CUL4A, ERCC5, and ERCC1 as Predictive Factors for Trabectedin Efficacy in Advanced Soft Tissue Sarcomas (STS): A Spanish Group for Sarcoma Research (GEIS) Study
Abstract
:1. Introduction
2. Results
2.1. Demographic and Pathologic Features
2.2. Expression of DDR-Associated Genes in STS Samples
2.3. Association of BRCA1, CUL4A, ERCC1, and ERCC5 with Clinical Outcome
2.4. CUL4A Protein Expression Analysis
2.5. In Vitro Correlation between Gene Expression and Trabectedin Sensitivity
3. Discussion
4. Methods
4.1. Patients
4.2. Gene Expression of Tumour Samples
4.3. Immunohistochemistry
4.4. Cell Lines
4.5. Determination of Trabectedin IC50 Values
4.6. Gene Expression Determination in Cell Lines
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Minuzzo, M.; Marchini, S.; Broggini, M.; Faircloth, G.; D’Incalci, M.; Mantovani, R. Interference of transcriptional activation by the antineoplastic drug ecteinascidin-743. Proc. Natl. Acad. Sci. USA 2000, 97, 6780–6784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, A.K.; Galmarini, C.M.; D’Incalci, M. Unique features of trabectedin mechanism of action. Cancer Chemother. Pharmacol. 2016, 77, 663–671. [Google Scholar] [CrossRef] [PubMed]
- D’Incalci, M.; Galmarini, C.M. A Review of Trabectedin (ET-743): A Unique Mechanism of Action. Mol. Cancer Ther. 2010, 9, 2157–2163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takebayashi, Y.; Pourquier, P.; Zimonjic, D.B.; Nakayama, K.; Emmert, S.; Ueda, T.; Urasaki, Y.; Kanzaki, A.; Akiyama, S.I.; Popescu, N.; et al. Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nat. Med. 2001, 7, 961–966. [Google Scholar] [CrossRef]
- Tercero, J.C.; Jimeno, J.; Martinez, N.; Montes-Moreno, S.; Rodriguez-Pinilla, S.M.; Sanchez-Beato, M. Predicting sarcoma-patients response to trabectedin treatment with molecular markers detected by immunohistochemistry. Clin. Cancer Res. 2008, 14, B8. [Google Scholar]
- El Bairi, K.; Atanasov, A.G.; Amrani, M.; Afqir, S. The arrival of predictive biomarkers for monitoring therapy response to natural compounds in cancer drug discovery. Biomed. Pharmacother. 2019, 109, 2492–2498. [Google Scholar] [CrossRef]
- Broto, J.M.; Fernandez-Serra, A.; Lopez-Pousa, A.; Gutierrez, A.; Penas, R.D.L.; Martinez-Trufero, J.; Cruz, J.; Alvarez, R.M.; Cubedo, R.; Redondo, A.; et al. CUL4A and ERCC1 genesas predictive factors for trabectedin efficacy in advanced soft tissue sarcomas (STS): A Spanish Group for Sarcoma Research (GEIS) study. J. Clin. Oncol. 2016, 34, 11048. [Google Scholar] [CrossRef]
- Italiano, A.; Laurand, A.; Laroche, A.; Casali, P.; Sanfilippo, R.; Le Cesne, A.; Judson, I.; Blay, J.Y.; Ray-Coquard, I.; Bui, B.; et al. ERCC5/XPG, ERCC1, and BRCA1 gene status and clinical benefit of trabectedin in patients with soft tissue sarcoma. Cancer 2011, 117, 3445–3456. [Google Scholar] [CrossRef]
- Schoffski, P.; Taron, M.; Jimeno, J.; Grosso, F.; Sanfilipio, R.; Casali, P.G.; Le Cesne, A.; Jones, R.L.; Blay, J.Y.; Poveda, A.; et al. Predictive impact of DNA repair functionality on clinical outcome of advanced sarcoma patients treated with trabectedin: A retrospective multicentric study. Eur. J. Cancer (Oxf. Engl. 1990) 2011, 47, 1006–1012. [Google Scholar] [CrossRef]
- Massuti, B.; Cobo, M.; Camps, C.; Domine, M.; Provencio, M.; Alberola, V.; Vinolas, N.; Rosell, R.; Taron, M.; Gutierrez-Calderon, V.; et al. Trabectedin in patients with advanced non-small-cell lung cancer (NSCLC) with XPG and/or ERCC1 overexpression and BRCA1 underexpression and pretreated with platinum. Lung Cancer (Amst. Neth.) 2012, 76, 354–361. [Google Scholar] [CrossRef]
- Damia, G.; Silvestri, S.; Carrassa, L.; Filiberti, L.; Faircloth, G.T.; Liberi, G.; Foiani, M.; D’Incalci, M. Unique pattern of ET-743 activity in different cellular systems with defined deficiencies in DNA-repair pathways. Int. J. Cancer 2001, 92, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Ávila-Arroyo, S.; Nuñez, G.S.; García-Fernández, L.F.; Galmarini, C.M. Synergistic Effect of Trabectedin and Olaparib Combination Regimen in Breast Cancer Cell Lines. J. Breast Cancer 2015, 18, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Iovine, B.; Iannella, M.L.; Bevilacqua, M.A. Damage-specific DNA binding protein 1 (DDB1): A protein with a wide range of functions. Int. J. Biochem. Cell Biol. 2011, 43, 1664–1667. [Google Scholar] [CrossRef]
- Wang, Q.E.; Zhu, Q.; Wani, G.; Chen, J.; Wani, A.A. UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2. Carcinogenesis 2004, 25, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Fitch, M.E.; Cross, I.V.; Turner, S.J.; Adimoolam, S.; Lin, C.X.; Williams, K.G.; Ford, J.M. The DDB2 nucleotide excision repair gene product p48 enhances global genomic repair in p53 deficient human fibroblasts. Dna Repair 2003, 2, 819–826. [Google Scholar] [CrossRef]
- Garcia, M.J.; Saucedo-Cuevas, L.P.; Munoz-Repeto, I.; Fernandez, V.; Robles, M.J.; Domingo, S.; Palacios, J.; Aracil, M.; Nieto, A.; Tercero, J.C.; et al. Analysis of DNA repair-related genes in breast cancer reveals CUL4A ubiquitin ligase as a novel biomarker of trabectedin response. Mol. Cancer Ther. 2013, 12, 530–541. [Google Scholar] [CrossRef] [Green Version]
- D’Incalci, M.; Zambelli, A. Trabectedin for the treatment of breast cancer. Expert Opin. Investig. Drugs 2016, 25, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Laroche, A.; Chaire, V.; Le Loarer, F.; Algéo, M.P.; Rey, C.; Tran, K.; Lucchesi, C.; Italiano, A. Activity of trabectedin and the PARP inhibitor rucaparib in soft-tissue sarcomas. J. Hematol. Oncol. 2017, 10. [Google Scholar] [CrossRef] [PubMed]
- Martin-Broto, J.; Pousa, A.L.; de Las Penas, R.; Garcia Del Muro, X.; Gutierrez, A.; Martinez-Trufero, J.; Cruz, J.; Alvarez, R.; Cubedo, R.; Redondo, A.; et al. Randomized Phase II Study of Trabectedin and Doxorubicin Compared With Doxorubicin Alone as First-Line Treatment in Patients With Advanced Soft Tissue Sarcomas: A Spanish Group for Research on Sarcoma Study. J. Clin. Oncol. 2016, 34, 2294–2302. [Google Scholar] [CrossRef] [PubMed]
- Le Cesne, A.; Blay, J.Y.; Judson, I.; Van Oosterom, A.; Verweij, J.; Radford, J.; Lorigan, P.; Rodenhuis, S.; Ray-Coquard, I.; Bonvalot, S.; et al. Phase II study of ET-743 in advanced soft tissue sarcomas: A European Organisation for the Research and Treatment of Cancer (EORTC) soft tissue and bone sarcoma group trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Demetri, G.D.; Chawla, S.P.; von Mehren, M.; Ritch, P.; Baker, L.H.; Blay, J.Y.; Hande, K.R.; Keohan, M.L.; Samuels, B.L.; Schuetze, S.; et al. Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: Results of a randomized phase II study of two different schedules. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 4188–4196. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.L.; Demetri, G.D.; Schuetze, S.M.; Milhem, M.; Elias, A.; Van Tine, B.A.; Hamm, J.; McCarthy, S.; Wang, G.; Parekh, T.; et al. Efficacy and tolerability of trabectedin in elderly patients with sarcoma: Subgroup analysis from a phase III, randomized controlled study of trabectedin or dacarbazine in patients with advanced liposarcoma or leiomyosarcoma. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, 1995–2002. [Google Scholar] [CrossRef] [PubMed]
- D’Incalci, M.; Badri, N.; Galmarini, C.M.; Allavena, P. Trabectedin, a drug acting on both cancer cells and the tumour microenvironment. Br. J. Cancer 2014, 111, 646–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodowicz, T. Trabectedin in soft tissue sarcomas. Future Oncol. 2014, 10, s1–s5. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, G.; Wang, Q.; Wen, M.; Xu, Y.; He, X.; Zhang, P.; Wang, Y.; Yang, T.; Zhan, P.; et al. Involvement of CUL4A in regulation of multidrug resistance to P-gp substrate drugs in breast cancer cells. Molecules 2013, 19, 159–176. [Google Scholar] [CrossRef] [Green Version]
- Martin-Broto, J.; Gutierrez, A.M.; Ramos, R.F.; Lopez-Guerrero, J.A.; Ferrari, S.; Stacchiotti, S.; Picci, P.; Calabuig, S.; Collini, P.; Gambarotti, M.; et al. MRP1 overexpression determines poor prognosis in prospectively treated patients with localized high-risk soft tissue sarcoma of limbs and trunk wall: An ISG/GEIS study. Mol. Cancer Ther. 2014, 13, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Villar, V.H.; Vogler, O.; Martinez-Serra, J.; Ramos, R.; Calabuig-Farinas, S.; Gutierrez, A.; Barcelo, F.; Martin-Broto, J.; Alemany, R. Nilotinib counteracts P-glycoprotein-mediated multidrug resistance and synergizes the antitumoral effect of doxorubicin in soft tissue sarcomas. PLoS ONE 2012, 7, e37735. [Google Scholar] [CrossRef]
- Hannah, J.; Zhou, P. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene 2015, 573, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Bret, C.; Klein, B.; Moreaux, J. Nucleotide excision DNA repair pathway as a therapeutic target in patients with high-risk diffuse large B cell lymphoma. Cell Cycle (Georget. Tex.) 2013, 12, 1811–1812. [Google Scholar] [CrossRef] [Green Version]
- Saffi, J.; Agnoletto, M.H.; Guecheva, T.N.; Batista, L.F.Z.; Carvalho, H.; Henriques, J.A.P.; Stary, A.; Menck, C.F.M.; Sarasin, A. Effect of the anti-neoplastic drug doxorubicin on XPD-mutated DNA repair-deficient human cells. Dna Repair 2010, 9, 40–47. [Google Scholar] [CrossRef]
- Sun, S.; Osterman, M.D.; Li, M. Tissue specificity of DNA damage response and tumorigenesis. Cancer Biol. Med. 2019, 16, 396–414. [Google Scholar] [CrossRef] [PubMed]
- Broto, J.M.; Lopez-Pousa, A.; Ramos, R.; Gronchi, A.; Casali, P.G.; Gutierrez, A.; Picci, P.; Ferrari, S.; Cruz, J.; Fra, P.L.; et al. Relationship of CUL4A gene underexpression and prognosis in localized high-risk soft tissue sarcoma (STS) patients of limbs or trunk wall. J. Clin. Oncol. 2012, 30, 10079. [Google Scholar] [CrossRef]
- Kane, J.M., 3rd; Magliocco, A.; Zhang, Q.; Wang, D.; Klimowicz, A.; Harris, J.; Simko, J.; DeLaney, T.; Kraybill, W.; Kirsch, D.G. Correlation of High-Risk Soft Tissue Sarcoma Biomarker Expression Patterns with Outcome following Neoadjuvant Chemoradiation. Sarcoma 2018, 2018, 8310950. [Google Scholar] [CrossRef] [PubMed]
- Hindi, N.; Ramos, R.; Martinez-Trufero, J.; Alvarez, R.M.A.; Cordeiro, M.; Sande, L.M.G.d.; Marquina, G.; Cano, J.M.; Cruz, J.; Morales, C.M.V.; et al. Prognostic role of HMG proteins in a series of 301 advanced soft tissue sarcoma patients: A Spanish Group for Sarcoma Research Study (GEIS). J. Clin. Oncol. 2018, 36, 11573. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San. Diegocalif.) 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Groisman, R.; Polanowska, J.; Kuraoka, I.; Sawada, J.-i.; Saijo, M.; Drapkin, R.; Kisselev, A.F.; Tanaka, K.; Nakatani, Y. The Ubiquitin Ligase Activity in the DDB2 and CSA Complexes Is Differentially Regulated by the COP9 Signalosome in Response to DNA Damage. Cell 2003, 113, 357–367. [Google Scholar] [CrossRef] [Green Version]
Median Age (Range) | 52 (21–72) |
---|---|
Sex: | |
Female | 31 (47%) |
Male | 35 (53%) |
Median tumor Size (mm) (Range) | 90 (2–300) |
Histological Grade: | |
1 | 10 (15.6%) |
2 | 18 (28.1%) |
3 | 36 (56.3%) |
Primary tumor site | |
Extremity | 25 (38.4%) |
Head and neck | 2 (3.1%) |
Trunk wall | 3 (4.6%) |
Retroperitoneum | 15 (23.1%) |
Others | 20 (30.8%) |
Disease type | |
Localized | 38 (62.3%) |
Metastatic | 23 (37.7%) |
Sarcoma subtypes: | |
Leiomyosarcoma | 22 (33.3%) |
Liposarcoma | 12 (18.1%) |
UPS * | 12 (18.1%) |
Fibrosarcoma | 4 (6.1%) |
Haemangiopericytoma | 3 (4.6%) |
MPNST ** | 3 (4.6%) |
Synovial Sarcoma | 3 (4.6%) |
Others *** | 7 (10.6%) |
Experimental Arm | |
Doxorubicin | 34 (51.5%) |
Doxorubicin plus Trabectedin | 32 (48.5%) |
Gene | Median Expression 1 in Whole Series (Range) | Median Expression 1 in Control Arm (Range) | Median Expression 1 in Experimental Arm (Range) |
---|---|---|---|
BRCA1 (n = 64) | 0.52 (0.04–3.75) | 0.47 (0.08–2.97) | 0.59 (0.04–3.75) |
CUL4A (n = 65) | 1.31 (0.10–31.07) | 1.20 (0.24–7.79) | 1.46 (0.10–31.07) |
ERCC1 (n = 64) | 1.18 (0.11–10.82) | 1.14 (0.16–7.70) | 1.22 (0.11–10.82) |
ERCC5 (n = 66) | 0.37 (0.01–7.07) | 0.37 (0.02–1.45) | 0.39 (0.01–7.07) |
Whole Series 1 | ||||
---|---|---|---|---|
Biomarker | Median PFS (Months) (95% CI) | p | Median OS (Months) (95% CI) | p |
BRCA1 (n = 64) | 0.902 | 0.684 | ||
Below median (n = 32) | 4.60 (0.00–9.22) | 22.47 (4.43–40.51) | ||
Above median (n = 32) | 5.70 (3.02–8.38) | 17.47 (12.15–22.78) | ||
CUL4A (n = 65) | 0.173 | 0.343 | ||
Below median (n = 33) | 4.60 (0.25–8.95) | 14.03 (4.68–23.39) | ||
Above median (n = 32) | 5.50 (2.17–8.83) | 21.83 (11.62–32.05) | ||
ERCC1 (n = 64) | 0.696 | 0.406 | ||
Below median (n = 32) | 3.73 (0.30–7.23) | 17.47 (2.99–31.94) | ||
Above median (n = 32) | 5.50 (2.87–8.13) | 17.97 (10.75–25.18) | ||
ERCC5 (n = 66) | 0.559 | 0.593 | ||
Below median (n = 33) | 4.60 (1.15–8.05) | 17.97 (6.89–29.04) | ||
Above median (n = 33) | 5.97 (1.99–9.94) | 17.47 (7.38–27.56) | ||
Control Group 2 | ||||
Biomarker | Median PFS (months) (95% CI) | p | Median OS (months) (95% CI) | p |
BRCA1 (n = 34) | 0.642 | 0.406 | ||
Below median (n = 17) | 5.43 (1.18–9.69) | 8.73 (-) | ||
Above median (n = 17) | 6.03 (0.12–11.95) | 17.97 (11.16–24.77) | ||
CUL4A (n = 33) | 0.626 | 0.994 | ||
Below median (n = 16) | 4.60 (0.00–12.70) | - | ||
Above median (n = 17) | 5.50 (0.97–10.03) | 15.10 (7.41–22.79) | ||
ERCC1 (n = 32) | 0.321 | 0.871 | ||
Below median (n = 16) | 6.93 (3.80–10.07) | 27.03 (0.00–61.26) | ||
Above median (n = 16) | 2.53 (0.18–4.89) | 13.73 (9.96–17.51) | ||
ERCC5 (n = 34) | 0.515 | 0.746 | ||
Below median (n = 17) | 6.93 (4.78–9.09) | - | ||
Above median (n = 17) | 2.60 (0.00–8.02) | 13.73 (9.51–17.96) | ||
Experimental Group 3 | ||||
Biomarker | Median PFS (months) (95% CI) | p | Median OS (months) (95% CI) | p |
BRCA1 (n = 30) | 0.420 | 0.608 | ||
Below median (n = 15) | 1.70 (0.00–4.02) | 14.23 (13.22–15.24) | ||
Above median (n = 15) | 5.70 (0.87–10.54) | 21.07 (10.37–31.77) | ||
CUL4A (n = 32) | 0.038 | 0.059 | ||
Below median (n = 16) | 1.80 (0.00–3.63) | 13.53 (6.25–20.81) | ||
Above median (n = 16) | 6.53 (0.00–13.39) | 22.63 (17.02–28.25) | ||
ERCC1 (n = 32) | 0.006 | 0.295 | ||
Below median (n = 16) | 2.63 (0.41–4.86) | 14.03 (5.73–22.34) | ||
Above median (n = 16) | 8.10 (4.77–11.43) | 21.07 (11.32–30.81) | ||
ERCC5 (n = 32) | 0.039 | 0.521 | ||
Below median (n = 16) | 1.70 (1.05–2.35) | 13.53 (5.94–21.13) | ||
Above median (n = 16) | 7.67 (5.64–9.69) | 21.07 (15.04–27.09) |
Cell line | IC50 (pM) | CUL4A * | ERCC1 * | ERCC5 * |
---|---|---|---|---|
93T449 | 156 | 0.0046 | 0.0179 | 0.0006 |
AA | 107 | 0.0106 | 0.0318 | 0.0007 |
CP0024 | 399 | 0.0099 | 0.0252 | 0.0019 |
HT-1080 | 148 | 0.0083 | 0.0263 | 0.0022 |
SK-UT-1 | 87 | 0.0323 | 0.0685 | 0.0015 |
SW872 | 142 | 0.0124 | 0.0270 | 0.0068 |
SW982 | 90 | 0.0103 | 0.0403 | 0.0022 |
Spearman's rank correlation coefficient (ρ) ** | CUL4A * | ERCC1 * | ERCC5 * | |
Trabectedin IC50 | −0.750 | −0.964 | −0.143 | |
p = 0.052 | p < 0.001 | p = 0.760 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, D.S.; Sanchez-Bustos, P.; Fernandez-Serra, A.; Lopez-Alvarez, M.; Mondaza-Hernandez, J.L.; Blanco-Alcaina, E.; Gavilan-Naranjo, A.; Martinez-Delgado, P.; Lacerenza, S.; Santos-Fernandez, P.; et al. CUL4A, ERCC5, and ERCC1 as Predictive Factors for Trabectedin Efficacy in Advanced Soft Tissue Sarcomas (STS): A Spanish Group for Sarcoma Research (GEIS) Study. Cancers 2020, 12, 1128. https://doi.org/10.3390/cancers12051128
Moura DS, Sanchez-Bustos P, Fernandez-Serra A, Lopez-Alvarez M, Mondaza-Hernandez JL, Blanco-Alcaina E, Gavilan-Naranjo A, Martinez-Delgado P, Lacerenza S, Santos-Fernandez P, et al. CUL4A, ERCC5, and ERCC1 as Predictive Factors for Trabectedin Efficacy in Advanced Soft Tissue Sarcomas (STS): A Spanish Group for Sarcoma Research (GEIS) Study. Cancers. 2020; 12(5):1128. https://doi.org/10.3390/cancers12051128
Chicago/Turabian StyleMoura, David S., Paloma Sanchez-Bustos, Antonio Fernandez-Serra, María Lopez-Alvarez, José L. Mondaza-Hernandez, Elena Blanco-Alcaina, Angela Gavilan-Naranjo, Paula Martinez-Delgado, Serena Lacerenza, Paloma Santos-Fernandez, and et al. 2020. "CUL4A, ERCC5, and ERCC1 as Predictive Factors for Trabectedin Efficacy in Advanced Soft Tissue Sarcomas (STS): A Spanish Group for Sarcoma Research (GEIS) Study" Cancers 12, no. 5: 1128. https://doi.org/10.3390/cancers12051128
APA StyleMoura, D. S., Sanchez-Bustos, P., Fernandez-Serra, A., Lopez-Alvarez, M., Mondaza-Hernandez, J. L., Blanco-Alcaina, E., Gavilan-Naranjo, A., Martinez-Delgado, P., Lacerenza, S., Santos-Fernandez, P., Carrasco-Garcia, I., Hidalgo-Rios, S., Gutierrez, A., Ramos, R., Hindi, N., Taron, M., Lopez-Guerrero, J. A., & Martin-Broto, J. (2020). CUL4A, ERCC5, and ERCC1 as Predictive Factors for Trabectedin Efficacy in Advanced Soft Tissue Sarcomas (STS): A Spanish Group for Sarcoma Research (GEIS) Study. Cancers, 12(5), 1128. https://doi.org/10.3390/cancers12051128