Molecular Pathways and Targeted Therapies for Malignant Ovarian Germ Cell Tumors and Sex Cord–Stromal Tumors: A Contemporary Review
Abstract
:1. Introduction
2. General Principles
3. Malignant Ovarian Germ Cell Tumors (MOGCTs)
3.1. Dysgerminoma
3.2. Yolk Sac Tumors
3.3. Immature Teratoma
3.4. Mixed Germ Cell Ovarian Tumors and Others
4. Malignant Sex Cord–Stromal Tumors (SCSTs)
4.1. Granulosa Cell Tumors
4.2. Sertoli–Leydig Cell Tumors
4.3. Other SCSTs
5. Application of Targeted Therapies in Clinical Trials
5.1. Tyrosine Kinase and Other Small Molecule Inhibitors
5.2. Angiogenesis Inhibition
5.3. Immunotherapy
5.4. Endocrine Therapy
5.5. Other Agents
5.6. Drugs Evaluated in Testicular Tumor
6. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Serov, S.F.; Scully, R.E.; Sobin, L.J. Histological typing of ovarian tumors in World Health Organization. In Proceedings of International Histological Classification of Tumors, Geneva, Switzerland; The World Health Organization: Geneva, Switzerland, 1973. [Google Scholar]
- Kurman, R.; Carcangiu, M.; Herrington, C.; Young, R. World Health Organization Classification of Tumours of Female Reproductive Organs, 4th ed.; The World Health Organization: Geneva, Switzerland, 2014; Volume 6. [Google Scholar]
- Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Testa, U.; Petrucci, E.; Pasquini, L.; Castelli, G.; Pelosi, E. Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. Medicines (Basel) 2018, 5, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matz, M.; Coleman, M.P.; Sant, M.; Chirlaque, M.D.; Visser, O.; Gore, M.; Allemani, C. The histology of ovarian cancer: Worldwide distribution and implications for international survival comparisons (CONCORD-2). Gynecol. Oncol. 2017, 144, 405–413. [Google Scholar] [PubMed]
- Schultz, K.A.; Harris, A.K.; Schneider, D.T.; Young, R.H.; Brown, J.; Gershenson, D.M.; Dehner, L.P.; Hill, D.A.; Messinger, Y.H.; Frazier, A.L. Ovarian Sex Cord-Stromal Tumors. J. Oncol. Pract. 2016, 12, 940–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gershenson, D.M. Management of ovarian germ cell tumors. J. Clin. Oncol. 2007, 25, 2938–2943. [Google Scholar] [PubMed]
- Colombo, N.; Parma, G.; Zanagnolo, V.; Insinga, A. Management of ovarian stromal cell tumors. J. Clin. Oncol. 2007, 25, 2944–2951. [Google Scholar] [CrossRef]
- Palenzuela, G.; Martin, E.; Meunier, A.; Beuzeboc, P.; Laurence, V.; Orbach, D.; Frappaz, D. Comprehensive staging allows for excellent outcome in patients with localized malignant germ cell tumor of the ovary. Ann. Surg. 2008, 248, 836–841. [Google Scholar] [CrossRef]
- Lee, C.W.; Song, M.J.; Park, S.T.; Ki, E.Y.; Lee, S.J.; Lee, K.H.; Ryu, K.S.; Park, J.S.; Hur, S.Y. Residual tumor after the salvage surgery is the major risk factors for primary treatment failure in malignant ovarian germ cell tumors: A retrospective study of single institution. World J. Surg. Oncol. 2011, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Mangili, G.; Sigismondi, C.; Lorusso, D.; Cormio, G.; Candiani, M.; Scarfone, G.; Mascilini, F.; Gadducci, A.; Mosconi, A.M.; Scollo, P.; et al. The role of staging and adjuvant chemotherapy in stage I malignant ovarian germ cell tumors (MOGTs): The MITO-9 study. Ann. Oncol. 2017, 28, 333–338. [Google Scholar]
- Bristow, R.E.; Karlan, B.Y.; Chi, D.S. Surgery for Ovarian Cancer; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Ray-Coquard, I.; Morice, P.; Lorusso, D.; Prat, J.; Oaknin, A.; Pautier, P.; Colombo, N. Non-epithelial ovarian cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv1–iv18. [Google Scholar] [CrossRef]
- Billmire, D.; Vinocur, C.; Rescorla, F.; Cushing, B.; London, W.; Schlatter, M.; Davis, M.; Giller, R.; Lauer, S.; Olson, T. Outcome and staging evaluation in malignant germ cell tumors of the ovary in children and adolescents: An intergroup study. J. Pediatr. Surg. 2004, 39, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ding, X.; Yang, J.; Cao, D.; Shen, K.; Lang, J.; Zhang, G.; Xin, X.; Xie, X.; Wu, Y. The significance of comprehensive staging surgery in malignant ovarian germ cell tumors. Gynecol. Oncol. 2013, 131, 551–554. [Google Scholar] [CrossRef]
- Thomas, G.M.; Dembo, A.J.; Hacker, N.F.; DePetrillo, A.D. Current therapy for dysgerminoma of the ovary. Obstet. Gynecol. 1987, 70, 268–275. [Google Scholar] [CrossRef]
- Mangili, G.; Sigismondi, C.; Lorusso, D.; Cormio, G.; Scollo, P.; Vigano, R.; Gamucci, T.; Candiani, M.; Pignata, S. Is surgical restaging indicated in apparent stage IA pure ovarian dysgerminoma? The MITO group retrospective experience. Gynecol. Oncol. 2011, 121, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Ceppi, L.; Galli, F.; Lamanna, M.; Magni, S.; Dell’Orto, F.; Verri, D.; Delle Marchette, M.; Lissoni, A.A.; Sina, F.; Giuliani, D.; et al. Ovarian function, fertility, and menopause occurrence after fertility-sparing surgery and chemotherapy for ovarian neoplasms. Gynecol. Oncol. 2019, 152, 346–352. [Google Scholar] [CrossRef]
- Sigismondi, C.; Scollo, P.; Ferrandina, G.; Candiani, M.; Angioli, R.; Vigano, R.; Scarfone, G.; Mangili, G. Management of bilateral malignant ovarian germ cell tumors: A MITO-9 retrospective study. Int. J. Gynecol. Cancer 2015, 25, 203–207. [Google Scholar]
- Yoo, S.C.; Kim, W.Y.; Yoon, J.H.; Chang, S.J.; Chang, K.H.; Ryu, H.S. Young girls with malignant ovarian germ cell tumors can undergo normal menarche and menstruation after fertility-preserving surgery and adjuvant chemotherapy. Acta Obstet. Gynecol. Scand. 2010, 89, 126–130. [Google Scholar] [CrossRef]
- Perrin, L.C.; Low, J.; Nicklin, J.L.; Ward, B.G.; Crandon, A.J. Fertility and ovarian function after conservative surgery for germ cell tumours of the ovary. Aust. N. Z. J. Obstet. Gynaecol. 1999, 39, 243–245. [Google Scholar]
- Chan, J.K.; Tewari, K.S.; Waller, S.; Cheung, M.K.; Shin, J.Y.; Osann, K.; Kapp, D.S. The influence of conservative surgical practices for malignant ovarian germ cell tumors. J. Surg. Oncol. 2008, 98, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.; Sood, A.K.; Deavers, M.T.; Milojevic, L.; Gershenson, D.M. Patterns of metastasis in sex cord-stromal tumors of the ovary: Can routine staging lymphadenectomy be omitted? Gynecol. Oncol. 2009, 113, 86–90. [Google Scholar] [CrossRef]
- Mahdi, H.; Swensen, R.E.; Hanna, R.; Kumar, S.; Ali-Fehmi, R.; Semaan, A.; Tamimi, H.; Morris, R.T.; Munkarah, A.R. Prognostic impact of lymphadenectomy in clinically early stage malignant germ cell tumour of the ovary. Br. J. Cancer 2011, 105, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Peng, J.; Yang, Z.; Zhang, G. Prognostic significance of lymphadenectomyin malignant ovarian sex cord stromal tumor: A retrospective cohort study and meta-analysis. Gynecol. Oncol. 2018, 148, 91–96. [Google Scholar] [PubMed]
- Karalok, A.; Turan, T.; Ureyen, I.; Tasci, T.; Basaran, D.; Koc, S.; Boran, N.; Kose, M.F.; Tulunay, G. Prognostic Factors in Adult Granulosa Cell Tumor: A Long Follow-Up at a Single Center. Int. J. Gynecol. Cancer 2016, 26, 619–625. [Google Scholar] [PubMed]
- Kuru, O.; Boyraz, G.; Uckan, H.; Erturk, A.; Gultekin, M.; Ozgul, N.; Salman, C.; Yuce, K. Retroperitoneal nodal metastasis in primary adult type granulosa cell tumor of the ovary: Can routine lymphadenectomy be omitted? Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 219, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Erkilinc, S.; Taylan, E.; Karatasli, V.; Uzaldi, I.; Karadeniz, T.; Gokcu, M.; Sanci, M. Does lymphadenectomy effect postoperative surgical morbidity and survival in patients with adult granulosa cell tumor of ovary? J. Obstet. Gynaecol. Res. 2019, 45, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Peiretti, M.; Garbi, A.; Carinelli, S.; Marini, C.; Sessa, C. Non-epithelial ovarian cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2012, 23 (Suppl. 7), vii20–vii26. [Google Scholar]
- De Giorgi, U.; Casadei, C.; Bergamini, A.; Attademo, L.; Cormio, G.; Lorusso, D.; Pignata, S.; Mangili, G. Therapeutic Challenges for Cisplatin-Resistant Ovarian Germ Cell Tumors. Cancers (Basel) 2019, 11, 1584. [Google Scholar] [CrossRef] [Green Version]
- Leary, A.F.; Quinn, M.; Fujiwara, K.; Coleman, R.L.; Kohn, E.; Sugiyama, T.; Glasspool, R.; Ray-Coquard, I.; Colombo, N.; Bacon, M.; et al. Fifth Ovarian Cancer Consensus Conference of the Gynecologic Cancer InterGroup (GCIG): Clinical trial design for rare ovarian tumours. Ann. Oncol. 2017, 28, 718–726. [Google Scholar] [CrossRef]
- De Giorgi, U.; Richard, S.; Badoglio, M.; Kanfer, E.; Bourrhis, J.H.; Nicolas-Virelizier, E.; Vettenranta, K.; Lioure, B.; Martin, S.; Dreger, P.; et al. Salvage high-dose chemotherapy in female patients with relapsed/refractory germ-cell tumors: A retrospective analysis of the European Group for Blood and Marrow Transplantation (EBMT). Ann. Oncol. 2017, 28, 1910–1916. [Google Scholar] [CrossRef]
- Reddy Ammakkanavar, N.; Matei, D.; Abonour, R.; Einhorn, L.H. High-dose chemotherapy for recurrent ovarian germ cell tumors. J. Clin. Oncol. 2015, 33, 226–227. [Google Scholar]
- Hubbard, A.K.; Poynter, J.N. Global incidence comparisons and trends in ovarian germ cell tumors by geographic region in girls, adolescents and young women: 1988–2012. Gynecol. Oncol. 2019, 154, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.S.; Kumar, S.; Shah, J.P.; Mahdi, H.; Ali-Fehmi, R.; Munkarah, A.R.; Deppe, G.; Morris, R.T. Racial disparities in survival among patients with germ cell tumors of the ovary–United States. Gynecol. Oncol. 2009, 114, 437–441. [Google Scholar] [PubMed]
- Smith, H.O.; Berwick, M.; Verschraegen, C.F.; Wiggins, C.; Lansing, L.; Muller, C.Y.; Qualls, C.R. Incidence and survival rates for female malignant germ cell tumors. Obstet. Gynecol. 2006, 107, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Kraggerud, S.M.; Hoei-Hansen, C.E.; Alagaratnam, S.; Skotheim, R.I.; Abeler, V.M.; Rajpert-De Meyts, E.; Lothe, R.A. Molecular characteristics of malignant ovarian germ cell tumors and comparison with testicular counterparts: Implications for pathogenesis. Endocr. Rev. 2013, 34, 339–376. [Google Scholar] [PubMed]
- Solheim, O.; Kaern, J.; Trope, C.G.; Rokkones, E.; Dahl, A.A.; Nesland, J.M.; Fossa, S.D. Malignant ovarian germ cell tumors: Presentation, survival and second cancer in a population based Norwegian cohort (1953–2009). Gynecol. Oncol. 2013, 131, 330–335. [Google Scholar] [PubMed]
- Cicin, I.; Eralp, Y.; Saip, P.; Ayan, I.; Kebudi, R.; Iyibozkurt, C.; Tuzlali, S.; Gorgun, O.; Topuz, E. Malignant ovarian germ cell tumors: A single-institution experience. Am. J. Clin. Oncol. 2009, 32, 191–196. [Google Scholar] [CrossRef]
- Fuller, P.J.; Leung, D.; Chu, S. Genetics and genomics of ovarian sex cord-stromal tumors. Clin. Genet. 2017, 91, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Van Nieuwenhuysen, E.; Lambrechts, S.; Lambrechts, D.; Leunen, K.; Amant, F.; Vergote, I. Genetic changes in nonepithelial ovarian cancer. Expert Rev. Anticancer Ther. 2013, 13, 871–882. [Google Scholar] [CrossRef]
- Van Nieuwenhuysen, E.; Busschaert, P.; Neven, P.; Han, S.N.; Moerman, P.; Liontos, M.; Papaspirou, M.; Kupryjanczyk, J.; Hogdall, C.; Hogdall, E.; et al. The genetic landscape of 87 ovarian germ cell tumors. Gynecol. Oncol. 2018, 151, 61–68. [Google Scholar] [CrossRef]
- Peccatori, F.; Bonazzi, C.; Chiari, S.; Landoni, F.; Colombo, N.; Mangioni, C. Surgical management of malignant ovarian germ-cell tumors: 10 years’ experience of 129 patients. Obstet. Gynecol. 1995, 86, 367–372. [Google Scholar] [CrossRef]
- Kurman, R.J.; Norris, H.J. Malignant germ cell tumors of the ovary. Hum. Pathol. 1977, 8, 551–564. [Google Scholar] [CrossRef]
- Barakat, R.R.B.; Berchuck, A.; Markman, M.; Randall, M.E. Principles and Practice of Gynecologic Oncology, 6th ed.; Lippincott Williams & Wilkins: Philadelphpia, PA, USA, 2013. [Google Scholar]
- Newton, C.; Murali, K.; Ahmad, A.; Hockings, H.; Graham, R.; Liberale, V.; Sarker, S.J.; Ledermann, J.; Berney, D.M.; Shamash, J.; et al. A multicentre retrospective cohort study of ovarian germ cell tumours: Evidence for chemotherapy de-escalation and alignment of paediatric and adult practice. Eur. J. Cancer 2019, 113, 19–27. [Google Scholar] [PubMed] [Green Version]
- Williams, S.; Blessing, J.A.; Liao, S.Y.; Ball, H.; Hanjani, P. Adjuvant therapy of ovarian germ cell tumors with cisplatin, etoposide, and bleomycin: A trial of the Gynecologic Oncology Group. J. Clin. Oncol. 1994, 12, 701–706. [Google Scholar] [PubMed]
- Gershenson, D.M.; Morris, M.; Cangir, A.; Kavanagh, J.J.; Stringer, C.A.; Edwards, C.L.; Silva, E.G.; Wharton, J.T. Treatment of malignant germ cell tumors of the ovary with bleomycin, etoposide, and cisplatin. J. Clin. Oncol. 1990, 8, 715–720. [Google Scholar]
- Chovanec, M.; Abu Zaid, M.; Hanna, N.; El-Kouri, N.; Einhorn, L.H.; Albany, C. Long-term toxicity of cisplatin in germ-cell tumor survivors. Ann. Oncol. 2017, 28, 2670–2679. [Google Scholar]
- Duhil de Benaze, G.; Pacquement, H.; Faure-Conter, C.; Patte, C.; Orbach, D.; Corradini, N.; Berger, C.; Sudour-Bonnange, H.; Verite, C.; Martelli, H.; et al. Paediatric dysgerminoma: Results of three consecutive French germ cell tumours clinical studies (TGM-85/90/95) with late effects study. Eur. J. Cancer 2018, 91, 30–37. [Google Scholar]
- De La Motte Rouge, T.; Pautier, P.; Duvillard, P.; Rey, A.; Morice, P.; Haie-Meder, C.; Kerbrat, P.; Culine, S.; Troalen, F.; Lhomme, C. Survival and reproductive function of 52 women treated with surgery and bleomycin, etoposide, cisplatin (BEP) chemotherapy for ovarian yolk sac tumor. Ann. Oncol. 2008, 19, 1435–1441. [Google Scholar]
- Gershenson, D.M.; Miller, A.M.; Champion, V.L.; Monahan, P.O.; Zhao, Q.; Cella, D.; Williams, S.D. Reproductive and sexual function after platinum-based chemotherapy in long-term ovarian germ cell tumor survivors: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2007, 25, 2792–2797. [Google Scholar] [CrossRef]
- Williams, S.D.; Kauderer, J.; Burnett, A.F.; Lentz, S.S.; Aghajanian, C.; Armstrong, D.K. Adjuvant therapy of completely resected dysgerminoma with carboplatin and etoposide: A trial of the Gynecologic Oncology Group. Gynecol. Oncol. 2004, 95, 496–499. [Google Scholar]
- Bokemeyer, C.; Kohrmann, O.; Tischler, J.; Weissbach, L.; Rath, U.; Haupt, A.; Schoffski, P.; Harstrick, A.; Schmoll, H.J. A randomized trial of cisplatin, etoposide and bleomycin (PEB) versus carboplatin, etoposide and bleomycin (CEB) for patients with ‘good-risk’ metastatic non-seminomatous germ cell tumors. Ann. Oncol. 1996, 7, 1015–1021. [Google Scholar]
- Pashankar, F.; Hale, J.P.; Dang, H.; Krailo, M.; Brady, W.E.; Rodriguez-Galindo, C.; Nicholson, J.C.; Murray, M.J.; Bilmire, D.F.; Stoneham, S.; et al. Is adjuvant chemotherapy indicated in ovarian immature teratomas? A combined data analysis from the Malignant Germ Cell Tumor International Collaborative. Cancer 2016, 122, 230–237. [Google Scholar] [PubMed]
- Heskett, M.B.; Sanborn, J.Z.; Boniface, C.; Goode, B.; Chapman, J.; Garg, K.; Rabban, J.T.; Zaloudek, C.; Benz, S.C.; Spellman, P.T.; et al. Multiregion exome sequencing of ovarian immature teratomas reveals 2N near-diploid genomes, paucity of somatic mutations, and extensive allelic imbalances shared across mature, immature, and disseminated components. Mod. Pathol. 2020. [Google Scholar] [CrossRef]
- Kroeger, P.T., Jr.; Drapkin, R. Pathogenesis and heterogeneity of ovarian cancer. Curr. Opin. Obstet. Gynecol. 2017, 29, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Shih, J.; Hollern, D.P.; Wang, L.; Bowlby, R.; Tickoo, S.K.; Thorsson, V.; Mungall, A.J.; Newton, Y.; Hegde, A.M.; et al. Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Rep. 2018, 23, 3392–3406. [Google Scholar] [CrossRef]
- AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017, 7, 818–831. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wei, Y.Q.; Kariya, Y.; Teshigawara, K.; Uchida, A. Accumulation of gamma/delta T cells in human dysgerminoma and seminoma: Roles in autologous tumor killing and granuloma formation. Immunol. Investig. 1995, 24, 607–618. [Google Scholar] [CrossRef]
- Dietl, J.; Horny, H.P.; Ruck, P.; Kaiserling, E. Dysgerminoma of the ovary. An immunohistochemical study of tumor-infiltrating lymphoreticular cells and tumor cells. Cancer 1993, 71, 2562–2568. [Google Scholar] [CrossRef]
- Stewart, C.J.; Farquharson, M.A.; Foulis, A.K. Characterization of the inflammatory infiltrate in ovarian dysgerminoma: An immunocytochemical study. Histopathology 1992, 20, 491–497. [Google Scholar] [CrossRef]
- Honma, S.; Uchiyama, M.; Omomo, Y.; Watanabe, S.; Sasagawa, M.; Kanazawa, K.; Takeuchi, S. Immunohistologic characterization of lymphoid cells infiltrating dysgerminoma of the ovary. Nihon Sanka Fujinka Gakkai Zasshi 1986, 38, 2201–2206. [Google Scholar]
- Steffen, R.; Genton, C.Y. The significance of lymphocytic infiltration for the prognosis in dysgerminomas. Schweiz. Med. Wochenschr. 1980, 110, 1013–1019. [Google Scholar] [PubMed]
- Willis, S.N.; Mallozzi, S.S.; Rodig, S.J.; Cronk, K.M.; McArdel, S.L.; Caron, T.; Pinkus, G.S.; Lovato, L.; Shampain, K.L.; Anderson, D.E.; et al. The microenvironment of germ cell tumors harbors a prominent antigen-driven humoral response. J. Immunol. 2009, 182, 3310–3317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germain, C.; Gnjatic, S.; Dieu-Nosjean, M.C. Tertiary Lymphoid Structure-Associated B Cells are Key Players in Anti-Tumor Immunity. Front. Immunol. 2015, 6, 67. [Google Scholar] [PubMed] [Green Version]
- Dieu-Nosjean, M.C.; Goc, J.; Giraldo, N.A.; Sautes-Fridman, C.; Fridman, W.H. Tertiary lymphoid structures in cancer and beyond. Trends Immunol. 2014, 35, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Maoz, A.; Dennis, M.; Greenson, J.K. The Crohn’s-Like Lymphoid Reaction to Colorectal Cancer-Tertiary Lymphoid Structures with Immunologic and Potentially Therapeutic Relevance in Colorectal Cancer. Front. Immunol. 2019, 10, 1884. [Google Scholar]
- Siska, P.J.; Johnpulle, R.A.N.; Zhou, A.; Bordeaux, J.; Kim, J.Y.; Dabbas, B.; Dakappagari, N.; Rathmell, J.C.; Rathmell, W.K.; Morgans, A.K.; et al. Deep exploration of the immune infiltrate and outcome prediction in testicular cancer by quantitative multiplexed immunohistochemistry and gene expression profiling. Oncoimmunology 2017, 6, e1305535. [Google Scholar] [CrossRef]
- Fankhauser, C.D.; Curioni-Fontecedro, A.; Allmann, V.; Beyer, J.; Tischler, V.; Sulser, T.; Moch, H.; Bode, P.K. Frequent PD-L1 expression in testicular germ cell tumors. Br. J. Cancer 2015, 113, 411–413. [Google Scholar] [CrossRef] [Green Version]
- Berney, D.M.; Stoneham, S.; Arora, R.; Shamash, J.; Lockley, M. Ovarian germ cell tumour classification: Views from the testis. Histopathology 2020, 76, 25–36. [Google Scholar] [CrossRef]
- Lin, K.Y.; Bryant, S.; Miller, D.S.; Kehoe, S.M.; Richardson, D.L.; Lea, J.S. Malignant ovarian germ cell tumor—Role of surgical staging and gonadal dysgenesis. Gynecol. Oncol. 2014, 134, 84–89. [Google Scholar] [CrossRef]
- Scully, R.E. Gonadoblastoma. A review of 74 cases. Cancer 1970, 25, 1340–1356. [Google Scholar]
- Pleskacova, J.; Hersmus, R.; Oosterhuis, J.W.; Setyawati, B.A.; Faradz, S.M.; Cools, M.; Wolffenbuttel, K.P.; Lebl, J.; Drop, S.L.; Looijenga, L.H. Tumor risk in disorders of sex development. Sex. Dev. 2010, 4, 259–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Roth, L.M.; Zhang, S.; Wang, M.; Morton, M.J.; Zheng, W.; Abdul Karim, F.W.; Montironi, R.; Lopez-Beltran, A. KIT gene mutation and amplification in dysgerminoma of the ovary. Cancer 2011, 117, 2096–2103. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, H.J.; Figueira, M.I.; Socorro, S. The stem cell factor (SCF)/c-KIT signalling in testis and prostate cancer. J. Cell Commun. Signal. 2017, 11, 297–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, M.C.; Corless, C.L.; Demetri, G.D.; Blanke, C.D.; von Mehren, M.; Joensuu, H.; McGreevey, L.S.; Chen, C.J.; Van den Abbeele, A.D.; Druker, B.J.; et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 2003, 21, 4342–4349. [Google Scholar] [CrossRef] [PubMed]
- Cossu-Rocca, P.; Zhang, S.; Roth, L.M.; Eble, J.N.; Zheng, W.; Karim, F.W.; Michael, H.; Emerson, R.E.; Jones, T.D.; Hattab, E.M.; et al. Chromosome 12p abnormalities in dysgerminoma of the ovary: A FISH analysis. Mod. Pathol. 2006, 19, 611–615. [Google Scholar] [CrossRef] [PubMed]
- McCormick, F. KRAS as a Therapeutic Target. Clin. Cancer Res. 2015, 21, 1797–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maoz, A.; Ciccone, M.A.; Matsuzaki, S.; Coleman, R.L.; Matsuo, K. Emerging serine-threonine kinase inhibitors for treating ovarian cancer. Expert Opin. Emerg. Drugs 2019. [Google Scholar] [CrossRef] [PubMed]
- Gershenson, D.M. Current advances in the management of malignant germ cell and sex cord-stromal tumors of the ovary. Gynecol. Oncol. 2012, 125, 515–517. [Google Scholar] [CrossRef]
- Gershenson, D.M.; Okamoto, A.; Ray-Coquard, I. Management of Rare Ovarian Cancer Histologies. J. Clin. Oncol. 2019, 37, 2406–2415. [Google Scholar] [CrossRef]
- Ciccone, M.A.; Maoz, A.; Casabar, J.K.; Machida, H.; Mabuchi, S.; Matsuo, K. Clinical outcome of treatment with serine-threonine kinase inhibitors in recurrent epithelial ovarian cancer: A systematic review of literature. Expert Opin. Investig. Drugs 2016, 25, 781–796. [Google Scholar] [CrossRef]
- Mabuchi, S.; Kuroda, H.; Takahashi, R.; Sasano, T. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol. Oncol. 2015, 137, 173–179. [Google Scholar] [PubMed]
- Krishnamurthy, N.; Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev. 2018, 62, 50–60. [Google Scholar] [CrossRef]
- Quirk, J.T.; Natarajan, N. Ovarian cancer incidence in the United States, 1992–1999. Gynecol. Oncol. 2005, 97, 519–523. [Google Scholar] [CrossRef]
- Rabban, J.T.; Zaloudek, C.J. A practical approach to immunohistochemical diagnosis of ovarian germ cell tumours and sex cord-stromal tumours. Histopathology 2013, 62, 71–88. [Google Scholar] [CrossRef]
- Sung, M.T.; Jones, T.D.; Beck, S.D.; Foster, R.S.; Cheng, L. OCT4 is superior to CD30 in the diagnosis of metastatic embryonal carcinomas after chemotherapy. Hum. Pathol. 2006, 37, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Leroy, X.; Augusto, D.; Leteurtre, E.; Gosselin, B. CD30 and CD117 (c-kit) used in combination are useful for distinguishing embryonal carcinoma from seminoma. J. Histochem. Cytochem. 2002, 50, 283–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.; Shvartsman, H.S.; Deavers, M.T.; Burke, T.W.; Munsell, M.F.; Gershenson, D.M. The Activity of Taxanes in the Treatment of Sex Cord-Stromal Ovarian Tumors. J. Clin. Oncol. 2004, 22, 3517–3523. [Google Scholar]
- Thrall, M.M.; Paley, P.; Pizer, E.; Garcia, R.; Goff, B.A. Patterns of spread and recurrence of sex cord-stromal tumors of the ovary. Gynecol. Oncol. 2011, 122, 242–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Cheung, M.K.; Shin, J.Y.; Kapp, D.S.; Husain, A.; Teng, N.N.; Berek, J.S.; Osann, K.; Chan, J.K. Prognostic factors responsible for survival in sex cord stromal tumors of the ovary–An analysis of 376 women. Gynecol. Oncol. 2007, 104, 396–400. [Google Scholar] [CrossRef]
- Shah, S.P.; Kobel, M.; Senz, J.; Morin, R.D.; Clarke, B.A.; Wiegand, K.C.; Leung, G.; Zayed, A.; Mehl, E.; Kalloger, S.E.; et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N. Engl. J. Med. 2009, 360, 2719–2729. [Google Scholar]
- Kommoss, F.; Lehr, H.A. Sex cord-stromal tumors of the ovary: Current aspects with a focus on granulosa cell tumors, Sertoli-Leydig cell tumors, and gynandroblastomas. Pathologe 2019, 40, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Fox, H.; Agrawal, K.; Langley, F.A. A clinicopathologic study of 92 cases of granulosa cell tumor of the ovary with special reference to the factors influencing prognosis. Cancer 1975, 35, 231–241. [Google Scholar] [CrossRef]
- Ohel, G.; Kaneti, H.; Schenker, J.G. Granulosa cell tumors in Israel: A study of 172 cases. Gynecol. Oncol. 1983, 15, 278–286. [Google Scholar] [CrossRef]
- Yanagida, S.; Anglesio, M.S.; Nazeran, T.M.; Lum, A.; Inoue, M.; Iida, Y.; Takano, H.; Nikaido, T.; Okamoto, A.; Huntsman, D.G. Clinical and genetic analysis of recurrent adult-type granulosa cell tumor of the ovary: Persistent preservation of heterozygous c.402C > G FOXL2 mutation. PLoS ONE 2017, 12, e0178989. [Google Scholar]
- Karnezis, A.N.; Wang, Y.; Keul, J.; Tessier-Cloutier, B.; Magrill, J.; Kommoss, S.; Senz, J.; Yang, W.; Proctor, L.; Schmidt, D.; et al. DICER1 and FOXL2 Mutation Status Correlates with Clinicopathologic Features in Ovarian Sertoli-Leydig Cell Tumors. Am. J. Surg. Pathol. 2019, 43, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Kommoss, S.; Anglesio, M.S.; Mackenzie, R.; Yang, W.; Senz, J.; Ho, J.; Bell, L.; Lee, S.; Lorette, J.; Huntsman, D.G.; et al. FOXL2 molecular testing in ovarian neoplasms: Diagnostic approach and procedural guidelines. Mod. Pathol. 2013, 26, 860–867. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, S.; Butzow, R.; Andersson, N.; Alexiadis, M.; Unkila-Kallio, L.; Heikinheimo, M.; Fuller, P.J.; Anttonen, M. The FOXL2 C134W mutation is characteristic of adult granulosa cell tumors of the ovary. Mod. Pathol. 2010, 23, 1477–1485. [Google Scholar]
- Leung, D.T.H.; Fuller, P.J.; Chu, S. Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors. Int. J. Biochem. Cell Biol. 2016, 72, 51–54. [Google Scholar]
- Georges, A.; L’Hote, D.; Todeschini, A.L.; Auguste, A.; Legois, B.; Zider, A.; Veitia, R.A. The transcription factor FOXL2 mobilizes estrogen signaling to maintain the identity of ovarian granulosa cells. eLife 2014, 3, e04207. [Google Scholar]
- Benayoun, B.A.; Anttonen, M.; L’Hote, D.; Bailly-Bechet, M.; Andersson, N.; Heikinheimo, M.; Veitia, R.A. Adult ovarian granulosa cell tumor transcriptomics: Prevalence of FOXL2 target genes misregulation gives insights into the pathogenic mechanism of the p.Cys134Trp somatic mutation. Oncogene 2013, 32, 2739–2746. [Google Scholar] [CrossRef] [Green Version]
- Rabban, J.T.; Karnezis, A.N.; Devine, W.P. Practical roles for molecular diagnostic testing in ovarian adult granulosa cell tumour, Sertoli-Leydig cell tumour, microcystic stromal tumour and their mimics. Histopathology 2020, 76, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Shin, E.; Won, M.; Kim, J.H.; Go, H.; Kim, H.L.; Ko, J.J.; Lee, K.; Bae, J. FOXL2 interacts with steroidogenic factor-1 (SF-1) and represses SF-1-induced CYP17 transcription in granulosa cells. Mol. Endocrinol. 2010, 24, 1024–1036. [Google Scholar] [PubMed] [Green Version]
- Fleming, N.I.; Knower, K.C.; Lazarus, K.A.; Fuller, P.J.; Simpson, E.R.; Clyne, C.D. Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS ONE 2010, 5, e14389. [Google Scholar] [CrossRef] [PubMed]
- Alexiadis, M.; Rowley, S.M.; Chu, S.; Leung, D.T.H.; Stewart, C.J.R.; Amarasinghe, K.C.; Campbell, I.G.; Fuller, P.J. Mutational Landscape of Ovarian Adult Granulosa Cell Tumors from Whole Exome and Targeted TERT Promoter Sequencing. Mol. Cancer Res. 2019, 17, 177–185. [Google Scholar]
- Pilsworth, J.A.; Cochrane, D.R.; Xia, Z.; Aubert, G.; Farkkila, A.E.M.; Horlings, H.M.; Yanagida, S.; Yang, W.; Lim, J.L.P.; Wang, Y.K.; et al. TERT promoter mutation in adult granulosa cell tumor of the ovary. Mod. Pathol. 2018, 31, 1107–1115. [Google Scholar]
- Wang, Y.K.; Bashashati, A.; Anglesio, M.S.; Cochrane, D.R.; Grewal, D.S.; Ha, G.; McPherson, A.; Horlings, H.M.; Senz, J.; Prentice, L.M.; et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat. Genet. 2017, 49, 856–865. [Google Scholar] [CrossRef]
- Mayr, D.; Kaltz-Wittmer, C.; Arbogast, S.; Amann, G.; Aust, D.E.; Diebold, J. Characteristic pattern of genetic aberrations in ovarian granulosa cell tumors. Mod. Pathol. 2002, 15, 951–957. [Google Scholar] [CrossRef] [Green Version]
- Caburet, S.; Anttonen, M.; Todeschini, A.L.; Unkila-Kallio, L.; Mestivier, D.; Butzow, R.; Veitia, R.A. Combined comparative genomic hybridization and transcriptomic analyses of ovarian granulosa cell tumors point to novel candidate driver genes. BMC Cancer 2015, 15, 251. [Google Scholar] [CrossRef]
- Kalfa, N.; Ecochard, A.; Patte, C.; Duvillard, P.; Audran, F.; Pienkowski, C.; Thibaud, E.; Brauner, R.; Lecointre, C.; Plantaz, D.; et al. Activating mutations of the stimulatory g protein in juvenile ovarian granulosa cell tumors: A new prognostic factor? J. Clin. Endocrinol. Metab. 2006, 91, 1842–1847. [Google Scholar] [CrossRef] [Green Version]
- Bessiere, L.; Todeschini, A.L.; Auguste, A.; Sarnacki, S.; Flatters, D.; Legois, B.; Sultan, C.; Kalfa, N.; Galmiche, L.; Veitia, R.A. A Hot-spot of In-frame Duplications Activates the Oncoprotein AKT1 in Juvenile Granulosa Cell Tumors. EBioMedicine 2015, 2, 421–431. [Google Scholar]
- Hunzicker-Dunn, M.; Maizels, E.T. FSH signaling pathways in immature granulosa cells that regulate target gene expression: Branching out from protein kinase A. Cell Signal. 2006, 18, 1351–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkkila, A.; Anttonen, M.; Pociuviene, J.; Leminen, A.; Butzow, R.; Heikinheimo, M.; Unkila-Kallio, L. Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 are highly expressed in ovarian granulosa cell tumors. Eur. J. Endocrinol. 2011, 164, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkkila, A.; Pihlajoki, M.; Tauriala, H.; Butzow, R.; Leminen, A.; Unkila-Kallio, L.; Heikinheimo, M.; Anttonen, M. Serum vascular endothelial growth factor A (VEGF) is elevated in patients with ovarian granulosa cell tumor (GCT), and VEGF inhibition by bevacizumab induces apoptosis in GCT in vitro. J. Clin. Endocrinol. Metab. 2011, 96, E1973–E1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.; Kammerer, U.; Segerer, S.; Cramer, A.; Kohrenhagen, N.; Dietl, J.; Voelker, H.U. Glucose metabolism and angiogenesis in granulosa cell tumors of the ovary: Activation of Akt, expression of M2PK, TKTL1 and VEGF. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008, 139, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Rocconi, R.P.; Matthews, K.S.; Kimball, K.J.; Conner, M.G.; Baker, A.C.; Barnes, M.N. Expression of c-kit and platelet-derived growth factor receptors in ovarian granulosa cell tumors. Reprod. Sci. 2008, 15, 673–677. [Google Scholar] [CrossRef]
- Heravi-Moussavi, A.; Anglesio, M.S.; Cheng, S.W.; Senz, J.; Yang, W.; Prentice, L.; Fejes, A.P.; Chow, C.; Tone, A.; Kalloger, S.E.; et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N. Engl. J. Med. 2012, 366, 234–242. [Google Scholar] [CrossRef]
- de Kock, L.; Terzic, T.; McCluggage, W.G.; Stewart, C.J.R.; Shaw, P.; Foulkes, W.D.; Clarke, B.A. DICER1 Mutations Are Consistently Present in Moderately and Poorly Differentiated Sertoli-Leydig Cell Tumors. Am. J. Surg. Pathol. 2017, 41, 1178–1187. [Google Scholar] [CrossRef]
- Schultz, K.A.; Pacheco, M.C.; Yang, J.; Williams, G.M.; Messinger, Y.; Hill, D.A.; Dehner, L.P.; Priest, J.R. Ovarian sex cord-stromal tumors, pleuropulmonary blastoma and DICER1 mutations: A report from the International Pleuropulmonary Blastoma Registry. Gynecol. Oncol. 2011, 122, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Goulvent, T.; Ray-Coquard, I.; Borel, S.; Haddad, V.; Devouassoux-Shisheboran, M.; Vacher-Lavenu, M.C.; Pujade-Laurraine, E.; Savina, A.; Maillet, D.; Gillet, G.; et al. DICER1 and FOXL2 mutations in ovarian sex cord-stromal tumours: A GINECO Group study. Histopathology 2016, 68, 279–285. [Google Scholar] [CrossRef]
- Young, R.H.; Welch, W.R.; Dickersin, G.R.; Scully, R.E. Ovarian sex cord tumor with annular tubules: Review of 74 cases including 27 with Peutz-Jeghers syndrome and four with adenoma malignum of the cervix. Cancer 1982, 50, 1384–1402. [Google Scholar] [CrossRef]
- Fleuren, E.D.; Zhang, L.; Wu, J.; Daly, R.J. The kinome ‘at large’ in cancer. Nat. Rev. Cancer 2016, 16, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Raspagliesi, F.; Martinelli, F.; Grijuela, B.; Guadalupi, V. Third-line chemotherapy with tyrosine kinase inhibitor (imatinib mesylate) in recurrent ovarian granulosa cell tumor: Case report. J. Obstet. Gynaecol. Res. 2011, 37, 1864–1867. [Google Scholar] [CrossRef]
- Poddubskaya, E.V.; Baranova, M.P.; Allina, D.O.; Sekacheva, M.I.; Makovskaia, L.A.; Kamashev, D.E.; Suntsova, M.V.; Barbara, V.S.; Kochergina-Nikitskaya, I.N.; Aleshin, A.A. Personalized prescription of imatinib in recurrent granulosa cell tumor of the ovary: Case report. Cold Spring Harb. Mol. Case Stud. 2019, 5, a003434. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.R.; Turkula, S.; Ginsberg, M.S.; Ishill, N.; Patil, S.; Carousso, M.; Bosl, G.J.; Motzer, R.J. Phase II trial of sunitinib in patients with relapsed or refractory germ cell tumors. Investig. New Drugs 2010, 28, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Manchana, T.; Ittiwut, C.; Mutirangura, A.; Kavanagh, J.J. Targeted therapies for rare gynaecological cancers. Lancet Oncol. 2010, 11, 685–693. [Google Scholar] [CrossRef]
- Brown, J.; Brady, W.E.; Schink, J.; Van Le, L.; Leitao, M.; Yamada, S.D.; de Geest, K.; Gershenson, D.M. Efficacy and safety of bevacizumab in recurrent sex cord-stromal ovarian tumors: Results of a phase 2 trial of the Gynecologic Oncology Group. Cancer 2014, 120, 344–351. [Google Scholar] [CrossRef]
- Tao, X.; Sood, A.K.; Deavers, M.T.; Schmeler, K.M.; Nick, A.M.; Coleman, R.L.; Milojevic, L.; Gershenson, D.M.; Brown, J. Anti-angiogenesis therapy with bevacizumab for patients with ovarian granulosa cell tumors. Gynecol. Oncol. 2009, 114, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Ray-Coquard, I.L.; Harter, P.; Lorusso, D.; Dalban, C.; Vergote, I.B.; Fujiwara, K.; Gladieff, L.; Lueck, H.J.; Floquet, A.; Lesoin, A.F.; et al. Alienor/ENGOT-ov7 randomized trial exploring weekly paclitaxel (wP) + bevacizumab (bev) vs. wP alone for patients with ovarian sex cord tumors (SCT) in relapse. Ann. Oncol. 2018, 29, viii333. [Google Scholar] [CrossRef]
- Duffy, M.J.; Crown, J. Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors in Cancer Patients. Clin. Chem. 2019, 65, 1228–1238. [Google Scholar] [CrossRef]
- Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; et al. The Immune Landscape of Cancer. Immunity 2018, 48, 812–830.e814. [Google Scholar] [CrossRef] [Green Version]
- Herzog, T.; Arguello, D.; Reddy, S.; Gatalica, Z. PD-1 and PD-L1 expression in 1599 gynecological malignancies-implications for immunotherapy. Gynecol. Oncol. 2015, 137, 204–205. [Google Scholar] [CrossRef]
- Adra, N.; Einhorn, L.H.; Althouse, S.K.; Ammakkanavar, N.R.; Musapatika, D.; Albany, C.; Vaughn, D.; Hanna, N.H. Phase II trial of pembrolizumab in patients with platinum refractory germ-cell tumors: A Hoosier Cancer Research Network Study GU14-206. Ann. Oncol. 2018, 29, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Tran, E.; Robbins, P.F. T-Cell Transfer Therapy Targeting Mutant KRAS. N. Engl. J. Med. 2017, 376, e11. [Google Scholar] [PubMed]
- Hong, L.K.; Chen, Y.; Smith, C.C.; Montgomery, S.A.; Vincent, B.G.; Dotti, G.; Savoldo, B. CD30-Redirected Chimeric Antigen Receptor T Cells Target CD30(+) and CD30(-) Embryonal Carcinoma via Antigen-Dependent and Fas/FasL Interactions. Cancer Immunol. Res. 2018, 6, 1274–1287. [Google Scholar] [CrossRef] [Green Version]
- van Meurs, H.S.; van der Velden, J.; Buist, M.R.; van Driel, W.J.; Kenter, G.G.; van Lonkhuijzen, L.R. Evaluation of response to hormone therapy in patients with measurable adult granulosa cell tumors of the ovary. Acta Obstet. Gynecol. Scand. 2015, 94, 1269–1275. [Google Scholar] [CrossRef]
- Fishman, A.; Kudelka, A.P.; Tresukosol, D.; Edwards, C.L.; Freedman, R.S.; Kaplan, A.L.; Girtanner, R.E.; Kavanagh, J.J. Leuprolide acetate for treating refractory or persistent ovarian granulosa cell tumor. J. Reprod. Med. 1996, 41, 393–396. [Google Scholar]
- Freeman, S.A.; Modesitt, S.C. Anastrozole therapy in recurrent ovarian adult granulosa cell tumors: A report of 2 cases. Gynecol. Oncol. 2006, 103, 755–758. [Google Scholar] [CrossRef]
- van Meurs, H.S.; van Lonkhuijzen, L.R.C.W.; Limpens, J.; van der Velden, J.; Buist, M.R. Hormone therapy in ovarian granulosa cell tumors: A systematic review. Gynecol. Oncol. 2014, 134, 196–205. [Google Scholar] [CrossRef]
- Yang, A.D.; Curtin, J.; Muggia, F. Ovarian adult-type granulosa cell tumor: Focusing on endocrine-based therapies. Int. J. Endocr. Oncol. 2018, 5, IJE08. [Google Scholar]
- Banerjee, S.N.; Tang, M.; O’Connell, R.; Clamp, A.R.; Lord, R.; Mullassery, V.M.; Hall, M.; Gourley, C.; Bonaventura, T.; Goh, J.C.; et al. PARAGON: A phase 2 study of anastrozole (An) in patients with estrogen receptor(ER) and/progesterone receptor (PR) positive recurrent/metastatic granulosa cell tumors/sex-cord stromal tumors (GCT) of the ovary. J. Clin. Oncol. 2018, 36, 5524. [Google Scholar] [CrossRef]
- Garcia-Donas, J.; Hurtado, A.; Garcia-Casado, Z.; Albareda, J.; Lopez-Guerrero, J.A.; Alemany, I.; Grande, E.; Camara, J.C.; Hernando, S. Cytochrome P17 inhibition with ketoconazole as treatment for advanced granulosa cell ovarian tumor. J. Clin. Oncol. 2013, 31, e165–e166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Donas, J.; Hurtado, A.; Garrigos, L.; Santaballa, A.; Redondo, A.; Vidal, L.; Lainez, N.; Guerra, E.; Rodriguez, V.; Cueva, J.; et al. Open Label Phase III Clinical Trial of Ketoconazole as CYP17 Inhibitor in Metastatic or Advanced Non-Resectable Granulosa Cell Ovarian Tumors. The GREKO (GRanulosa Et KetOconazole) Trial. GETHI 2011-03. Social Science Research Network, Preprints with THE LANCET2019. Available online: https://ssrn.com/abstract=3377550 (accessed on 24 April 2019).
- García-Donas, J.; Garrigos, L.; Lainez, N.; Santaballa, A.; Redondo, A.; Cueva, J.F.; Rubio, M.J.; Prieto, M.; Lopez-Guerrero, J.A.; Garcia-Casado, Z.; et al. Open label phase II clinical trial of orteronel (TAK-700) in metastatic or advanced non-resectable granulosa cell ovarian tumors: The Greko II study. J. Clin. Oncol. 2017, 35, 5577. [Google Scholar]
- Kawakami, M.; Liu, X.; Dmitrovsky, E. New Cell Cycle Inhibitors Target Aneuploidy in Cancer Therapy. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 361–377. [Google Scholar] [PubMed]
- Einhorn, L.H.; Brames, M.J.; Heinrich, M.C.; Corless, C.L.; Madani, A. Phase II study of imatinib mesylate in chemotherapy refractory germ cell tumors expressing KIT. Am. J. Clin. Oncol. 2006, 29, 12–13. [Google Scholar] [CrossRef]
- Pedersini, R.; Vattemi, E.; Mazzoleni, G.; Graiff, C. Complete response after treatment with imatinib in pretreated disseminated testicular seminoma with overexpression of c-KIT. Lancet Oncol. 2007, 8, 1039–1040. [Google Scholar] [CrossRef]
- Necchi, A.; Lo Vullo, S.; Giannatempo, P.; Raggi, D.; Calareso, G.; Togliardi, E.; Crippa, F.; Pennati, M.; Zaffaroni, N.; Perrone, F.; et al. Pazopanib in advanced germ cell tumors after chemotherapy failure: Results of the open-label, single-arm, phase 2 Pazotest trial. Ann. Oncol. 2017, 28, 1346–1351. [Google Scholar]
- Subbiah, V.; Meric-Bernstam, F.; Mills, G.B.; Shaw, K.R.; Bailey, A.M.; Rao, P.; Ward, J.F.; Pagliaro, L.C. Next generation sequencing analysis of platinum refractory advanced germ cell tumor sensitive to Sunitinib (Sutent(R)) a VEGFR2/PDGFRbeta/c-kit/ FLT3/RET/CSF1R inhibitor in a phase II trial. J. Hematol. Oncol. 2014, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Brames, M.J.; Vaughn, D.J.; Einhorn, L.H. Phase II clinical trial of oxaliplatin and bevacizumab in refractory germ cell tumors. Am. J. Clin. Oncol. 2014, 37, 450–453. [Google Scholar] [CrossRef]
- Feldman, D.R.; Einhorn, L.H.; Quinn, D.I.; Loriot, Y.; Joffe, J.K.; Vaughn, D.J.; Flechon, A.; Hajdenberg, J.; Halim, A.B.; Zahir, H.; et al. A phase 2 multicenter study of tivantinib (ARQ 197) monotherapy in patients with relapsed or refractory germ cell tumors. Investig. New Drugs 2013, 31, 1016–1022. [Google Scholar] [CrossRef]
- Fenner, M.; Oing, C.; Dieing, A.; Gauler, T.; Oechsle, K.; Lorch, A.; Hentrich, M.; Kopp, H.G.; Bokemeyer, C.; Honecker, F. Everolimus in patients with multiply relapsed or cisplatin refractory germ cell tumors: Results of a phase II, single-arm, open-label multicenter trial (RADIT) of the German Testicular Cancer Study Group. J. Cancer Res. Clin. Oncol. 2019, 145, 717–723. [Google Scholar] [CrossRef]
- Mego, M.; Svetlovska, D.; Chovanec, M.; Reckova, M.; Rejlekova, K.; Obertova, J.; Palacka, P.; Sycova-Mila, Z.; De Giorgi, U.; Mardiak, J. Phase II study of avelumab in multiple relapsed/refractory germ cell cancer. Investig. New Drugs 2019, 37, 748–754. [Google Scholar] [CrossRef]
- Albany, C.; Einhorn, L.; Garbo, L.; Boyd, T.; Josephson, N.; Feldman, D.R. Treatment of CD30-Expressing Germ Cell Tumors and Sex Cord Stromal Tumors with Brentuximab Vedotin: Identification and Report of Seven Cases. Oncologist 2018, 23, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.; Giuliano, C.J.; Palladino, A.; John, K.M.; Abramowicz, C.; Yuan, M.L.; Sausville, E.L.; Lukow, D.A.; Liu, L.; Chait, A.R.; et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 2019, 11, eaaw8412. [Google Scholar] [CrossRef]
- Taylor-Weiner, A.; Zack, T.; O’Donnell, E.; Guerriero, J.L.; Bernard, B.; Reddy, A.; Han, G.C.; AlDubayan, S.; Amin-Mansour, A.; Schumacher, S.E.; et al. Genomic evolution and chemoresistance in germ-cell tumours. Nature 2016, 540, 114–118. [Google Scholar] [CrossRef]
- Engle, D.D.; Tiriac, H.; Rivera, K.D.; Pommier, A.; Whalen, S.; Oni, T.E.; Alagesan, B.; Lee, E.J.; Yao, M.A.; Lucito, M.S.; et al. The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice. Science 2019, 364, 1156–1162. [Google Scholar] [CrossRef]
- Freidlin, B.; Korn, E.L.; Gray, R.; Martin, A. Multi-arm clinical trials of new agents: Some design considerations. Clin. Cancer Res. 2008, 14, 4368–4371. [Google Scholar] [CrossRef] [Green Version]
- Rodon, J.; Soria, J.C.; Berger, R.; Miller, W.H.; Rubin, E.; Kugel, A.; Tsimberidou, A.; Saintigny, P.; Ackerstein, A.; Brana, I.; et al. Genomic and transcriptomic profiling expands precision cancer medicine: The WINTHER trial. Nat. Med. 2019, 25, 751–758. [Google Scholar] [CrossRef]
- Perera-Bel, J.; Hutter, B.; Heining, C.; Bleckmann, A.; Frohlich, M.; Frohling, S.; Glimm, H.; Brors, B.; Beissbarth, T. From somatic variants towards precision oncology: Evidence-driven reporting of treatment options in molecular tumor boards. Genome Med. 2018, 10, 18. [Google Scholar] [CrossRef]
Histological Subtypes | Common Genetic Alterations |
---|---|
Malignant germ cell tumors | Low mutational burden, marked aneuploidy |
Dysgerminoma | KIT mutations (30–50%) Chromosome 12p gain (contains KRAS) (up to 80%) |
Immature teratoma | Copy-neutral LOH * (100%) |
Yolk sac tumor | PI3K/AKT/mTOR amplifications (~40%) KIT mutations (~55%) Chromosome 12p gain (contains KRAS) (~60%) TGF-β/BMP and Wnt/β-catenin signaling |
Embryonal carcinoma | CD30 expression (~80%) |
Mixed germ cell tumor | Chromosome 12p gain (contains KRAS) (~40%) |
Choriocarcinoma | Wnt/β-catenin signaling |
Sex cord–stromal tumors | |
Adult granulosa cell tumor | FOXL2 C134W mutation (> 95% of tumors) TERT mutations (~40%) AKT1 amplification (~60%) Trisomy 8, 9, 12, or 14 Monosomy 22, 16 |
Juvenile granulosa cell tumor | AKT1 duplication/activation (~60%) GNAS mutations (gsp) (~30%) Germline IDH1/2 (Ollier disease, Maffucci syndrome) (rare) |
Sertoli–Leydig cell tumor | Germline and somatic DICER1 mutations (60%) |
Sex cord–stromal tumors with annular tubules | Germline STK11/LKB1 (Peutz–Jeghers syndrome) (~40%) |
Sex cord–stromal tumors, NOS # | No characteristic alterations described |
Pure stromal or other pure sex cord tumors |
Agent | Class | Indication | Female Patients (%) | Results | NCT |
---|---|---|---|---|---|
Imatinib | Kinase inhibitor | Relapsed/refractory stage II or stage III testicular or ovarian tumors | NA | NA | NCT00042952 |
Durvalumab/tremelimumab | Immunotherapy | Relapsed/refractory germ cell tumors | NA | NA | NCT03158064 |
Guadecitabine/cisplatin | Hypomethylating agent/chemotherapy | Relapsed/refractory germ cell tumors | 1 (7%) | ORR 28%, 2/14 with CR | NCT02429466 |
Alvocidib/oxaliplatin± 5 FU | CDK9 inhibitor/chemotherapy | Relapsed/refractory germ cell tumors | 1 (2.8%) | Primary endpoint not met | NCT00957905 |
Bevacizumab/Paclitaxel | Anti-angiogenesis/chemotherapy | Relapsed ovarian sex cord–stromal tumors | 60 (100%) | No improvement in PFS | NCT01770301 |
Bevacizumab | Anti-angiogenesis | Relapsed ovarian sex cord–stromal tumors | 36 (100%) | ORR 17%, SD 78% | NCT00748657 |
Ketoconazole | CYP17 inhibitor, antifungal agent | Locally advanced or metastatic granulosa cell tumor | 6 (100%) | No responses, stable disease achieved in five patients | NCT01584297 |
Orteronel | CYP17 inhibitor, nonsteroidal drug | Locally advanced or metastatic granulosa cell tumor | 10 (100%) | Three patients achieved stable disease for more than 12 months | NCT02101684 |
Onapristone | Progesterone antagonist | PR+, low-grade ovarian tumors, including granulosa cell tumors | 84 (100%) | NA | NCT03909152 |
Enzalutamide | Androgen receptor signaling inhibitor | Locally advanced or metastatic granulosa cell tumor | 35 (100%) | NA | NCT03464201 |
Anastrozole | Aromatase inhibitor | ER/PR+ recurrent/metastatic granulosa cell tumors of the ovary | 41 (100%) | 9.8% partial response, 59% progression-free at 6 months | ACTRN12610000796088 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maoz, A.; Matsuo, K.; Ciccone, M.A.; Matsuzaki, S.; Klar, M.; Roman, L.D.; Sood, A.K.; Gershenson, D.M. Molecular Pathways and Targeted Therapies for Malignant Ovarian Germ Cell Tumors and Sex Cord–Stromal Tumors: A Contemporary Review. Cancers 2020, 12, 1398. https://doi.org/10.3390/cancers12061398
Maoz A, Matsuo K, Ciccone MA, Matsuzaki S, Klar M, Roman LD, Sood AK, Gershenson DM. Molecular Pathways and Targeted Therapies for Malignant Ovarian Germ Cell Tumors and Sex Cord–Stromal Tumors: A Contemporary Review. Cancers. 2020; 12(6):1398. https://doi.org/10.3390/cancers12061398
Chicago/Turabian StyleMaoz, Asaf, Koji Matsuo, Marcia A. Ciccone, Shinya Matsuzaki, Maximilian Klar, Lynda D. Roman, Anil K. Sood, and David M. Gershenson. 2020. "Molecular Pathways and Targeted Therapies for Malignant Ovarian Germ Cell Tumors and Sex Cord–Stromal Tumors: A Contemporary Review" Cancers 12, no. 6: 1398. https://doi.org/10.3390/cancers12061398
APA StyleMaoz, A., Matsuo, K., Ciccone, M. A., Matsuzaki, S., Klar, M., Roman, L. D., Sood, A. K., & Gershenson, D. M. (2020). Molecular Pathways and Targeted Therapies for Malignant Ovarian Germ Cell Tumors and Sex Cord–Stromal Tumors: A Contemporary Review. Cancers, 12(6), 1398. https://doi.org/10.3390/cancers12061398