Efficacy and Safety of Oncolytic Viruses in Randomized Controlled Trials: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Systematic Review Process and Quality Assessment
3.2. Characteristics of Studies
3.3. Effectiveness
3.3.1. Objective Response Rate
3.3.2. Overall Survival and Progression-Free Survival
3.3.3. Safety
3.3.4. Publication Bias and Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ruysscher, D.; Niedermann, G.; Burnet, N.G.; Siva, S.; Lee, A.W.M.; Hegi-Johnson, F. Radiotherapy toxicity. Nat. Rev. Dis. Primers 2019, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Gujar, S.; Bell, J.; Diallo, J.S. SnapShot: Cancer Immunotherapy with Oncolytic Viruses. Cell 2019, 176, 1240. [Google Scholar] [CrossRef]
- Harrington, K.; Freeman, D.J.; Kelly, B.; Harper, J.; Soria, J.C. Optimizing oncolytic virotherapy in cancer treatment. Nat. Rev. Drug Discov. 2019, 18, 689–706. [Google Scholar] [CrossRef]
- Kennedy, B.E.; Sadek, M.; Gujar, S.A. Targeted Metabolic Reprogramming to Improve the Efficacy of Oncolytic Virus Therapy. Mol. Ther. 2020. [Google Scholar] [CrossRef]
- Li, Y.; Pong, R.C.; Bergelson, J.M.; Hall, M.C.; Sagalowsky, A.I.; Tseng, C.P.; Wang, Z.; Hsieh, J.T. Loss of adenoviral receptor expression in human bladder cancer cells: A potential impact on the efficacy of gene therapy. Cancer Res. 1999, 59, 325–330. [Google Scholar]
- Cripe, T.P.; Dunphy, E.J.; Holub, A.D.; Saini, A.; Vasi, N.H.; Mahller, Y.Y.; Collins, M.H.; Snyder, J.D.; Krasnykh, V.; Curiel, D.T.; et al. Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res. 2001, 61, 2953–2960. [Google Scholar]
- van der Poel, H.G.; Molenaar, B.; van Beusechem, V.W.; Haisma, H.J.; Rodriguez, R.; Curiel, D.T.; Gerritsen, W.R. Epidermal growth factor receptor targeting of replication competent adenovirus enhances cytotoxicity in bladder cancer. J. Urol. 2002, 168, 266–272. [Google Scholar] [CrossRef]
- Bischoff, J.R.; Kirn, D.H.; Williams, A.; Heise, C.; Horn, S.; Muna, M.; Ng, L.; Nye, J.A.; Sampson-Johannes, A.; Fattaey, A.; et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996, 274, 373–376. [Google Scholar] [CrossRef]
- Tazawa, H.; Hasei, J.; Yano, S.; Kagawa, S.; Ozaki, T.; Fujiwara, T. Bone and Soft-Tissue Sarcoma: A New Target for Telomerase-Specific Oncolytic Virotherapy. Cancers 2020, 12, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parato, K.A.; Breitbach, C.J.; Le Boeuf, F.; Wang, J.; Storbeck, C.; Ilkow, C.; Diallo, J.S.; Falls, T.; Burns, J.; Garcia, V.; et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol. Ther. 2012, 20, 749–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohlhapp, F.J.; Kaufman, H.L. Molecular pathways: Mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin. Cancer Res. 2016, 22, 1048–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricordel, M.; Foloppe, J.; Antoine, D.; Findeli, A.; Kempf, J.; Cordier, P.; Gerbaud, A.; Grellier, B.; Lusky, M.; Quemeneur, E.; et al. Vaccinia Virus Shuffling: deVV5, a Novel Chimeric Poxvirus with Improved Oncolytic Potency. Cancers 2018, 10, 231. [Google Scholar] [CrossRef] [Green Version]
- Fischer, U.; Steffens, S.; Frank, S.; Rainov, N.G.; Schulze-Osthoff, K.; Kramm, C.M. Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene 2005, 24, 1231–1243. [Google Scholar] [CrossRef] [Green Version]
- Bommareddy, P.K.; Shettigar, M.; Kaufman, H.L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 2018, 18, 498–513. [Google Scholar] [CrossRef]
- Achard, C.; Surendran, A.; Wedge, M.E.; Ungerechts, G.; Bell, J.; Ilkow, C.S. Lighting a Fire in the Tumor Microenvironment Using Oncolytic Immunotherapy. EBioMedicine 2018, 31, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Samson, A.; Scott, K.J.; Taggart, D.; West, E.J.; Wilson, E.; Nuovo, G.J.; Thomson, S.; Corns, R.; Mathew, R.K.; Fuller, M.J.; et al. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci. Transl. Med. 2018, 10. [Google Scholar] [CrossRef]
- Schenk, E.L.; Mandrekar, S.J.; Dy, G.K.; Aubry, M.C.; Tan, A.D.; Dakhil, S.R.; Sachs, B.A.; Nieva, J.J.; Bertino, E.; Lee Hann, C.; et al. A Randomized Double-Blind Phase II Study of the Seneca Valley Virus (NTX-010) versus Placebo for Patients with Extensive-Stage SCLC (ES SCLC) Who Were Stable or Responding after at Least Four Cycles of Platinum-Based Chemotherapy: North Central Cancer Treatment Group (Alliance) N0923 Study. J. Thorac. Oncol. 2020, 15, 110–119. [Google Scholar] [CrossRef]
- McCarthy, C.; Jayawardena, N.; Burga, L.N.; Bostina, M. Developing Picornaviruses for Cancer Therapy. Cancers 2019, 11, 685. [Google Scholar] [CrossRef] [Green Version]
- Calton, C.M.; Kelly, K.R.; Anwer, F.; Carew, J.S.; Nawrocki, S.T. Oncolytic Viruses for Multiple Myeloma Therapy. Cancers 2018, 10, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.S.; Lu, B.; Guo, Z.; Giehl, E.; Feist, M.; Dai, E.; Liu, W.; Storkus, W.J.; He, Y.; Liu, Z.; et al. Vaccinia virus-mediated cancer immunotherapy: Cancer vaccines and oncolytics. J. Immunother. Cancer 2019, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Fountzilas, C.; Patel, S.; Mahalingam, D. Review: Oncolytic virotherapy, updates and future directions. Oncotarget 2017, 8, 102617–102639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, A.; Ho, L.; Wan, Y. Chemotherapy and Oncolytic Virotherapy: Advanced Tactics in the War against Cancer. Front. Oncol. 2014, 4, 145. [Google Scholar] [CrossRef] [Green Version]
- Bayan, C.Y.; Lopez, A.T.; Gartrell, R.D.; Komatsubara, K.M.; Bogardus, M.; Rao, N.; Chen, C.; Hart, T.D.; Enzler, T.; Rizk, E.M.; et al. The Role of Oncolytic Viruses in the Treatment of Melanoma. Curr. Oncol. Rep. 2018, 20, 80. [Google Scholar] [CrossRef]
- Andtbacka, R.H.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J. Clin. Oncol. 2015, 33, 2780–2788. [Google Scholar] [CrossRef]
- Chesney, J.; Puzanov, I.; Collichio, F.; Singh, P.; Milhem, M.M.; Glaspy, J.; Hamid, O.; Ross, M.; Friedlander, P.; Garbe, C.; et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol. 2018, 36, 1658–1667. [Google Scholar] [CrossRef]
- Bernstein, V.; Ellard, S.L.; Dent, S.F.; Tu, D.; Mates, M.; Dhesy-Thind, S.K.; Panasci, L.; Gelmon, K.A.; Salim, M.; Song, X.; et al. A randomized phase II study of weekly paclitaxel with or without pelareorep in patients with metastatic breast cancer: Final analysis of Canadian Cancer Trials Group IND.213. Breast Cancer Res. Treat. 2018, 167, 485–493. [Google Scholar] [CrossRef]
- Bradbury, P.A.; Morris, D.G.; Nicholas, G.; Tu, D.; Tehfe, M.; Goffin, J.R.; Shepherd, F.A.; Gregg, R.W.; Rothenstein, J.; Lee, C.; et al. Canadian Cancer Trials Group (CCTG) IND211: A randomized trial of pelareorep (Reolysin) in patients with previously treated advanced or metastatic non-small cell lung cancer receiving standard salvage therapy. Lung Cancer 2018, 120, 142–148. [Google Scholar] [CrossRef]
- Cohn, D.E.; Sill, M.W.; Walker, J.L.; O’Malley, D.; Nagel, C.I.; Rutledge, T.L.; Bradley, W.; Richardson, D.L.; Moxley, K.M.; Aghajanian, C. Randomized phase IIB evaluation of weekly paclitaxel versus weekly paclitaxel with oncolytic reovirus (Reolysin®) in recurrent ovarian, tubal, or peritoneal cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol. Oncol. 2017, 146, 477–483. [Google Scholar] [CrossRef]
- Eigl, B.J.; Chi, K.; Tu, D.; Hotte, S.J.; Winquist, E.; Booth, C.M.; Canil, C.; Potvin, K.; Gregg, R.; North, S.; et al. A randomized phase II study of pelareorep and docetaxel or docetaxel alone in men with metastatic castration resistant prostate cancer: CCTG study IND 209. Oncotarget 2018, 9, 8155–8164. [Google Scholar] [CrossRef] [PubMed]
- Jonker, D.J.; Tang, P.A.; Kennecke, H.; Welch, S.A.; Cripps, M.C.; Asmis, T.; Chalchal, H.; Tomiak, A.; Lim, H.; Ko, Y.J.; et al. A Randomized Phase II Study of FOLFOX6/Bevacizumab With or Without Pelareorep in Patients With Metastatic Colorectal Cancer: iND.210, a Canadian Cancer Trials Group Trial. Clin. Colorectal Cancer 2018, 17, 231–239.e237. [Google Scholar] [CrossRef] [PubMed]
- Noonan, A.M.; Farren, M.R.; Geyer, S.M.; Huang, Y.; Tahiri, S.; Ahn, D.; Mikhail, S.; Ciombor, K.K.; Pant, S.; Aparo, S.; et al. Randomized Phase 2 Trial of the Oncolytic Virus Pelareorep (Reolysin) in Upfront Treatment of Metastatic Pancreatic Adenocarcinoma. Mol. Ther. 2016, 24, 1150–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freytag, S.O.; Stricker, H.; Lu, M.; Elshaikh, M.; Aref, I.; Pradhan, D.; Levin, K.; Kim, J.H.; Peabody, J.; Siddiqui, F.; et al. Prospective randomized phase 2 trial of intensity modulated radiation therapy with or without oncolytic adenovirus-mediated cytotoxic gene therapy in intermediate-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moehler, M.; Heo, J.; Lee, H.C.; Tak, W.Y.; Chao, Y.; Paik, S.W.; Yim, H.J.; Byun, K.S.; Baron, A.; Ungerechts, G.; et al. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: A randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, K.; Chen, W.; Johnson, D.C.; Hendricks, R.L. Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. J. Exp. Med. 1998, 187, 341–348. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Chou, J.; Brandimarti, R.; Mohr, I.; Gluzman, Y.; Roizman, B. Suppression of the phenotype of gamma(1)34.5- herpes simplex virus 1: Failure of activated RNA-dependent protein kinase to shut off protein synthesis is associated with a deletion in the domain of the alpha47 gene. J. Virol. 1997, 71, 6049–6054. [Google Scholar] [CrossRef] [Green Version]
- Breitbach, C.J.; Arulanandam, R.; De Silva, N.; Thorne, S.H.; Patt, R.; Daneshmand, M.; Moon, A.; Ilkow, C.; Burke, J.; Hwang, T.H.; et al. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res. 2013, 73, 1265–1275. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarty, R.; Tran, H.; Selvaggi, G.; Hagerman, A.; Thompson, B.; Coffey, M. The oncolytic virus, pelareorep, as a novel anticancer agent: A review. Investig. New Drugs 2015. [Google Scholar] [CrossRef]
- Reddy, P.S.; Burroughs, K.D.; Hales, L.M.; Ganesh, S.; Jones, B.H.; Idamakanti, N.; Hay, C.; Li, S.S.; Skele, K.L.; Vasko, A.J.; et al. Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. J. Natl. Cancer Inst. 2007, 99, 1623–1633. [Google Scholar] [CrossRef] [PubMed]
- Lemos de Matos, A.; Franco, L.S.; McFadden, G. Oncolytic Viruses and the Immune System: The Dynamic Duo. Mol. Ther. Methods Clin. Dev. 2020, 17, 349–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufman, H.L.; Kohlhapp, F.J.; Zloza, A. Oncolytic viruses: A new class of immunotherapy drugs. Nat. Rev. Drug Discov. 2015, 14, 642–662. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Huang, J.; Tong, A.; Yang, H. Oncolytic Viruses for Cancer Therapy: Barriers and Recent Advances. Mol. Ther. Oncolytics 2019, 15, 234–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkeley, R.A.; Steele, L.P.; Mulder, A.A.; Van Den Wollenberg, D.J.M.; Kottke, T.J.; Thompson, J.; Coffey, M.; Hoeben, R.C.; Vile, R.G.; Melcher, A.; et al. Antibody-neutralized reovirus is effective in oncolytic virotherapy. Cancer Immunol. Res. 2018, 6, 1161–1173. [Google Scholar] [CrossRef] [PubMed]
- Lichty, B.D.; Breitbach, C.J.; Stojdl, D.F.; Bell, J.C. Going viral with cancer immunotherapy. Nat. Rev. Cancer 2014, 14, 559–567. [Google Scholar] [CrossRef]
- Twumasi-Boateng, K.; Pettigrew, J.L.; Kwok, Y.Y.E.; Bell, J.C.; Nelson, B.H. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat. Rev. Cancer 2018, 18, 419–432. [Google Scholar] [CrossRef]
- Gujar, S.; Pol, J.G.; Kim, Y.; Lee, P.W.; Kroemer, G. Antitumor Benefits of Antiviral Immunity: An Underappreciated Aspect of Oncolytic Virotherapies. Trends Immunol. 2018, 39, 209–221. [Google Scholar] [CrossRef]
- Bommareddy, P.K.; Kaufman, H.L. Unleashing the therapeutic potential of oncolytic viruses. J. Clin. Investig. 2018, 128, 1258–1260. [Google Scholar] [CrossRef]
First Author (Year) | Tumor Type | Treatment Arm | Injection Mode | Age (Years) | Male, No. (%) |
---|---|---|---|---|---|
Andtbacka 2015 [26] | Melanoma | T-VEC vs. GM-CSF | IT | EG: median 63 (22–94) CG: median 64 (26–91) | EG: 173/295 (59%) CG: 77/141 (55%) |
Bernstein 2018 [28] | Breast cancer | Pelareorep + paclitaxel vs. paclitaxel | IV | EG: median 61 (44–78) CG: median 57 (36–73) | EG: 0/36 (0%) CG: 0/38 (0%) |
Bradbury 2018 [29] | Non-small cell lung cancer | Pelareorep + chemotherapy vs. chemotherapy | IV | EG-1: median 63 (43–78) EG-2: 64 (23–77) CG-1: median 65 (39–80) CG-2: 64 (41–84) | EG: 36/77 (47%) CG: 41/75 (55%) |
Chesney 2018 [27] | Melanoma | T-VEC + ipilimumab vs. ipilimumab | IT | EG: median 65 (23–93) CG: median 64 (23–90) | EG: 62/98 (63%) CG: 55/100 (55%) |
Cohn 2017 [30] | Ovarian, tubal, or peritoneal cancer | Pelareorep + paclitaxel vs. paclitaxel | IV | NR | EG: 0/54 (0%) CG: 0/54 (0%) |
Eigl 2018 [31] | Prostate cancer | Pelareorep + docetaxel vs. docetaxel | IV | EG: median 69.1 (50.3–83.7) CG: median 68.6 (49.7–86.6) | EG: 21/21 (100%) CG: 23/23 (100%) |
Freytag 2014 [34] | Prostate cancer | Ad5-yCD/mutTKSR39rep-ADP + IMRT vs. IMRT | IT | EG: mean 68.0 (55–78) CG: mean 65.2 (51–79) | EG: 41/41 (100%) CG: 44/44 (100%) |
Jonker 2018 [32] | Colorectal cancer | Pelareorep + FOLFOX6/bevacizumab vs. FOLFOX6/bevacizumab | IV | EG: median 60 (34–79) CG: median 59 (31–78) | EG: 19/51 (37%) CG: 21/52 (40%) |
Moehler 2019 [35] | Hepatocellular carcinoma | Pexa-Vec + BSC vs. BSC | IV | EG: mean 60 ± 11 CG: mean 55 ± 12 | EG: 72/86 (84%) CG: 33/43 (77%) |
Noonan 2016 [33] | Pancreatic adenocarcinoma | Pelareorep + paclitaxel/carboplatin vs. paclitaxel/carboplatin | IV | EG: median 61.5 (39–84) CG: median 66 (45–81) | EG: 22/36 (61.1%) CG: 19/37 (51.4%) |
Schenk 2020 [19] | Small cell lung cancer | NTX-010 vs. placebo | IV | EG: median 67 (44–81) CG: median 60 (50–82) | EG: 14/26 (53.9%) CG:10/24 (41.7%) |
First Author (Year) | Median OS (Months) | HR (95% CI) for OS | Median PFS (Months) | HR (95% CI) for PFS | ORR | Severe Adverse Event |
---|---|---|---|---|---|---|
Andtbacka 2015 [26] | EG: 23.3 CG: 18.9 | 0.79 (0.62, 1.00) | NR | NR | EG: 78 CG: 8 | EG:105 CG: 27 |
Bernstein 2018 [28] | EG: 17.4 CG: 10.4 | 0.61 (0.33, 1.12) | EG: 3.78 CG: 3.38 | 1.11 (0.64, 1.92) | EG: 9 CG: 9 | EG: 18 CG: 18 |
Bradbury 2018 [29] | EG: 7.8 CG: 7.4 | 0.98 (0.72, 1.34) | EG: 3.0 CG: 2.8 | 0.90 (0.65, 1.25) | EG: 11 CG: 11 | NR |
Chesney 2018 [27] | NR | 0.80 (0.44, 1.46) | EG: 8.2 CG: 6.4 | 0.83 (0.56, 1.23) | EG: 38 CG: 18 | EG: 43 CG: 33 |
Cohn 2017 [30] | EG: 12.6 CG: 13.1 | 1.01 (0.64, 1.58) | EG: 4.4 CG: 4.3 | 1.11 (0.64, 1.91) | EG: 8 CG: 9 | NR |
Eigl 2018 [31] | NR | 1.86 (0.97, 3.57) | NR | NR | EG: 11 CG: 18 | NR |
Freytag 2014 [34] | No death | NR | No death | NR | NR | EG: 1 CG: 1 |
Jonker 2018 [32] | EG: 19.2 CG: 20.1 | 1.18 (0.75, 1.87) | EG: 7.33 CG: 9.13 | 1.65 (1.02, 2.67) | EG: 27 CG: 18 | NR |
Moehler 2019 [35] | EG: 4.2 CG: 4.4 | 1.19 (0.77, 1.83) | EG: 4.94 CG: 5.2 | NR | EG: 0 CG: 0 | EG: 45 CG: 7 |
Noonan 2016 [33] | EG: 7.31 CG: 8.77 | 1.12 (0.66, 1.91) | EG: 1.7 CG: 1.7 | 0.86 (0.52, 1.43) | EG: 7 CG: 7 | NR |
Schenk 2020 [19] | EG: 6.6 CG: 13.2 | 1.49 (0.77, 2.87) | NR | 1.03 (0.58, 1.83) | EG: 1 CG: 4 | EG: 9 CG: 5 |
Adverse Event | All Grades | Grade ≥3 | ||||||
---|---|---|---|---|---|---|---|---|
I2 | RR (95% CI) | p | Incidence of EG | I2 | RR (95% CI) | p | Incidence of EG | |
Fever | 73% | 3.87 (2.15, 6.69) | <0.00001 * | 48.90% | 0% | 3.07 (0.62, 15.10) | 0.17 | 1.825% |
Neutropenia | 67% | 1.66 (1.21, 2.29) | 0.002 * | 63.01% | 50% | 1.36 (1.03, 1.80) | 0.03 * | 40.36% |
Febrile neutropenia | 66% | 1.76 (0.66,4.69) | 0.25 | 25.18% | 3% | 1.19 (0.77, 1.84) | 0.44 | 15.52% |
Leukopenia | 36% | 1.21 (0.96, 1.51) | 0.11 | 71.23% | 90% | 1.84 (0.23, 14.36) | 0.56 | 26.61% |
Diarrhea | 17% | 1.56 (1.26, 1.95) | <0.0001 * | 28.78% | 13% | 1.12 (0.56, 2.22) | 0.75 | 2.178% |
Nausea | 35% | 1.49 (1.28, 1.74) | <0.00001 * | 45.24% | 0% | 1.05 (0.48, 2.29) | 0.89 | 1.754% |
Vomiting | 36% | 1.65 (1.27, 2.14) | 0.0002 * | 27.84% | 5% | 0.68 (0.30, 1.52) | 0.35 | 1.983% |
Chills | 32% | 7.04 (4.64, 10.66) | <0.00001 * | 45.84% | NA | 0.92 (0.04, 21.85) | 0.96 | 0.1825% |
Fatigue | 85% | 1.22 (0.95, 1.57) | 0.12 | 55.35% | 0% | 1.24 (0.83, 1.85) | 0.29 | 6.836% |
Flu-like symptoms | 60% | 4.13 (2.15, 7.94) | <0.0001 * | 31.29% | 0% | 4.41 (0.82, 23.81) | 0.08 | 1.23% |
Decreased appetite/anorexi-a | 25% | 1.23 (0.98, 1.56) | 0.08 | 25.91% | 51% | 0.55 (0.17, 1.76) | 0.32 | 0.6048% |
Arthralgia | 13% | 1.51 (1.09, 2.12) | 0.01 * | 19.01% | 0% | 0.94 (0.19, 4.67) | 0.94 | 0.6073% |
Myalgia | 47% | 1.97 (1.32, 2.96) | 0.001 * | 18.42% | NA | 1.31 (0.05, 31.96) | 0.87 | 0.2208% |
Pain in extremity | 0% | 1.50 (1.06, 2.11) | 0.02 * | 20.98% | 0% | 1.57 (0.40, 6.21) | 0.52 | 1.897% |
Headache | 0% | 1.90 (1.42, 2.53) | <0.0001 * | 24.11% | 0% | 1.86 (0.47, 7.34) | 0.38 | 1.095% |
Cough | 17% | 0.85 (0.67, 1.07) | 0.17 | 21.66% | NA | 0.32 (0.01, 7.85) | 0.49 | 0 |
Cellulitis | NA | 3.70 (0.87, 15.76) | 0.08 | 5.822% | NA | 2.64 (0.31, 22.18) | 0.37 | 2.055% |
Thrombocytope-nia | 0% | 2.74 (1.65, 4.57) | 0.0001 * | 54.79% | 0% | 1.23 (0.58, 2.61) | 0.59 | 10.09% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Jiang, Z.; Zhang, Y.; Huang, X.; Liu, Q. Efficacy and Safety of Oncolytic Viruses in Randomized Controlled Trials: A Systematic Review and Meta-Analysis. Cancers 2020, 12, 1416. https://doi.org/10.3390/cancers12061416
Li Z, Jiang Z, Zhang Y, Huang X, Liu Q. Efficacy and Safety of Oncolytic Viruses in Randomized Controlled Trials: A Systematic Review and Meta-Analysis. Cancers. 2020; 12(6):1416. https://doi.org/10.3390/cancers12061416
Chicago/Turabian StyleLi, Zengbin, Zeju Jiang, Yingxuan Zhang, Xiaotian Huang, and Qiong Liu. 2020. "Efficacy and Safety of Oncolytic Viruses in Randomized Controlled Trials: A Systematic Review and Meta-Analysis" Cancers 12, no. 6: 1416. https://doi.org/10.3390/cancers12061416
APA StyleLi, Z., Jiang, Z., Zhang, Y., Huang, X., & Liu, Q. (2020). Efficacy and Safety of Oncolytic Viruses in Randomized Controlled Trials: A Systematic Review and Meta-Analysis. Cancers, 12(6), 1416. https://doi.org/10.3390/cancers12061416