesis: Viral Infections in Ovarian Cancer
Abstract
:1. Introduction
2. Ovarian Carcinogenesis
2.1. Ovulation
2.2. Inflammation
3. Microbiome in Ovarian Cancer
4. The Role of Human Papillomavirus in Oncogenesis
5. Herpesvirus Infection in Ovarian Cancer
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 17 June 2019).
- Bast, R.C.; Hennessy, B.; Mills, G.B. The biology of ovarian cancer: New opportunities for translation. Nat. Rev. Cancer 2009, 9, 415–428. [Google Scholar] [CrossRef]
- Kurman, R.J.; Visvanathan, K.; Roden, R.; Wu, T.; Shih, I.-M. Early detection and treatment of ovarian cancer: Shifting from early stage to minimal volume of disease based on a new model of carcinogenesis. Am. J. Obstet. Gynecol. 2008, 198, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, C.B.; Jensen, A.; Albieri, V.; Andersen, K.K.; Kjaer, S.K. Is pelvic inflammatory disease a risk factor for ovarian cancer? Cancer Epidemiol. Biomark. Prev. 2016, 26, 104–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elzek, M.A.; Rodland, K.D. Proteomics of ovarian cancer: Functional insights and clinical applications. Cancer Metastasis Rev. 2015, 34, 83–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spreafico, A.; Oza, A.; Clarke, B.; Mackay, H.; Shaw, P.; Butler, M.; Dhani, N.; Lheureux, S.; Wilson, M.; Welch, S.; et al. Genotype-matched treatment for patients with advanced type I epithelial ovarian cancer (EOC). Gynecol. Oncol. 2017, 144, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Parkin, D.M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 2006, 118, 3030–3044. [Google Scholar] [CrossRef] [Green Version]
- Biological Agents. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Biological-Agents-2012 (accessed on 19 July 2019).
- Butel, J.S. Viral carcinogenesis: Revelation of molecular mechanisms and etiology of human disease. Carcinogenesis 2000, 21, 405–426. [Google Scholar] [CrossRef] [Green Version]
- Matulonis, U.A.; Sood, A.K.; Fallowfield, L.; Howitt, B.E.; Sehouli, J.; Karlan, B.Y. Ovarian cancer. Nat. Rev. Dis. Primers 2016, 2, 1–22. [Google Scholar] [CrossRef]
- Kurman, R. WHO Classification of Tumours of Female Reproductive Organs; Internat Agency for Research on Cancer: Lyon, France, 2014. [Google Scholar]
- Lisio, M.-A.; Fu, L.; Goyeneche, A.; Gao, Z.-H.; Telleria, C. High-grade serous ovarian cancer: Basic sciences, clinical and therapeutic standpoints. Int. J. Mol. Sci. 2019, 20, 952. [Google Scholar] [CrossRef] [Green Version]
- Kurman, R.J.; Shih, I.-M. The dualistic model of ovarian carcinogenesis. Am. J. Pathol. 2016, 186, 733–747. [Google Scholar] [CrossRef] [Green Version]
- Salazar, C.; Campbell, I.G.; Gorringe, K.L. When is “Type I” ovarian cancer not “Type I”? Indications of an out-dated dichotomy. Front. Oncol. 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Piek, J.M.J.; Diest, P.J.V.; Verheijen, R.H.M. Ovarian carcinogenesis: An alternative hypothesis. Adv. Exp. Med. Biol. 2008, 622, 79–87. [Google Scholar] [PubMed]
- Yang-Hartwich, Y.; Gurrea-Soteras, M.; Sumi, N.; Joo, W.D.; Holmberg, J.C.; Craveiro, V.; Alvero, A.B.; Mor, G. Ovulation and extra-ovarian origin of ovarian cancer. Sci. Rep. 2014, 4, 6116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Coffey, D.M.; Creighton, C.J.; Yu, Z.; Hawkins, S.M.; Matzuk, M.M. High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc. Natl. Acad. Sci. USA 2012, 109, 3921–3926. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, F.; Muto, M.G.; Lee, Y.; Elvin, J.A.; Callahan, M.J.; Feltmate, C.; Garber, J.E.; Cramer, D.W.; Crum, C.P. The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am. J. Surg. Pathol. 2006, 30, 230–236. [Google Scholar] [CrossRef]
- Lee, Y.; Miron, A.; Drapkin, R.; Nucci, M.; Medeiros, F.; Saleemuddin, A.; Garber, J.; Birch, C.; Mou, H.; Gordon, R.; et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J. Pathol. 2006, 211, 26–35. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Etemadmoghadam, D.; Temple, J.; Lynch, A.G.; Riad, M.; Sharma, R.; Stewart, C.; Fereday, S.; Caldas, C.; Defazio, A.; et al. Driver mutations in tp53 are ubiquitous in high grade serous carcinoma of the ovary. J. Pathol. 2010, 221, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Auersperg, N. Ovarian surface epithelium: Biology, endocrinology, and pathology. Endocr. Rev. 2001, 22, 255–288. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, T.; Hong, W.; Ye, H.; Hu, C.; Zheng, Y. Mechanism for the decision of ovarian surface epithelial stem cells to undergo neo-oogenesis or ovarian tumorigenesis. Cell. Physiol. Biochem. 2018, 50, 214–232. [Google Scholar] [CrossRef]
- Ness, R.B.; Cottreau, C. Possible role of ovarian epithelial inflammation in ovarian cancer. J. Natl. Cancer Inst. 1999, 91, 1459–1467. [Google Scholar] [CrossRef] [Green Version]
- Werness, B.A.; Afify, A.M.; Eltabbakh, G.H.; Huelsman, K.; Piver, M.S.; Paterson, J.M. p53, c-ErbB, and Ki-67 expression in ovaries removed prophylactically from women with a family history of ovarian cancer. Int. J. Gynecol. Pathol. 1999, 18, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Banet, N.; Kurman, R. Two types of ovarian cortical inclusion cysts. Int. J. Gynecol. Pathol. 2015, 34, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Togami, S.; Sasajima, Y.; Kasamatsu, T.; Oda-Otomo, R.; Okada, S.; Ishikawa, M.; Ikeda, S.-I.; Kato, T.; Tsuda, H. Immunophenotype and human papillomavirus status of serous adenocarcinoma of the uterine cervix. Pathol. Oncol. Res. 2014, 21, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Mungenast, F.; Thalhammer, T. Estrogen biosynthesis and action in ovarian cancer. Front. Endocrinol. 2014, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Syed, V.; Zhang, X.; Lau, K.-M.; Cheng, R.; Mukherjee, K.; Ho, S.-M. Profiling estrogen-regulated gene expression changes in normal and malignant human ovarian surface epithelial cells. Oncogene 2005, 24, 8128–8143. [Google Scholar] [CrossRef] [Green Version]
- Simpkins, F.; Garcia-Soto, A.; Slingerland, J. New insights on the role of hormonal therapy in ovarian cancer. Steroids 2013, 78, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Morrison, J.; Thoma, C.; Goodall, R.J.; Lyons, T.J.; Gaitskell, K.; Wiggans, A.J.; Bryant, A. Epidermal growth factor receptor blockers for the treatment of ovarian cancer. Cochrane Database Syst. Rev. 2018, 10, 1–100. [Google Scholar] [CrossRef]
- Ingerslev, K.; Høgdall, E.; Schnack, T.H.; Skovrider-Ruminski, W.; Høgdall, C.; Blaakaer, J. The potential role of infectious agents and pelvic inflammatory disease in ovarian carcinogenesis. Infect. Agents Cancer 2017, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Savant, S.; Sriramkumar, S.; O’Hagan, H. The role of inflammation and inflammatory mediators in the development, progression, metastasis, and chemoresistance of epithelial ovarian cancer. Cancers 2018, 10, 251. [Google Scholar] [CrossRef] [Green Version]
- Jia, D.; Nagaoka, Y.; Katsumata, M.; Orsulic, S. Inflammation is a key contributor to ovarian cancer cell seeding. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Clendenen, T.V.; Lundin, E.; Zeleniuch-Jacquotte, A.; Koenig, K.L.; Berrino, F.; Lukanova, A.; Lokshin, A.E.; Idahl, A.; Ohlson, N.; Hallmans, G.; et al. Circulating inflammation markers and risk of epithelial ovarian cancer. Cancer Epidemiol. Biomark. Prev. 2011, 20, 799–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrzycka, B.; Terlikowski, S.J.; Kowalczuk, O.; Kinalski, M. Circulating levels of TNF-α and its soluble receptors in the plasma of patients with epithelial ovarian cancer. Eur. Cytokine Netw. 2009, 20, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Thibault, B.; Castells, M.; Delord, J.P.; Couderc, B. Ovarian cancer microenvironment: Implications for cancer dissemination and chemoresistance acquisition. Cancer Metast. Rev. 2013, 33, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Sapoznik, S.; Bahar-Shany, K.; Brand, H.; Pinto, Y.; Gabay, O.; Glick-Saar, E.; Dor, C.; Zadok, O.; Barshack, I.; Zundelevich, A.; et al. Activation-induced cytidine deaminase links ovulation-induced inflammation and serous carcinogenesis. Neoplasia 2016, 18, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nola, R.D.; Menga, A.; Castegna, A.; Loizzi, V.; Ranieri, G.; Cicinelli, E.; Cormio, G. The crowded crosstalk between cancer cells and stromal microenvironment in gynecological malignancies: Biological pathways and therapeutic implication. Int. J. Mol. Sci. 2019, 20, 1–29. [Google Scholar]
- Mia, S.; Warnecke, A.; Zhang, X.M.; Malmström, V.; Harris, R.A. An optimized protocol for human M2 macrophages using M-CSF and IL-4/IL-10/TGF-βyields a dominant immunosuppressive phenotype. Scand. J. Immunol. 2014, 79, 305–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, J.R.; Milne, K.; Kroeger, D.R.; Nelson, B.H. PD-L1 expression is associated with tumor-infiltrating T-cells and favorable prognosis in high-grade serous ovarian cancer. Gynecol. Oncol. 2016, 141, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Jiang, Y.; Chen, J.-S.; Niu, N.; Piao, J.; Ning, J.; Zu, Y.; Zhang, J.; Liu, J. B7-H4 expression in ovarian serous carcinoma: A study of 306 cases. Hum. Pathol. 2016, 57, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Shimada, M.; Richards, J.S. The involvement of the toll-like receptor family in ovulation. J. Assist. Reprod. Genet. 2008, 25, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Mcfarland-Mancini, M.M.; Funk, H.M.; Husseinzadeh, N.; Mounajjed, T.; Drew, A.F. Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol. Immunother. 2009, 58, 1375–1385. [Google Scholar] [CrossRef]
- Berger, R.; Fiegl, H.; Goebel, G.; Obexer, P.; Ausserlechner, M.; Doppler, W.; Hauser-Kronberger, C.; Reitsamer, R.; Egle, D.; Reimer, D.; et al. Toll-like receptor 9 expression in breast and ovarian cancer is associated with poorly differentiated tumors. Cancer Sci. 2010, 101, 1059–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, U.A.; Zannetti, C.; Parroche, P.; Goutagny, N.; Malfroy, M.; Roblot, G.; Carreira, C.; Hussain, I.; Müller, M.; Taylor-Papadimitriou, J.; et al. The Human Papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the Toll-like receptor 9 promoter. J. Exp. Med. 2013, 210, 1369–1387. [Google Scholar] [CrossRef] [PubMed]
- Reiser, J.; Hurst, J.; Voges, M.; Krauss, P.; Munch, P.; Iftner, T.; Stubenrauch, F. High-Risk Human Papillomaviruses repress constitutive kappa interferon transcription via E6 to prevent pathogen recognition receptor and antiviral-gene expression. J. Virol. 2011, 85, 11372–11380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Sun, C.; Huang, J.; Xia, M.; Guo, E.; Li, N.; Lu, H.; Shan, W.; Wu, Y.; Li, Y.; et al. The biodiversity composition of microbiome in ovarian carcinoma patients. Sci. Rep. 2019, 9, 1691. [Google Scholar] [CrossRef] [PubMed]
- Bougherara, H.; Mansuet-Lupo, A.; Alifano, M.; Ngô, C.; Damotte, D.; Le Frère-Belda, M.A.; Donnadieu, E.; Peranzoni, E. Real-time imaging of resident T cells in human lung and ovarian carcinomas reveals how different tumor microenvironments control T lymphocyte migration. Front. Immunol. 2015, 6, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, J.S.; Nelson, B.H. Tumor-infiltrating B cells and T cells: Working together to promote patient survival. Oncoimmunology 2012, 1, 1623–1625. [Google Scholar] [CrossRef] [Green Version]
- Fialová, A.; Partlová, S.; Sojka, L.; Hromádková, H.; Brtnický, T.; Fučíková, J.; Kocián, P.; Rob, L.; Bartůňková, J.; Špíšek, R. Dynamics of T-Cell infiltration during the course of ovarian cancer: The gradual shift from a Th17 effector cell response to a predominant infiltration by regulatory T-cells. Int. J. Cancer 2012, 132, 1070–1079. [Google Scholar] [CrossRef]
- Santoiemma, P.P.; Powell, D.J., Jr. Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biol. Ther. 2015, 16, 807–820. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Wu, X.; Zhang, T.; Zhu, Q.; Wang, X.; Wang, H.; Wang, K.; Lin, Y.; Wang, X. Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol. Res. 2018, 6, 1578–1592. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.L.; Kandalaft, L.E.; Tanyi, J.; Hagemann, A.R.; Motz, G.T.; Svoronos, N.; Montone, K.; Mantia-Smaldone, G.M.; Smith, L.; Nisenbaum, H.L.; et al. A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: From bench to bedside. Clin. Cancer Res. 2013, 19, 4801–4815. [Google Scholar] [CrossRef] [Green Version]
- Alibek, K.; Karatayeva, N.; Bekniyazov, I. The role of infectious agents in urogenital cancers. Infect. Agents Cancer 2012, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.; Cerqueira, F.; Medeiros, R. Chlamydia trachomatis infection: Implications for HPV status and cervical cancer. Arch. Gynecol. Obstet. 2014, 289, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Tian, T.; Wei, Z.; Shih, N.; Feldman, M.D.; Coukos, G.; Alwine, J.C.; Robertson, E.S. The ovarian cancer oncobiome. Oncotarget 2017, 8, 36225–36245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leake, J.; Woodruff, J.; Searle, C.; Shah, K.; Currie, J. Human Papillomavirus and epithelial ovarian neoplasia. Gynecol. Oncol. 1989, 32, 268–273. [Google Scholar] [CrossRef]
- Lai, C.-H.; Hsueh, S.; Lin, C.-Y.; Huang, M.-Y.; You, G.-B.; Chang, H.-C.; Pao, C.C. Human Papillomavirus in benign and malignant ovarian and endometrial tissues. Int. J. Gynecol. Pathol. 1992, 11, 210–215. [Google Scholar] [CrossRef]
- Runnebaum, I.B.; Maier, S.; Tong, X.W.; Rosenthal, H.E.; Möbus, V.J.; Kieback, D.G.; Kreienberg, R. Human papillomavirus integration is not associated with advanced epithelial ovarian cancer in German patients. Cancer Epidemiol. Biomark. Prev. 1995, 4, 573–575. [Google Scholar]
- Anttila, M.; Syrjänen, S.; Ji, H.; Saarikoski, S.; Syrjänen, K. Failure to demonstrate Human Papillomavirus DNA in epithelial ovarian cancer by general primer PCR. Gynecol. Oncol. 1999, 72, 337–341. [Google Scholar] [CrossRef]
- Wu, Q.-J.; Guo, M.; Lu, Z.-M.; Li, T.; Qiao, H.-Z.; Ke, Y. Detection of Human Papillomavirus-16 in ovarian malignancy. Br. J. Cancer 2003, 89, 672–675. [Google Scholar] [CrossRef] [Green Version]
- Kuscu, E.; Ozdemir, B.H.; Erkanli, S.; Haberal, A. HPV and p53 expression in epithelial ovarian carcinoma. Eur. J. Gynaecol. Oncol. 2005, 10, 642–645. [Google Scholar]
- Atalay, F.; Taskiran, C.; Taner, M.Z.; Pak, I.; Or, M.; Tuncer, S. Detection of Human Papillomavirus DNA and genotyping in patients with epithelial ovarian carcinoma. J. Obstet. Gynaecol. Res. 2007, 33, 823–828. [Google Scholar] [CrossRef]
- Giordano, G.; Dadda, T.; Gnetti, L.; Froio, E.; Merisio, C.; Melpignano, M. Role of Human Papillomavirus in the development of epithelial ovarian neoplasms in Italian women. J. Obstet. Gynaecol. Res. 2008, 34, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Shanmughapriya, S.; Senthilkumar, G.; Vinodhini, K.; Das, B.C.; Vasanthi, N.; Natarajaseenivasan, K. Viral and bacterial aetiologies of epithelial ovarian cancer. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2311–2317. [Google Scholar] [CrossRef] [PubMed]
- Malisic, E.; Jankovic, R.; Jakovljevic, K. Detection and genotyping of Human Papillomaviruses and their role in the development of ovarian carcinomas. Arch. Gynecol. Obstet. 2012, 286, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Al-Shabanah, O.A.; Hafez, M.M.; Hassan, Z.K.; Sayed-Ahmed, M.M.; Abozeed, W.N.; Al-Rejaie, S.S.; Alsheikh, A.A. Human Papillomavirus genotyping and integration in ovarian cancer Saudi patients. Virol. J. 2013, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilyk, O.O.; Pande, N.T.; Pejovic, T.; Buchynska, L.G. The frequency of Human Papillomavirus types 16, 18 in upper genital tract of women at high risk of developing ovarian cancer. Exp. Oncol. 2014, 36, 121–124. [Google Scholar] [PubMed]
- Ingerslev, K.; Hogdall, E.; Skovrider-Ruminski, W.; Schnack, T.H.; Karlsen, M.A.; Nedergaard, L.; Hogdall, C.; Blaakær, J. High-Risk HPV is not associated with epithelial ovarian cancer in a Caucasian population. Infect. Agents Cancer 2016, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hassan, Z.K.; Hafez, M.M.; Kamel, M.M.; Zekri, A.R. Human papillomavirus genotypes and methylation of CADM1, PAX1, MAL and ADCYAP1 genes in epithelial ovarian cancer patients. Asian Pac. J. Cancer 2017, 18, 169–176. [Google Scholar]
- Paradowska, E.; Jabłońska, A.; Studzińska, M.; Wilczyński, M.; Wilczyński, J.R. Detection and genotyping of CMV and HPV in tumors and fallopian tubes from epithelial ovarian cancer patients. Sci. Rep. 2019, 9, 19935. [Google Scholar] [CrossRef]
- Rådestad, A.; Estekizadeh, A.; Cui, H.; Kostopoulou, O.; Davoudi, B.; Hirschberg, A.; Carlson, J.; Rahbar, A.; Söderberg-Naucler, C. Impact of human cytomegalovirus infection and its immune response on survival of patients with ovarian cancer. Transl. Oncol. 2018, 11, 1292–1300. [Google Scholar] [CrossRef]
- Carlson, J.; Rådestad, A.; Söderberg-Naucler, C.; Rahbar, A. Human Cytomegalovirus in high grade serous ovarian cancer possible implications for patients survival. Medicine 2018, 97, 1–5. [Google Scholar] [CrossRef]
- Ingerslev, K.; Høgdall, E.; Skovrider-Ruminski, W.; Schnack, T.H.; Lidang, M.; Høgdall, C.; Blaakaer, J. The prevalence of EBV and CMV DNA in epithelial ovarian cancer. Infect. Agents Cancer 2019, 14, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.; Tannir, N.; Williams, M.; Chen, Y.; Yao, H.; Zhang, J.; Thompson, E.; Meric-Bernstam, F.; Medeiros, L.; Weinstein, J.; et al. Landscape of DNA virus associations across human malignant cancers: Analysis of 3,775 cases using RNA-Seq. J. Virol. 2013, 87, 8916–8926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandya, D.; Mariani, M.; McHugh, M.; Andreoli, M.; Sieber, S.; He, S.; Dowell-Martino, C.; Fiedler, P.; Scambia, G.; Ferlini, C. Herpes virus microRNA expression and significance in serous ovarian cancer. PLoS ONE 2014, 12, e114750. [Google Scholar] [CrossRef] [PubMed]
- McQuillan, G.M.; Kruszon-Moran, D.; Markowitz, L.E.; Unger, E.R.; Paulose-Ram, R. Prevalence of HPV in Adults Aged 18–69: United States, 2011–2014; US Department of Health and Human Services, Centers for Disease Control and Prevention, Eds.; National Center for Health Statistics: Hyattsville, MD, USA, 2017; pp. 1–8. [Google Scholar]
- Zhao, F.H.; Lewkowitz, A.K.; Hu, S.Y.; Chen, F.; Li, L.Y.; Zhang, Q.M.; Wu, R.F.; Li, C.Q.; Wei, L.H.; Xu, A.D.; et al. Prevalence of human papillomavirus and cervical intraepithelial neoplasia in China: A pooled analysis of 17 population-based studies. Int. J. Cancer 2012, 131, 2929–2938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, K.-W.; Alaei-Mahabadi, B.; Samuelsson, T.; Lindh, M.; Larsson, E. The landscape of viral expression and host gene fusion and adaptation in human cancer. Nat. Commun. 2013, 4, 2513. [Google Scholar] [CrossRef] [Green Version]
- Svahn, M.F.; Faber, M.T.; Christensen, J.; Norrild, B.; Kjaer, S.K. Prevalence of Human Papillomavirus in epithelial ovarian cancer tissue. A meta-analysis of observational studies. Acta Obstet. Gynecol. Scand. 2013, 93, 6–19. [Google Scholar] [CrossRef]
- Rosa, M.I.; Silva, G.D.; De Azedo Simões, P.W.T.; Souza, M.V.; Panatto, A.P.R.; Simon, C.S.; Madeira, K.; Medeiros, L.R. The Prevalence of Human Papillomavirus in ovarian cancer: A systematic review. Int. J. Gynecol. Cancer 2013, 23, 437–441. [Google Scholar] [CrossRef]
- Bernard, X.; Robinson, P.; Nominé, Y.; Masson, M.; Charbonnier, S.; Ramirez-Ramos, J.R.; Deryckere, F.; Travé, G.; Orfanoudakis, G. Proteasomal degradation of p53 by Human Papillomavirus E6 oncoprotein relies on the structural integrity of p53 core domain. PLoS ONE 2011, 6, e25981. [Google Scholar] [CrossRef] [Green Version]
- Mclaughlin-Drubin, M.E.; Münger, K. The Human Papillomavirus E7 oncoprotein. Virology 2009, 384, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Cinatl, J.; Scholz, M.; Kotchetkov, R.; Vogel, J.-U.; Doerr, H.W. Molecular mechanisms of the modulatory effects of HCMV infection in tumor cell biology. Trends Mol. Med. 2004, 10, 19–23. [Google Scholar] [CrossRef]
- Söderberg-Nauclér, C. Cytomegalovirus in human brain tumors: Role in pathogenesis and potential treatment options. World J. Exp. Med. 2015, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Niller, H.H.; Wolf, H.; Minarovits, J. Viral hit and run-oncogenesis: Genetic and epigenetic scenarios. Cancer Lett. 2011, 305, 200–217. [Google Scholar] [CrossRef] [PubMed]
- Emara, M.; Vyas, V.; al Awadi, S.; Jaroslav, N.; Khodry, A.; Essam, T.; Rouf, Y.; Amanguno, H.; Purohit, P. Synchronous occurrence of brucellosis and ovarian cancer-a case report. Australas. J. Cancer 2007, 6, 257–259. [Google Scholar]
- Scidmore, M.A.; Fischer, E.R.; Hackstadt, T. Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect. Immun. 2003, 71, 973–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, G.; Liu, L.; Fan, T.; Fan, P.; Ji, H. Degradation of transcription factor Rfx5 during the inhibition of both constitutive and interferon γ–inducible major histocompatibility complex class I expression in chlamydia-infected cells. J. Exp. Med. 2000, 191, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Chumduri, C.; Gurumurthy, R.K.; Zadora, P.K.; Mi, Y.; Meyer, T.F. Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response. Cell Host Microbe 2013, 13, 746–758. [Google Scholar] [CrossRef] [Green Version]
- González, E.; Rother, M.; Kerr, M.C.; Al-Zeer, M.A.; Abu-Lubad, M.; Kessler, M.; Brinkmann, V.; Loewer, A.; Meyer, T.F. Chlamydia infection depends on a functional MDM2-p53 axis. Nat. Commun. 2014, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Chan, P.J.; Seraj, I.M.; Kalugdan, T.H.; King, A. Prevalence of mycoplasma conserved DNA in malignant ovarian cancer detected using sensitive PCR–ELISA. Gynecol. Oncol. 1996, 63, 258–260. [Google Scholar] [CrossRef]
- Jones, A.; Jonsson, A.-B.; Aro, H. Neisseria gonorrhoeae infection causes a G1 arrest in human epithelial cells. FASEB J. 2007, 21, 345–355. [Google Scholar] [CrossRef]
- Idahl, A.; Lundin, E.; Elgh, F.; Jurstrand, M.; Møller, J.K.; Marklund, I.; Lindgren, P.; Ottander, U. Chlamydia trachomatis, Mycoplasma genitalium, Neisseria gonorrhoeae, Human Papillomavirus, and Polyomavirus are not detectable in human tissue with epithelial ovarian cancer, borderline tumor, or benign conditions. Am. J. Obstet. Gynecol. 2010, 202, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Human Papillomaviruses. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2007; Volume 64, pp. 47–79.
- Graham, S. Human Papillomavirus: Gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol. 2010, 5, 1493–1506. [Google Scholar] [CrossRef] [Green Version]
- Pyeon, D.; Pearce, S.; Lank, S.; Ahlquist, P.; Lambert, P. Establishment of Human Papillomavirus infection requires cell cycle progression. PLoS Pathog. 2009, 5, e1000318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langsfeld, E.; Laimins, L.A. Human papillomaviruses: Research priorities for the next decade. Trends Cancer 2016, 2, 234–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hausen, H.Z. Papillomaviruses causing cancer: Evasion from host-cell control in early events in carcinogenesis. J. Natl. Cancer Inst. 2000, 92, 690–698. [Google Scholar] [CrossRef] [Green Version]
- Kines, R.C.; Cerio, R.J.; Roberts, J.N.; Thompson, C.D.; Pinos, E.D.L.; Lowy, D.R.; Schiller, J.T. Human Papillomavirus capsids preferentially bind and infect tumor cells. Int. J. Cancer 2015, 138, 901–911. [Google Scholar] [CrossRef] [Green Version]
- Florin, L.; Becker, K.A.; Lambert, C.; Nowak, T.; Sapp, C.; Strand, D.; Streeck, R.E.; Sapp, M. Identification of a dynein interacting domain in the papillomavirus minor capsid protein L2. J. Virol. 2006, 80, 6691–6696. [Google Scholar] [CrossRef] [Green Version]
- Petersen, I.; Klein, F. HPV in non-gynecological tumors. Pathologe 2008, 29, 118–122. [Google Scholar] [CrossRef]
- Ozbun, M.A. Human Papillomavirus type 31b infection of human keratinocytes and the onset of early transcription. J. Virol. 2002, 76, 11291–11300. [Google Scholar] [CrossRef] [Green Version]
- Helt, A.-M.; Funk, J.O.; Galloway, D.A. Inactivation of both the retinoblastoma tumor suppressor and p21 by the Human Papillomavirus Type 16 E7 oncoprotein is necessary to inhibit cell cycle arrest in human epithelial cells. J. Virol. 2002, 76, 10559–10568. [Google Scholar] [CrossRef] [Green Version]
- Munger, K.; Baldwin, A.; Edwards, K.M.; Hayakawa, H.; Nguyen, C.L.; Owens, M.; Grace, M.; Huh, K. Mechanisms of Human Papillomavirus-induced oncogenesis. J. Virol. 2004, 78, 11451–11460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyono, T.; Foster, S.A.; Koop, J.I.; Mcdougall, J.K.; Galloway, D.A.; Klingelhutz, A.J. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998, 396, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Woodman, C.B.J.; Collins, S.I.; Young, L.S. The natural history of cervical HPV infection: Unresolved issues. Nat. Rev. Cancer 2007, 7, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Hoppe-Seyler, F.; Butz, K. Cellular control of Human Papillomavirus oncogene transcription. Mol. Carcinog. 1994, 10, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-C.; Chen, S.-L. The biochemical and biological functions of Human Papillomavirus Type 16 E5 protein. Arch. Virol. 2003, 148, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Crusius, K.; Rodriguez, I.; Alonso, A. The Human Papillomavirus type 16 E5 protein modulates ERK1/2 and p38 MAP kinase activation by an EGFR-independent process in stressed human keratinocytes. Virus Genes 2000, 20, 65–69. [Google Scholar] [CrossRef]
- Zhang, B.; Spandau, D.F.; Roman, A. E5 protein of Human Papillomavirus Type 16 protects human foreskin keratinocytes from UV B-irradiation-induced apoptosis. J. Virol. 2002, 76, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Alloul, N.; Sherman, L. Transcription-modulatory activities of differentially spliced cDNAs encoding the E2 protein of Human Papillomavirus Type 16. J. Gen. Virol. 1999, 80, 2461–2470. [Google Scholar] [CrossRef]
- Olmedo-Nieva, L.; Muñoz-Bello, J.; Contreras-Paredes, A.; Lizano, M. The role of E6 spliced isoforms (E6*) in Human Papillomavirus-induced carcinogenesis. Viruses 2018, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Pim, D.; Massimi, P.; Banks, L. Alternatively Spliced HPV-18 E6* Protein Inhibits E6 mediated degradation of P53 and suppresses transformed cell growth. Oncogene 1997, 15, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Williams, V.; Filippova, M.; Filippov, V.; Payne, K.; Duerksen-Hughes, P. Human Papillomavirus Type 16 E6* induces oxidative stress and DNA damage. J. Virol. 2014, 88, 6751–6761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajiro, M.; Zheng, Z. E6^E7, A novel splice isoform protein of Human Papillomavirus 16, stabilizes viral E6 And E7 oncoproteins via HSP90 and GRP78. mBio 2015, 6, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roos, P.; Orlando, P.; Fagerstrom, R.; Pepper, J. In North America, some ovarian cancers express the oncogenes of preventable Human Papillomavirus HPV-18. Sci. Rep. 2015, 5, 8645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilyk, O.O.; Pande, N.T.; Buchynska, L.G. Analysis of p53, p16ink4a, pRB and cyclin D1 expression and human papillomavirus in primary ovarian serous carcinomas. Exp. Oncol. 2011, 33, 150–156. [Google Scholar]
- Arfi, A.; Hequet, D.; Bataillon, G.; Tran-Perennou, C.; Farkhondeh, F.; Sastre-Garau, X.; Fourchotte, V.; Rouzier, R.; Laas, E.; Pouget, N.; et al. HPV DNA integration site as proof of the origin of ovarian metastasis from endocervical adenocarcinoma: Three case reports. BMC Cancer 2019, 19, 1–6. [Google Scholar] [CrossRef]
- Al-Shabanah, O.; Hafez, M.; Hassan, Z.; Sayed-Ahmed, M.; Abozeed, W.; Alsheikh, A.; Al-Rejaie, S. Methylation of Sfrps and APC genes in ovarian cancer infected with high risk Human Papillomavirus. Asian Pac. J. Cancer 2014, 15, 2719–2725. [Google Scholar] [CrossRef] [Green Version]
- Eckhardt, M.; Zhang, W.; Gross, A.; Von Dollen, J.; Johnson, J.; Franks-Skiba, K.; Swaney, D.; Johnson, T.; Jang, G.; Shah, P.; et al. Multiple routes to oncogenesis are promoted by the Human Papillomavirus–host protein network. Cancer Discov. 2018, 8, 1474–1489. [Google Scholar] [CrossRef] [Green Version]
- Brücher, B.L.; Lang, F.; Jamall, I.S. NF-κB signaling and crosstalk during carcinogenesis. 4Open 2019, 2, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Hemmat, N.; Bannazadeh-Baghi, H. Association of human papillomavirus infection and inflammation in cervical cancer. Pathog. Dis. 2019, 77, 1–36. [Google Scholar] [CrossRef]
- Morgan, E.L.; Macdonald, A. Autocrine STAT3 activation in HPV positive cervical cancer through a virus-driven Rac1-NFκB-IL-6 signalling axis. PLoS Pathog. 2019, 15, e1007835. [Google Scholar] [CrossRef] [Green Version]
- Kemp, T.J.; Hildesheim, A.; García-Piñeres, A.; Williams, M.C.; Shearer, G.M.; Rodriguez, A.C.; Schiffman, M.; Burk, R.; Freer, E.; Bonilla, J.; et al. Elevated systemic levels of inflammatory cytokines in older women with persistent cervical Human Papillomavirus infection. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1954–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olive, V.; Li, Q.; He, L. Mir-17-92: A polycistronic oncomir with pleiotropic functions. Immunol. Rev. 2013, 253, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honegger, A.; Schilling, D.; Bastian, S.; Sponagel, J.; Kuryshev, V.; Sültmann, H.; Scheffner, M.; Hoppe-Seyler, K.; Hoppe-Seyler, F. Dependence of intracellular and exosomal micrornas on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog. 2015, 11, e1004712. [Google Scholar] [CrossRef] [PubMed]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.; Lötvall, J. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spurgeon, M.; den Boon, J.; Horswill, M.; Barthakur, S.; Forouzan, O.; Rader, J.; Beebe, D.; Roopra, A.; Ahlquist, P.; Lambert, P. Human Papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen. Proc. Natl. Acad. Sci. USA 2017, 114, 9076–9085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, S.; Wiedmeyer, K.; Shai, A.; Korach, K.; Lambert, P. requirement for estrogen receptor in a mouse model for Human Papillomavirus-associated cervical cancer. Cancer Res. 2008, 68, 9928–9934. [Google Scholar] [CrossRef] [Green Version]
- Brake, T.; Lambert, P. Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a Human Papillomavirus-transgenic mouse model. Proc. Natl. Acad. Sci. USA 2005, 102, 2490–2495. [Google Scholar] [CrossRef] [Green Version]
- Glace, L.; Grygielko, E.; Boyle, R.; Wang, Q.; Laping, N.; Sulpizio, A.; Bray, J. Estrogen-induced Stromal cell-Derived Factor-1 (SDF-1/Cxcl12) expression is repressed by progesterone and by selective estrogen receptor modulators via estrogen receptor α in rat uterine cells and tissues. Steroids 2009, 74, 1015–1024. [Google Scholar] [CrossRef]
- Bolitho, C.; Hahn, M.; Baxter, R.; Marsh, D. The chemokine CXCL1 induces proliferation in epithelial ovarian cancer cells by transactivation of the epidermal growth factor receptor. Endocr. Relat. Cancer 2010, 17, 929–940. [Google Scholar] [CrossRef] [Green Version]
- Hahn, W.C. Immortalization and transformation of human cells. Mol. Cells 2002, 13, 351–361. [Google Scholar]
- Jin, Y.; Zhang, H.; Tsao, S.W.; Jin, C.; Lv, M.; Strömbeck, B.; Wiegant, J.; Wan, T.S.; Yuen, P.W.; Kwong, Y.L. Cytogenetic and molecular genetic characterization of immortalized human ovarian surface epithelial cell lines: Consistent loss of chromosome 13 and amplification of chromosome 20. Gynecol. Oncol. 2004, 92, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Tsao, S.W.; Wong, N.; Wang, X.; Liu, Y.; Wan, T.S.; Fung, L.F.; Lancaster, W.D.; Gregoire, L.; Wong, Y.C. Nonrandom chromosomal imbalances in human ovarian surface epithelial cells immortalized by HPV16-E6E7 viral oncogenes. Cancer Genet. Cytogenet. 2001, 130, 141–149. [Google Scholar] [CrossRef]
- Gisselsson, D.; Lv, M.; Tsao, S.W.; Man, C.; Jin, C.; Höglund, M.; Kwong, Y.L.; Jin, Y. Telomere-mediated mitotic disturbances in immortalized ovarian epithelial cells reproduce chromosomal losses and breakpoints from ovarian carcinoma. Genes Chromosomes Cancer 2005, 42, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.M.; Man, C.; Jin, Y.; Jin, C.; Guan, X.Y.; Wang, Q.; Wan, T.S.; Cheung, A.L.; Tsao, S.W. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells. Mol. Carcinog. 2005, 43, 165–174. [Google Scholar] [CrossRef]
- Gregoire, L.; Rabah, R.; Schmelz, E.M.; Munkarah, A.; Roberts, P.C.; Lancaster, W.D. Spontaneous malignant transformation of human ovarian surface epithelial cells in vitro. Clin. Cancer Res. 2001, 7, 4280–4287. [Google Scholar]
- Chung, Y.; Nagy, E.; Zietkowski, D.; Payne, G.; Phillips, D.; de Souza, N. Molecular and metabolic consequences following E6 transfection in an isogenic ovarian cell line (A2780) pair. Cell. Physiol. Biochem. 2013, 32, 1460–1472. [Google Scholar] [CrossRef]
- Cannon, M.; Schmid, D.; Hyde, T. Review of Cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol. 2010, 20, 202–213. [Google Scholar] [CrossRef]
- Harkins, L.; Volk, A.; Samanta, M.; Mikolaenko, I.; Britt, W.; Bland, K.; Cobbs, C. Specific localisation of Human Cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 2002, 360, 1557–1563. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, J.; Chen, C.; Chou, T.; Chen, Y.; Chang, Y.; Lin, S.; Chan, C.; Yang, C.; Lin, C.; et al. Human Cytomegalovirus preferentially infects the neoplastic epithelium of colorectal cancer: A quantitative and histological analysis. J. Clin. Virol. 2012, 54, 240–244. [Google Scholar] [CrossRef]
- Cobbs, C.S.; Harkins, L.; Samanta, M.; Gillespie, G.Y.; Bharara, S.; King, P.H.; Nabors, L.B.; Cobbs, C.G.; Britt, W.J. Human Cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 2002, 62, 3347–3350. [Google Scholar]
- Sanford, E.; Geder, L.; Laychock, A.; Rohner, T.; Rapp, F. Evidence For the association of Cytomegalovirus with carcinoma of the prostate. J. Urol. 1977, 118, 789–792. [Google Scholar] [CrossRef]
- Samanta, M.; Harkins, L.; Klemm, K.; Britt, W.; Cobbs, C. High prevalence of Human Cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J. Urol. 2003, 170, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Pacsa, A.; Kummerländer, L.; Pejtsik, B.; Pali, K. Herpesvirus antibodies and antigens in patients with cervical anaplasia and in controls 2. J. Natl. Cancer Inst. 1975, 55, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Harkins, L.; Matlaf, L.; Soroceanu, L.; Klemm, K.; Britt, W.; Wang, W.; Bland, K.; Cobbs, C. Detection of Human Cytomegalovirus in normal and neoplastic breast epithelium. Herpesviridae 2010, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Yan, Q.; Wang, Z.; Chen, X.; Zhang, X.; Guo, Y.; Li, J. Human Cytomegalovirus in neoplastic cells of Epstein-Barr Virus negative Hodgkin´s disease. Int. J. Oncol. 2002, 21, 31–36. [Google Scholar]
- Michaelis, M.; Doerr, H.; Cinatl, J. The story of Human Cytomegalovirus and cancer: Increasing evidence and open questions. Neoplasia 2009, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cobbs, C. Cytomegalovirus is a tumor-associated virus: Armed and dangerous. Curr. Opin. Virol. 2019, 39, 49–59. [Google Scholar] [CrossRef]
- Herbein, G. The Human Cytomegalovirus, from oncomodulation to oncogenesis. Viruses 2018, 10, 408. [Google Scholar] [CrossRef] [Green Version]
- Hume, A.; Finkel, J.; Kamil, J.; Coen, D.; Culbertson, M.; Kalejta, R. Phosphorylation of retinoblastoma protein by viral protein with cyclin-dependent kinase function. Science 2008, 320, 797–799. [Google Scholar] [CrossRef]
- Cinatl, J.; Vogel, J.; Kotchetkov, R.; Wilhelm Doerr, H. Oncomodulatory signals by regulatory proteins encoded by Human Cytomegalovirus: A novel role for viral infection in tumor progression. FEMS Microbiol. Rev. 2004, 28, 59–77. [Google Scholar] [CrossRef] [Green Version]
- Söderberg-Naucler, C. Does Cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J. Int. Med. 2006, 259, 219–246. [Google Scholar] [CrossRef]
- Caposio, P.; Orloff, S.; Streblow, D. The role of Cytomegalovirus in angiogenesis. Virus Res. 2011, 157, 204–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yurochko, A.D.; Kowalik, T.F.; Huong, S.M.; Huang, E.S. Human cytomegalovirus upregulates NF-kappa B activity by transactivating the NF-kappa B p105/p50 and p65 promoters. J. Virol. 1995, 69, 5391–5400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Sánchez, I.; Munger, J. Meal for two: Human Cytomegalovirus-induced activation of cellular metabolism. Viruses 2019, 11, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Tripathy, M.; Pasquereau, S.; Al Moussawi, F.; Abbas, W.; Coquard, L.; Khan, K.; Russo, L.; Algros, M.; Valmary-Degano, S.; et al. The Human Cytomegalovirus strain db activates oncogenic pathways in mammary epithelial cells. EBioMedicine 2018, 30, 167–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberstein, A.; Shenk, T. cellular responses to Human Cytomegalovirus infection: Induction of a mesenchymal-to-epithelial transition (MET) phenotype. Proc. Natl. Acad. Sci. USA 2017, 114, E8244–E8253. [Google Scholar] [CrossRef] [Green Version]
- Hargett, D.; Shenk, T. Experimental Human Cytomegalovirus latency in CD14+ monocytes. Proc. Natl. Acad. Sci. USA 2010, 107, 20039–20044. [Google Scholar] [CrossRef] [Green Version]
- Reeves, M.; Compton, T. Inhibition of inflammatory Interleukin-6 activity via extracellular signal-regulated kinase-mitogen-activated protein kinase signaling antagonizes Human Cytomegalovirus reactivation from dendritic cells. J. Virol. 2011, 85, 12750–12758. [Google Scholar] [CrossRef] [Green Version]
- Slinger, E.; Maussang, D.; Schreiber, A.; Siderius, M.; Rahbar, A.; Fraile-Ramos, A.; Lira, S.A.; Söderberg-Nauclér, C.; Smit, M.J. HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6–STAT3 axis. Sci. Signal. 2010, 3, ra58. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, Q.; Cheung, K.; Kang, W.; Lung, R.; Tong, J.; To, K.; Sung, J.; Yu, J. Genome-wide identification of Epstein-Barr virus-driven promoter methylation profiles of human genes in gastric cancer cells. Cancer 2012, 119, 304–312. [Google Scholar] [CrossRef]
- Marquitz, A.; Mathur, A.; Shair, K.; Raab-Traub, N. Infection of Epstein-Barr virus in a gastric carcinoma cell line induces anchorage independence and global changes in gene expression. Proc. Natl. Acad. Sci. USA 2012, 109, 9593–9598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littman, A.; Rossing, M.; Madeleine, M.; Tang, M.; Yasui, Y. Association between late age at infectious mononucleosis, Epstein-Barr virus antibodies, and ovarian cancer risk. Scand. J. Infect. Dis. 2003, 35, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, K.; Das, P.; Chattopadhyay, N.R.; Mal, S.; Choudhuri, T. The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon 2019, 5, e02624. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Han, Y.; Kim, S.I.; Kim, H.S.; Kim, S.J.; Song, Y.S. Tumor evolution and chemoresistance in ovarian cancer. NPJ Precis. Oncol. 2018, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Paijens, S.T.; Leffers, N.; Daemen, T.; Helfrich, W.; Boezen, H.M.; Cohlen, B.J.; Melief, C.J.; de Bruyn, M.; Nijman, H.W. Antigen-specific active immunotherapy for ovarian cancer. Cochrane Database Syst. Rev. 2018, 9, CD007287. [Google Scholar] [CrossRef] [Green Version]
- O’Cearbhaill, R.E.; Ragupathi, G.; Zhu, J.; Wan, Q.; Mironov, S.; Yang, G.; Spassova, M.K.; Iasonos, A.; Kravetz, S.; Ouerfelli, O.; et al. A phase I study of unimolecular pentavalent (Globo-H-GM2-sTn-TF-Tn) immunization of patients with epithelial ovarian, fallopian tube, or peritoneal cancer in first remission. Cancers 2016, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Lizotte, P.H.; Wen, A.M.; Sheen, M.R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N.F.; Fiering, S. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol. 2016, 11, 295–303. [Google Scholar] [CrossRef]
- Schuessler, A.; Smith, C.; Beagley, L.; Boyle, G.M.; Rehan, S.; Matthews, K.; Jones, L.; Crough, T.; Dasari, V.; Klein, K.; et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014, 74, 3466–3476. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.K.; Sampson, J.H.; Mitchell, D.A. Immunological targeting of cytomegalovirus for glioblastoma therapy. Oncoimmunology 2014, 3, e29289. [Google Scholar] [CrossRef]
- Gao, P.; Lazare, C.; Cao, C.; Meng, Y.; Wu, P.; Zhi, W.; Lin, S.; Wei, J.; Huang, X.; Xi, L.; et al. Immune checkpoint inhibitors in the treatment of virus-associated cancers. J. Hematol. Oncol. 2019, 12, 58. [Google Scholar] [CrossRef] [Green Version]
Histology of Tumors a | Prevalence; n (%) | Virus | Detection Method | Reference | Year |
---|---|---|---|---|---|
Epithelial ovarian adenocarcinoma, Epithelial ovarian tumor of low malignant potential, Epithelial ovarian adenoma | 0/18 (0) | HPV6, 16, 18, 31, 35 | Southern hybridization | Leake, J. F.; et al. [57] | 1989 |
HPV6, 11 | PCR | ||||
Serous OC | 1/7 (14.28) | HPV16, 18 | PCR (E6 gene), Southern hybridization | Lai, C. H.; et al. [58] | 1992 |
Mucinous OC | 1/3 (33.3) | ||||
Mixed (serous+mucinous OC) | 1/1 (100) | HPV18 | |||
Serous, Endometrioid, Mixed Undifferentiated, Clear cell, Malignant mixed Mullerian tumor with heterologous elements | 0/28 | HPV16, 18 | PCR (L1 and E6 genes), dot blot | Runnebaum, I. B.; et al. [59] | 1995 |
Serous, Mucinous, Endometrioid, Clear cell, Brenner, Mixed epithelial, Unclassified epithelial | 0/98 | LR-HPV types (6, 11, 42, 44, 51, 53, 54, 55, 67, 68, 70) and HR-HPV types (16, 18, 31, 33, 35, 39, 45, 51, 52, 54, 56, 58, 66) | PCR (L1 gene), ISH | Anttila, M.; et al. [60] | 1999 |
EOC | 26/50 (52) 18/50 (36) | HPV16 | ISH (E6 gene) IHC (E6) | Wu, Q. J.; et al. [61] | 2003 |
Malignant ovarian tumor | 15/40 (37.5) | Not specified | ISH, IHC | Kuscu, E.; et al. [62] | 2005 |
Benign ovarian tumor | 9/32 (28.1) | ||||
Serous cystadenocarcinoma | 8/76 (10.5) | HPV16, 33 | PCR (L1 gene); DNA sequencing | Atalay, F.; et al. [63] | 2007 |
Epithelial ovarian neoplasms | 3/71 (4.2) | Not specified | PCR (L1 gene) | Giordano, G.; et al. [64] | 2008 |
Serous adenocarcinoma | 3/12 (25) | HPV6 | Nested PCR (E6 and E7 genes) | Shanmughapriya, S.; et al. [65] | 2012 |
Mucinous adenocarcinoma | 0/6 (0) | ||||
Endometrioid adenocarcinoma | 3/6 (50) | ||||
Borderline serous OC | 6/6 (100) | ||||
Serous OC | 2/35 (5.7) | HPV16 | PCR (L1 gene); DNA sequencing | Malisic, E.; et al. [66] | 2012 |
Mucinous OC | 1/2 (50) | ||||
Endometrioid carcinoma | 1/7 (14.28) | ||||
Ovarian carcinoma | 42/100 (42) | HPV16, 18, 45 | Nested PCR (L1 gene; DNA sequencing | Al-Shabanah, O. A.; et al. [67] | 2013 |
Non-cancerous tissue surrounding tumor | 8/100 (8) | HPV6, 11 | |||
EOC | 2/20 (10) | HPV16 | PCR (E6 gene) | Bilyk, O. O.; et al. [68] | 2014 |
2/20 (10) | HPV18 | ||||
4/20 (20) | HPV16/18 | ||||
Serous, Endometrioid, Mucinous, Clear-cell | 1/191 (0.52) | HPV18 | qRT-PCR (E6/E7 genes) | Ingerslev, K.; et al. [69] | 2016 |
EOC | 5/100 (5) 4/100 (4) 1/100 (1) | HPV16 HPV18 HPV33 | Nested PCR (L1 gene); DNA sequencing | Hassan, Z. K.; et al. [70] | 2017 |
EOC | 40/99 (40.4) | HPV2, 4, 5, 6b, 7, 10, 16, 18, 32, 48, 49, 50, 60, 54, 92, 96, 101, 128, 129, 131, 132 | Microarray-based method, PathoChip Array | Banerjee, S.; et al. [56] | 2017 |
Non-cancerous tissue surrounding tumor | 20/20 (100) | HPV41, 88, 53, 103 | |||
EOC | 19/27 (70.4) 2/27 (7.4) 1/27 (3.7) | HPV16 HPV6 HPV45 | Nested PCR (E6 gene); DNA sequencing | Paradowska, E.; et al. [71] | 2019 |
Metastatic ovarian tumors | 4/ 4 (100) | HPV16 | |||
Benign ovarian tumors | 2/8 (25) | ||||
Serous adenocarcinoma | 6/12 (50) | CMV | Nested PCR (UL55 gene) | Shanmughapriya, S.; et al. [65] | 2012 |
Mucinous adenocarcinoma | 3/6 (50) | ||||
Endometrioid adenocarcinoma | 3/6 (50) | ||||
Borderline serous OC | 3/6 (50) | ||||
Serous adenocarcinoma and other histotypes | 34/45 (75.5) | CMV (IE) | IHC (IE and pp65) | Rådestad et al. [72] | 2018 |
11/42 (26.2) | CMV (pp65) | ||||
Benign ovarian cystadenoma | 20/30 (67) | CMV (IE) | |||
4/29 (14) | CMV (pp65) | ||||
HGSOC with prechemotherapy | 8/10 (80) | CMV (IE) | IHC (IE and pp65), ISH (DNA ß2.7) | Carlson et al. [73] | 2018 |
4/10 (40) | CMV (pp65) | ||||
3/3 (100) | CMV (DNA) | ||||
HGSOC with neoadjuvant chemotherapy | 4/9 (44) | CMV (IE) | |||
5/8 (62.5) | CMV (pp65) | ||||
5/5 (100) | CMV (DNA) | ||||
EOC Metastatic ovarian tumors Benign ovarian tumors | 19/27 (70.4) 4/4 (100) 0/8 (0) | CMV | Nested-PCR (US28 gene), DNA sequencing | Paradowska, E.; et al. [71] | 2019 |
Serous, mucinous, and endometrioid adenocarcinomas, clear–cell carcinomas | 1/191 (0.5) | CMV | qRT-PCR, DNA sequencing | Ingerslev, K.; et al [74] | 2019 |
Ovarian serous cystadenocarcinoma | 0/419 (0) | EBV | RNA-Seq | Khoury, J.; et al. [75] | 2013 |
Serous OC | 38/487 (7.8) | EBV | miRNA expression, qRT-PCR | Pandya, D.; et al. [76] | 2014 |
EOC | 0/27 (0) | EBV | qRT-PCR, nested PCR | Paradowska, E.; et al. [71] | 2019 |
Serous, mucinous, and endometrioid adenocarcinomas, clear–cell carcinomas | 10/191 (5.2) | EBV | qRT-PCR, DNA sequencing, ISH | Ingerslev, K.; et al [74] | 2019 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathak, S.; Wilczyński, J.R.; Paradowska, E. Factors in Oncogenesis: Viral Infections in Ovarian Cancer. Cancers 2020, 12, 561. https://doi.org/10.3390/cancers12030561
Pathak S, Wilczyński JR, Paradowska E. Factors in Oncogenesis: Viral Infections in Ovarian Cancer. Cancers. 2020; 12(3):561. https://doi.org/10.3390/cancers12030561
Chicago/Turabian StylePathak, Sudipta, Jacek R. Wilczyński, and Edyta Paradowska. 2020. "Factors in Oncogenesis: Viral Infections in Ovarian Cancer" Cancers 12, no. 3: 561. https://doi.org/10.3390/cancers12030561
APA StylePathak, S., Wilczyński, J. R., & Paradowska, E. (2020). Factors in Oncogenesis: Viral Infections in Ovarian Cancer. Cancers, 12(3), 561. https://doi.org/10.3390/cancers12030561