Prognostic Impact of Pretherapeutic FDG-PET in Localized Anal Cancer
Abstract
:1. Introduction
2. Results
2.1. Patient Population
2.2. Univariate Analysis
2.3. Multivariate Analysis
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. FDG-PET Acquisition
4.3. Interpretation of PET-CT Images and Segmentation Methods
4.4. Patient Follow-Up
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ryan, D.P.; Compton, C.C.; Mayer, R.J. Carcinoma of the anal canal. N. Engl. J. Med. 2000, 342, 792–800. [Google Scholar] [CrossRef]
- Fesneau, M.; Champeaux-Orange, E.; Hennequin, C. [Anal cancer]. Cancer Radiother. J. Soc. Fr. Radiother. Oncol. 2010, 14 (Suppl. 1), S120–S126. [Google Scholar]
- Glynne-Jones, R.; Renehan, A. Current treatment of anal squamous cell carcinoma. Hematol. Oncol. Clin. North Am. 2012, 26, 1315–1350. [Google Scholar] [CrossRef]
- Glynne-Jones, R.; Nilsson, P.J.; Aschele, C.; Goh, V.; Peiffert, D.; Cervantes, A.; Arnold, D. Anal cancer: ESMO-ESSO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2014, 25 (Suppl. 3), iii10–iii20. [Google Scholar] [CrossRef]
- Moureau-Zabotto, L.; Vendrely, V.; Abramowitz, L.; Borg, C.; Francois, E.; Goere, D.; Huguet, F.; Peiffert, D.; Siproudhis, L.; Ducreux, M.; et al. Anal cancer: French Intergroup Clinical Practice Guidelines for diagnosis, treatment and follow-up (SNFGE, FFCD, GERCOR, UNICANCER, SFCD, SFED, SFRO, SNFCP). Dig. Liver Dis. 2017, 49, 831–840. [Google Scholar] [CrossRef] [Green Version]
- Papillon, J.; Mayer, M.; Montbarbon, J.F.; Gerard, J.P.; Chassard, J.L.; Bailly, C. A new approach to the management of epidermoid carcinoma of the anal canal. Cancer 1983, 51, 1830–1837. [Google Scholar] [CrossRef]
- UKCCCR Anal Cancer Trial Working Party; UK Co-ordinating Committee on Cancer Research. Epidermoid anal cancer: Results from the UKCCCR randomised trial of radiotherapy alone versus radiotherapy, 5-fluorouracil, and mitomycin. Lancet Lond. Engl. 1996, 348, 1049–1054. [Google Scholar] [CrossRef]
- Bartelink, H.; Roelofsen, F.; Eschwege, F.; Rougier, P.; Bosset, J.F.; Gonzalez, D.G.; Peiffert, D.; van Glabbeke, M.; Pierart, M. Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: Results of a phase III randomized trial of the European Organization for Research and Treatment of Cancer Radiotherapy and Gastrointestinal Cooperative Groups. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1997, 15, 2040–2049. [Google Scholar]
- Ajani, J.A.; Winter, K.A.; Gunderson, L.L.; Pedersen, J.; Benson, A.B.; Thomas, C.R.; Mayer, R.J.; Haddock, M.G.; Rich, T.A.; Willett, C. Fluorouracil, mitomycin, and radiotherapy vs fluorouracil, cisplatin, and radiotherapy for carcinoma of the anal canal: A randomized controlled trial. JAMA 2008, 299, 1914–1921. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, R.; Harsini, S.; Qodsi Rad, M.A.; Dabbagh, V.R.; Treglia, G. Prognostic Significance of Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography in Anal Squamous Cell Carcinoma: A Systematic Review and a Meta-Analysis. Contrast Media Mol. Imaging 2018, 2018, 9760492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papillon, J.; Montbarbon, J.F. Epidermoid carcinoma of the anal canal. A series of 276 cases. Dis. Colon Rectum 1987, 30, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Schlienger, M.; Krzisch, C.; Pene, F.; Marin, J.L.; Gindrey-Vie, B.; Mauban, S.; Barthelemy, N.; Habrand, J.L.; Socie, G.; Parc, R. Epidermoid carcinoma of the anal canal treatment results and prognostic variables in a series of 242 cases. Int. J. Radiat. Oncol. Biol. Phys. 1989, 17, 1141–1151. [Google Scholar] [CrossRef]
- Wagner, J.P.; Mahe, M.A.; Romestaing, P.; Rocher, F.P.; Berger, C.; Trillet-Lenoir, V.; Gerard, J.P. Radiation therapy in the conservative treatment of carcinoma of the anal canal. Int. J. Radiat. Oncol. Biol. Phys. 1994, 29, 17–23. [Google Scholar] [CrossRef]
- Ajani, J.A.; Winter, K.A.; Gunderson, L.L.; Pedersen, J.; Benson, A.B.; Thomas, C.R.; Mayer, R.J.; Haddock, M.G.; Rich, T.A.; Willett, C.G. Prognostic factors derived from a prospective database dictate clinical biology of anal cancer: The intergroup trial (RTOG 98-11). Cancer 2010, 116, 4007–4013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glynne-Jones, R.; Sebag-Montefiore, D.; Adams, R.; Gollins, S.; Harrison, M.; Meadows, H.M.; Jitlal, M.; United Kingdom Coordinating Committee on Cancer Research Anal Cancer Trial Working Party. Prognostic factors for recurrence and survival in anal cancer: Generating hypotheses from the mature outcomes of the first United Kingdom Coordinating Committee on Cancer Research Anal Cancer Trial (ACT I). Cancer 2013, 119, 748–755. [Google Scholar]
- Fédération Nationale des Centres de Lutte Contre le Cancer Enquête Permanente Cancer 1975–1989; Monographie FNCLCC: Paris, France, 1992.
- Salmon, R.J.; Fenton, J.; Asselain, B.; Mathieu, G.; Girodet, J.; Durand, J.C.; Decroix, Y.; Pilleron, J.P.; Rousseau, J. Treatment of epidermoid anal canal cancer. Am. J. Surg. 1984, 147, 43–48. [Google Scholar] [CrossRef]
- Gunderson, L.L.; Moughan, J.; Ajani, J.A.; Pedersen, J.E.; Winter, K.A.; Benson, A.B.; Thomas, C.R.; Mayer, R.J.; Haddock, M.G.; Rich, T.A.; et al. Anal carcinoma: Impact of TN category of disease on survival, disease relapse, and colostomy failure in US Gastrointestinal Intergroup RTOG 98-11 phase 3 trial. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 638–645. [Google Scholar] [CrossRef] [Green Version]
- Sveistrup, J.; Loft, A.; Berthelsen, A.K.; Henriksen, B.M.; Nielsen, M.B.; Engelholm, S.A. Positron emission tomography/computed tomography in the staging and treatment of anal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 134–141. [Google Scholar] [CrossRef]
- Bazan, J.G.; Koong, A.C.; Kapp, D.S.; Quon, A.; Graves, E.E.; Loo, B.W.; Chang, D.T. Metabolic tumor volume predicts disease progression and survival in patients with squamous cell carcinoma of the anal canal. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2013, 54, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Bhuva, N.J.; Glynne-Jones, R.; Sonoda, L.; Wong, W.-L.; Harrison, M.K. To PET or not to PET? That is the question. Staging in anal cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012, 23, 2078–2082. [Google Scholar] [CrossRef]
- Cotter, S.E.; Grigsby, P.W.; Siegel, B.A.; Dehdashti, F.; Malyapa, R.S.; Fleshman, J.W.; Birnbaum, E.H.; Wang, X.; Abbey, E.; Tan, B.; et al. FDG-PET/CT in the evaluation of anal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.T.; Joon, D.L.; Khoo, V.; Quong, G.; Chao, M.; Wada, M.; Joon, M.L.; See, A.; Feigen, M.; Rykers, K.; et al. Assessing the impact of FDG-PET in the management of anal cancer. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2008, 87, 376–382. [Google Scholar] [CrossRef] [PubMed]
- De Winton, E.; Heriot, A.G.; Ng, M.; Hicks, R.J.; Hogg, A.; Milner, A.; Leong, T.; Fay, M.; MacKay, J.; Drummond, E.; et al. The impact of 18-fluorodeoxyglucose positron emission tomography on the staging, management and outcome of anal cancer. Br. J. Cancer 2009, 100, 693–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistrangelo, M.; Pelosi, E.; Bellò, M.; Ricardi, U.; Milanesi, E.; Cassoni, P.; Baccega, M.; Filippini, C.; Racca, P.; Lesca, A.; et al. Role of positron emission tomography-computed tomography in the management of anal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 66–72. [Google Scholar] [CrossRef]
- Vercellino, L.; Montravers, F.; de Parades, V.; Huchet, V.; Kerrou, K.; Bauer, P.; Touboul, E.; Talbot, J.-N. Impact of FDG PET/CT in the staging and the follow-up of anal carcinoma. Int. J. Colorectal Dis. 2011, 26, 201–210. [Google Scholar] [CrossRef]
- Mahmud, A.; Poon, R.; Jonker, D. PET imaging in anal canal cancer: A systematic review and meta-analysis. Br. J. Radiol. 2017, 90, 20170370. [Google Scholar] [CrossRef]
- Gauthé, M.; Richard-Molard, M.; Fayard, J.; Alberini, J.-L.; Cacheux, W.; Lièvre, A. Prognostic impact of tumour burden assessed by metabolic tumour volume on FDG PET/CT in anal canal cancer. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 63–70. [Google Scholar] [CrossRef]
- Deantonio, L.; Milia, M.E.; Cena, T.; Sacchetti, G.; Perotti, C.; Brambilla, M.; Turri, L.; Krengli, M. Anal cancer FDG-PET standard uptake value: Correlation with tumor characteristics, treatment response and survival. Radiol. Med. (Torino) 2016, 121, 54–59. [Google Scholar] [CrossRef]
- Kidd, E.A.; Dehdashti, F.; Siegel, B.A.; Grigsby, P.W. Anal cancer maximum F-18 fluorodeoxyglucose uptake on positron emission tomography is correlated with prognosis. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2010, 95, 288–291. [Google Scholar] [CrossRef]
- Mohammadkhani Shali, S.; Schmitt, V.; Behrendt, F.F.; Winz, O.H.; Heinzel, A.; Mottaghy, F.M.; Eble, M.J.; Verburg, F.A. Metabolic tumour volume of anal carcinoma on (18)FDG PET/CT before combined radiochemotherapy is the only independant determinant of recurrence free survival. Eur. J. Radiol. 2016, 85, 1390–1394. [Google Scholar] [CrossRef]
- Day, F.L.; Link, E.; Ngan, S.; Leong, T.; Moodie, K.; Lynch, C.; Michael, M.; de Winton, E.; Hogg, A.; Hicks, R.J.; et al. FDG-PET metabolic response predicts outcomes in anal cancer managed with chemoradiotherapy. Br. J. Cancer 2011, 105, 498–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusten, E.; Rekstad, B.L.; Undseth, C.; Klotz, D.; Hernes, E.; Guren, M.G.; Malinen, E. Anal cancer chemoradiotherapy outcome prediction using 18F-fluorodeoxyglucose positron emission tomography and clinicopathological factors. Br. J. Radiol. 2019, 92, 20181006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duimering, A.; Riauka, T.; Nijjar, Y.; Ghosh, S.; MacEwan, R.; Warkentin, H.; Schiller, D.; Tankel, K.; Usmani, N.; Severin, D.; et al. Prognostic utility of pre- and post-treatment FDG-PET parameters in anal squamous cell carcinoma. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2019, 136, 21–28. [Google Scholar] [CrossRef]
- Vauclin, S.; Doyeux, K.; Hapdey, S.; Edet-Sanson, A.; Vera, P.; Gardin, I. Development of a generic thresholding algorithm for the delineation of 18FDG-PET-positive tissue: Application to the comparison of three thresholding models. Phys. Med. Biol. 2009, 54, 6901–6916. [Google Scholar] [CrossRef] [PubMed]
- Erdi, Y.E.; Mawlawi, O.; Larson, S.M.; Imbriaco, M.; Yeung, H.; Finn, R.; Humm, J.L. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997, 80, 2505–2509. [Google Scholar] [CrossRef]
- Black, Q.C.; Grills, I.S.; Kestin, L.L.; Wong, C.-Y.O.; Wong, J.W.; Martinez, A.A.; Yan, D. Defining a radiotherapy target with positron emission tomography. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 1272–1282. [Google Scholar] [CrossRef]
- Nestle, U.; Kremp, S.; Schaefer-Schuler, A.; Sebastian-Welsch, C.; Hellwig, D.; Rübe, C.; Kirsch, C.-M. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2005, 46, 1342–1348. [Google Scholar]
- Vauclin, S.; Gardin, I.; Doyeux, K.; Hapdey, S.; Edet-Sanson, A.; Vera, P. Segmentation des images TEP au 18 F-FDG. Principe et revue de la littérature. Méd. Nucl. 2010, 34, 358–369. [Google Scholar] [CrossRef]
- Amin, M.B.; Edge, S.; Greene, F.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. AJCC Cancer Staging Manual; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-40617-6. [Google Scholar]
- Lee, J.A. Segmentation of positron emission tomography images: Some recommendations for target delineation in radiation oncology. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2010, 96, 302–307. [Google Scholar] [CrossRef]
- Le Maitre, A.; Hatt, M.; Pradier, O.; Cheze-le Rest, C.; Visvikis, D. Impact of the accuracy of automatic tumour functional volume delineation on radiotherapy treatment planning. Phys. Med. Biol. 2012, 57, 5381–5397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visvikis, D.; Hatt, M.; Tixier, F.; Cheze Le Rest, C. The age of reason for FDG PET image-derived indices. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1670–1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, P.J.; Zhong, J.; Frood, R.; Currie, S.; Gilbert, A.; Appelt, A.L.; Sebag-Montefiore, D.; Scarsbrook, A. Prediction of outcome in anal squamous cell carcinoma using radiomic feature analysis of pre-treatment FDG PET-CT. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2790–2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.; Hruby, G.; Solomon, M.; Rutherford, N.; Martin, J. The Role of FDG-PET in the Initial Staging and Response Assessment of Anal Cancer: A Systematic Review and Meta-analysis. Ann. Surg. Oncol. 2015, 22, 3574–3581. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.B.; Arnoletti, J.P.; Bekaii-Saab, T.; Chan, E.; Chen, Y.-J.; Choti, M.A.; Cooper, H.S.; Dilawari, R.A.; Engstrom, P.F.; Enzinger, P.C.; et al. Anal Carcinoma, Version 2.2012: Featured updates to the NCCN guidelines. J. Natl. Compr. Cancer Netw. JNCCN 2012, 10, 449–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | n = 81 |
---|---|
Negative HIV status | 79 (97.5%) |
HPV status | |
Positive | 22 (27.2%) |
Negative | 1 (0.2%) |
Unknown | 58 (71.6%) |
Median age, years (range) | 62.3 (32–89) |
Sex | |
Male | 12 (14.8%) |
Female | 69 (85.2%) |
TNM Classification with CI | |
T1 | 6 (7.4%) |
T2 | 32(39.5%) |
T3 | 24 (29.6%) |
T4 | 19 (23.5%) |
N0 | 33 (40.7%) |
N1 | 30 (37%) |
N2 | 12 (14.8%) |
N3 | 3 (7.4%) |
Treatment | |
Exclusive radiotherapy | 13 (16%) |
Radiotherapy + chemotherapy | 68 (84%) |
Surgery by APA | 21 (25.9%) |
Lymph node status established by pretherapeutic FDG PET | |
N0 | 27 (33.3%) |
N1 | 19 (23.5%) |
N2 | 20 (24.7%) |
N3 | 15 (18.5%) |
Variables | HR | 95% IC | p Values | |
---|---|---|---|---|
Age | 1.215 | 0.562–2.626 | 0.620 | |
Sex (Male vs. Female) | 3.326 | 1.379–8.020 | 0.007 | |
T defined by conventional imaging (≥3 vs. 1 or 2) | 1.648 | 0.747–3.638 | 0.216 | |
N defined by conventional imaging (≥1 vs. 0) | 1.657 | 0.720–3.813 | 0.235 | |
N defined by FDG-PET (≥1 vs. 0) | 2.316 | 0.873–6.145 | 0.092 | |
Inguinal lymph node involvement defined on FDG-PET data | 2.137 | 0.980–4.660 | 0.056 | |
Bilateral pelvic lymph node involvement defined on FDG-PET data | 2.764 | 1.194–6.398 | 0.018 | |
Primitive tumour SUVmax | 1.039 | 0.973–1.110 | 0.257 | |
50% SUVmax threshold | P-MTV | 1.030 | 1.009–1.052 | 0.004 (0.061) |
T-MTV | 1.020 | 1.009–1.032 | <0.001 (0.006) | |
41% SUVmax threshold | P-MTV | 1.020 | 1.007–1.034 | 0.003 (0.040) |
T-MTV | 1.020 | 1.009–1.032 | <0.001 (0.006) | |
35% SUVmax threshold | P-MTV | 1.018 | 1.007–1.029 | 0.001 (0.018) |
T-MTV | 1.018 | 1.008–1.026 | <0.001 (0.003) | |
Black threshold | P-MTV | 1.012 | 1.005–1.019 | 0.001 (0.017) |
T-MTV | 1.011 | 1.005–1.018 | <0.001 (0.004) | |
Adaptative threshold | P-MTV | 1.014 | 1.006–1.022 | 0.001 (0.015) |
T-MTV | 1.014 | 1.006–1.021 | <0.001 (0.003) | |
Nestlé threshold | P-MTV | 1.014 | 1.005–1.022 | 0.001 (0.016) |
T-MTV | 1.013 | 1.006–1.020 | <0.001 (0.004) | |
Fitting threshold | P-MTV | 1.016 | 1.007–1.016 | 0.001 (0.015) |
T-MTV | 1.016 | 1.007–1.025 | <0.001 (0.004) |
Models | Variables | HR | p | 95% IC | AIC | Models | Variables | HR | p | 95% IC | AIC |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Male sex | 3.351 | 0.007 | 1.383–8.122 | 1′ | Male sex | 3.513 | 0.006 | 1.437–8.591 | ||
P-MTV50 | 1.030 | 0.012 (0.16) | 1.006–1.053 | 205.5708 | T-MTV50 | 1.021 | 0.002 (0.028) | 1.008–1.034 | 202.7038 | ||
BPNI | 2.192 | 0.170 | 0.934–5.143 | BPNI | 1.948 | 0.129 | 0.824–4.607 | ||||
2 | Male sex | 3.371 | 0.007 | 1.389–8.184 | 2′ | Male sex | 3.513 | 0.006 | 1.437–8.591 | ||
P-MTV41 | 1.021 | 0.006 (0.084) | 1.006–1.036 | 204.6024 | T-MTV41 | 1.021 | 0.002 (0.028) | 1.437–8.591 | 202.7038 | ||
BPNI | 2.278 | 0.057 | 0.976–5.317 | BPNI | 1.948 | 0.129 | 0.824–4.607 | ||||
3 | Male sex | 3.647 | 0.005 | 1.489–8.934 | 3′ | Male sex | 3.799 | 0.004 | 1.538–9.384 | ||
P-MTV35 | 1.018 | 0.003 (0.042) | 1.006–1.031 | 203.9462 | T-MTV35 | 1.018 | 0.001 (0.014) | 1.007–1.028 | 202.0206 | ||
BPNI | 2.026 | 0.106 | 0.861–4.769 | BPNI | 1.736 | 0.215 | 0.726–4.150 | ||||
4 | Male sex | 3.946 | 0.003 | 1.587–9.814 | 203.7218 | 4′ | Male sex | 4.031 | 0.003 | 1.613–10.072 | |
P-MTVblack | 1.012 | 0.003 (0.042) | 1.004–1.021 | T-MTVblack | 1.012 | 0.001 (0.014) | 1.005–1.019 | 202.0069 | |||
BPNI | 1.859 | 0.170 | 0.766–4.510 | BPNI | 1.711 | 0.237 | 0.702–4.167 | ||||
5 | Male sex | 3.838 | 0.004 | 1.551–9.498 | 203.3572 | 5′ | Male sex | 3.883 | 0.004 | 1.562–9.653 | |
P-MTVadaptative | 1.015 | 0.002 (0.028) | 1.005–1.024 | T-MTVadaptative | 1.014 | 0.001 (0.014) | 1.006–1.022 | 201.5438 | |||
BPNI | 1.987 | 0.121 | 0.834–4.735 | BPNI | 1.750 | 0.216 | 0.721–4.249 | ||||
6 | Male sex | 3.877 | 0.003 | 1.564–9.609 | 6′ | Male sex | 3.900 | 0.003 | 1.567–9.700 | ||
P-MTVNestlé | 1.014 | 0.002 (0.028) | 1.005–1.023 | 203.3357 | T-MTVNestlé | 1.014 | 0.001 (0.014) | 1.006–1.022 | 201.9119 | ||
BPNI | 1.952 | 0.133 | 0.834–4.735 | BPNI | 1.759 | 0.213 | 0.723–4.278 | ||||
7 | Male sex | 3.755 | 0.004 | 1.525–9.246 | 7′ | Male sex | 3.818 | 0.004 | 1.543–9.444 | ||
P-MTVFitting | 1.017 | 0.003 (0.042) | 1.006–1.028 | 203.7705 | T-MTVFitting | 1.016 | 0.001 (0.014) | 1.006–1.026 | 202.4940 | ||
BPNI | 1.878 | 0.162 | 0.776–4.548 | BPNI | 1.728 | 0.231 | 0.706–4.232 |
Authors | Year | Study Status | N | Thresholds of SUVmax | Pronostic Value of Pretreatment FDG PET |
---|---|---|---|---|---|
Kidd et al. [24] | 2010 | R | 77 | - | SUVmax > 5.6 predicts: - increased lymph node metastases (p < 0.0001) - worse 2-year PFS (p = 0.05) - increased risk of persistent or recurrent disease on post-therapy FDG-PET performed <4 mo post-treatment completion (p = 0.0402) |
Bazan et al. [18] | 2013 | R | 39 | ≥50% of SUVmax | Total-MTV (>26 cm3) is an independent prognostic factor for PFS (p = 0.01) and EFS (p = 0.02). |
Deantonio et al. [23] | 2015 | p | 55 | ≥2.5 of SUV | SUVmax was not prognostic for survival outcomes. |
Gauthé et al. [22] | 2016 | R | 75 | ≥50% of SUVmax | Patients with Primitive-MTV50 > 7 cm3 had worse OS (p = 0.028). |
Mohammadkhani Shali et al. [25] | 2016 | R | 45 | ≥30% SUVmax | Patients with MTV30 (primitive tumour + node + metastases)> 45 cm3 had higher risk of recurrence (p = 0.019). |
Duimering at al. [34] | 2019 | P | 73 | ≥25%, 40% and 50% of SUVmax | Patients with MTV25 > 35 cm3 had worse PFS (p = 0.011) and CSS (p = 0.024). |
Rusten et al. [33] | 2019 | P | 93 | ≥2.5 of SUV | Combination of HPV and ZMP, MTV, or TLG performed equally well as combination of HPV and N3 to predict PFS (p < 0.02). |
Brown et al. [44] | 2019 | R | 189 | t-VOI or LN-VOI > 1.5 times Liver-VOI | Combined radiomic/clinical prognostic factors provide better PFS (AUC 0.7412) than conventional staging parameters. |
Our Study | 2019 | R | 81 | ≥35%, 41% and 50% of SUVmax and 4 iterative methods (Black, adaptative, Nestlé and Fitting) | Whatever the SUVmax threshold, patients with Total-MTV (primitive tumour + pelvic nodes) > 40 cm3 had worse EFS (p = 0.0015). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Thiec, M.; Testard, A.; Ferrer, L.; Guillerminet, C.; Morel, O.; Maucherat, B.; Rusu, D.; Girault, S.; Lacombe, M.; Hamidou, H.; et al. Prognostic Impact of Pretherapeutic FDG-PET in Localized Anal Cancer. Cancers 2020, 12, 1512. https://doi.org/10.3390/cancers12061512
Le Thiec M, Testard A, Ferrer L, Guillerminet C, Morel O, Maucherat B, Rusu D, Girault S, Lacombe M, Hamidou H, et al. Prognostic Impact of Pretherapeutic FDG-PET in Localized Anal Cancer. Cancers. 2020; 12(6):1512. https://doi.org/10.3390/cancers12061512
Chicago/Turabian StyleLe Thiec, Maelle, Aude Testard, Ludovic Ferrer, Camille Guillerminet, Olivier Morel, Bruno Maucherat, Daniela Rusu, Sylvie Girault, Marie Lacombe, Hadji Hamidou, and et al. 2020. "Prognostic Impact of Pretherapeutic FDG-PET in Localized Anal Cancer" Cancers 12, no. 6: 1512. https://doi.org/10.3390/cancers12061512
APA StyleLe Thiec, M., Testard, A., Ferrer, L., Guillerminet, C., Morel, O., Maucherat, B., Rusu, D., Girault, S., Lacombe, M., Hamidou, H., Meyer, V. G., Rio, E., Hiret, S., Kraeber-Bodéré, F., Campion, L., & Rousseau, C. (2020). Prognostic Impact of Pretherapeutic FDG-PET in Localized Anal Cancer. Cancers, 12(6), 1512. https://doi.org/10.3390/cancers12061512