Integration of Tumor Mutation Burden and PD-L1 Testing in Routine Laboratory Diagnostics in Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Results
2.1. TMB Assay Correlation with Clinical Trail Assay of CheckMate 227
2.2. Histology, Driver Mutations, and PD-L1
2.3. Turn-Around Time and HC NGS Workflow
2.4. Evaluation of Tumor Mutation Analysis in Routine Lab Samples
2.4.1. TMB in Relation to Age
2.4.2. TMB in Relation to Driver Mutations
2.4.3. TMB and PD-L1
2.4.4. Correlation of Somatic Tumor Mutations and TMB
2.5. Clinical Use of IO-Related Biomarkers in Clinical Decision-Making
3. Discussion
4. Materials and Methods
4.1. Selection of Patients
4.2. PD-L1
4.3. Mutation Testing
4.4. TMB
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kerr, K.M. The PD-L1 Immunohistochemistry biomarker: Two steps forward, one step back? J. Thorac. Oncol. 2018, 13, 291–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, F.R.; McElhinny, A.; Stanforth, D.; Ranger-Moore, J.; Jansson, M.; Kulangara, K.; Richardson, W.; Towne, P.; Hanks, D.; Vennapusa, B.; et al. PD-L1 Immunohistochemistry assays for lung cancer: Results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J. Thorac. Oncol. 2017, 12, 208–222. [Google Scholar] [CrossRef] [PubMed]
- Rimm, D.; Han, G.; Taube, J.M.; Yi, E.S.; Bridge, J.A.; Flieder, U.B.; Homer, R.; West, W.W.; Wu, H.; Roden, A.C.; et al. A Prospective, Multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol. 2017, 3, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, M.J.; Sharpe, A.; Midha, A.; Barker, C.; Scott, M.; Scorer, P.; Al-Masri, H.; Rebelatto, M.C.; Walker, J. Agreement between programmed cell death ligand-1 diagnostic assays across multiple protein expression cutoffs in non–small cell lung cancer. Clin. Cancer Res. 2017, 23, 3585–3591. [Google Scholar] [CrossRef] [Green Version]
- Tsao, M.-S.; Kerr, K.M.; Kockx, M.; Beasley, M.-B.; Borczuk, A.C.; Botling, J.; Bubendorf, L.; Chirieac, L.; Chen, G.; Chou, T.-Y.; et al. PD-L1 Immunohistochemistry comparability study in real-life clinical samples: Results of blueprint phase 2 project. J. Thorac. Oncol. 2018, 13, 1302–1311. [Google Scholar] [CrossRef] [Green Version]
- Hellmann, M.D.; Rizvi, N.A.; Goldman, J.W.; Gettinger, S.N.; Borghaei, H.; Brahmer, J.A.; Ready, N.E.; Gerber, D.E.; Chow, L.Q.; Juergens, R.A.; et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): Results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017, 18, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science 2018, 362, eaar3593. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef]
- Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science 2015, 348, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Gubin, M.M.; Artyomov, M.N.; Mardis, E.R.; Schreiber, R.D. Tumor neoantigens: Building a framework for personalized cancer immunotherapy. J. Clin. Investig. 2015, 125, 3413–3421. [Google Scholar] [CrossRef]
- Grizzi, G.; Caccese, M.; Gkountakos, A.; Carbognin, L.; Tortora, G.; Bria, E.; Pilotto, S. Putative predictors of efficacy for immune checkpoint inhibitors in non-small-cell lung cancer: Facing the complexity of the immune system. Expert Rev. Mol. Diagn. 2017, 17, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Chabanon, R.M.; Pedrero, M.; Lefebvre, C.; Marabelle, A.; Soria, J.-C.; Postel-Vinay, S. Mutational landscape and sensitivity to immune checkpoint blockers. Clin. Cancer Res. 2016, 22, 4309–4321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luksza, M.; Riaz, N.; Makarov, V.; Balachandran, V.P.; Hellmann, M.D.; Solovyov, A.; Rizvi, N.A.; Merghoub, T.; Levine, A.J.; Chan, T.A.; et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 2017, 551, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, H.; Sanchez-Vega, F.; La, K.; Chatila, W.; Jonsson, P.; Halpenny, D.; Plodkowski, A.; Long, N.; Sauter, J.L.; Rekhtman, N.; et al. Molecular determinants of response to anti–programmed cell death (pd)-1 and anti–programmed death-ligand 1 (PD-L1) blockade in patients with non–small-cell lung cancer profiled with targeted next-generation sequencing. J. Clin. Oncol. 2018, 36, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; Heuvel, M.M.V.D.; Ciuleanu, T.-E.; Badin, F.; et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 2017, 376, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Nathanson, T.; Rizvi, H.; Creelan, B.C.; Sanchez-Vega, F.; Ahuja, A.; Ni, A.; Novik, J.B.; Mangarin, L.M.; Abu-Akeel, M.; et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 2018, 33, 843–852.e4. [Google Scholar] [CrossRef] [Green Version]
- Boumber, Y. Tumor mutational burden (TMB) as a biomarker of response to immunotherapy in small cell lung cancer. J. Thorac. Dis. 2018, 10, 4689–4693. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Ciuleanu, T.-E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 2018, 378, 2093–2104. [Google Scholar] [CrossRef]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Dómine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Borghaei, H.; Langer, C.J.; Gadgeel, S.; Papadimitrakopoulou, V.A.; Patnaik, A.; Powell, S.F.; Gentzler, R.D.; Martins, R.G.; Stevenson, J.P.; Jalal, S.I.; et al. 24-month overall survival from KEYNOTE-021 cohort g: Pemetrexed and carboplatin with or without pembrolizumab as first-line therapy for advanced nonsquamous non-small cell lung cancer. J. Thorac. Oncol. 2019, 14, 124–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowanetz, M.; Zou, W.; McCleland, M.; Gandara, D.; Gadgeel, S.; Rittmeyer, A.; Barlési, F.; Park, K.; Shames, D.; Koeppen, H.; et al. MA 05.09 Pre-existing immunity measured by teff gene expression in tumor tissue is associated with atezolizumad efficacy in NSCLC. J. Thorac. Oncol. 2017, 12, S1817–S1818. [Google Scholar] [CrossRef] [Green Version]
- Nahar, R.; Zhai, W.; Zhang, T.; Takano, A.; Khng, A.J.; Lee, Y.Y.; Liu, X.; Lim, C.H.; Koh, T.P.T.; Aung, Z.W.; et al. Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing. Nat. Commun. 2018, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Stenzinger, A.; Allen, J.; Maas, J.; Stewart, M.D.; Merino, D.M.; Wempe, M.M.; Dietel, M. Tumor mutational burden standardization initiatives: Recommendations for consistent tumor mutational burden assessment in clinical samples to guide immunotherapy treatment decisions. Genes Chromosom. Cancer 2019, 58, 578–588. [Google Scholar] [CrossRef] [Green Version]
- Addeo, A.; Banna, G.L.; Weiss, G.J. Tumor mutation burden-from hopes to doubts. JAMA Oncol. 2019, 5, 934–935. [Google Scholar] [CrossRef]
- Yao, Z.; Yaeger, R.; Rodrik-Outmezguine, V.S.; Tao, A.; Torres, N.M.; Chang, M.T.; Drosten, M.; Zhao, H.; Cecchi, F.; Hembrough, T.; et al. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature 2017, 548, 234–238. [Google Scholar] [CrossRef]
- Metastatic Non-Small-Cell Lung Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. Clinical Practice Guidelines [Guidelines]. 2018. Available online: https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer (accessed on 26 January 2019).
- Prävention, Diagnostik, Therapie und Nachsorge des Lungenkarzinoms, Langversion 1.0. Leitlinienprogramm Onkologie. 2018. Available online: http://leitlinienprogramm-onkologie.de/Lungenkarzinom.98.0.html (accessed on 1 February 2018).
- Offin, M.; Rizvi, H.; Tenet, M.; Ni, A.; Sanchez-Vega, F.; Li, B.T.; Drilon, A.; Kris, M.G.; Rudin, C.M.; Schultz, N.; et al. Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin. Cancer Res. 2019, 25, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Spigel, D.R.; Schrock, A.B.; Fabrizio, D.; Frampton, G.M.; Sun, J.; He, J.; Gowen, K.; Johnson, M.L.; Bauer, T.M.; Kalemkerian, G.P.; et al. Total mutation burden (TMB) in lung cancer (LC) and relationship with response to PD-1/PD-L1 targeted therapies. J. Clin. Oncol. 2016, 34, 9017. [Google Scholar] [CrossRef]
- Yarchoan, M.; Albacker, L.A.; Hopkins, A.C.; Montesion, M.; Murugesan, K.; Vithayathil, T.T.; Zaidi, N.; Azad, N.S.; Laheru, D.A.; Frampton, G.M.; et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Reck, M.; Schenker, M.; Lee, K.H.; Provencio, M.; Nishio, M.; Lesniewski-Kmak, K.; Sangha, R.; Ahmed, S.; Raimbourg, J.; Feeney, K.; et al. Nivolumab plus ipilimumab versus chemotherapy as first-line treatment in advanced non-small-cell lung cancer with high tumour mutational burden: Patient-reported outcomes results from the randomised, open-label, phase III CheckMate 227 trial. Eur. J. Cancer 2019, 116, 137–147. [Google Scholar] [CrossRef]
- Chapman, A.M.; Sun, K.Y.; Ruestow, P.; Cowan, D.M.; Madl, A.K. Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers. Lung Cancer 2016, 102, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Skoulidis, F.; Goldberg, M.E.; Greenawalt, D.M.; Hellmann, M.D.; Awad, M.M.; Gainor, J.F.; Schrock, A.B.; Hartmaier, R.J.; Trabucco, S.E.; Gay, L.; et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018, 8, 822–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagos, G.G.; Izar, B.; Rizvi, N.A. Beyond Tumor PD-L1: Emerging genomic biomarkers for checkpoint inhibitor immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, e47–e57. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, N.; Cho, B.; Reinmuth, N.; Lee, K.; Luft, A.; Ahn, M.; Papadimitrakopoulou, V.; Heymach, J.; Scheuring, U.; Higgs, B.; et al. OA04.07 Mutations associated with sensitivity or resistance to immunotherapy in mNSCLC: Analysis from the MYSTIC trial. J. Thorac. Oncol. 2019, 14, S217. [Google Scholar] [CrossRef]
- Stenzinger, A.; Endris, V.; Budczies, J.; Merkelbach-Bruse, S.; Kazdal, D.; Dietmaier, W.; Pfarr, N.; Siebolts, U.; Hummel, M.; Herold, S.; et al. Harmonization and standardization of panel-based tumor mutational burden measurement: Real-world results and recommendations of the quality in pathology study. J. Thorac. Oncol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Klebanov, N.; Artomov, M.; Goggins, W.B.; Daly, E.; Daly, M.J.; Tsao, H. Burden of unique and low prevalence somatic mutations correlates with cancer survival. Sci. Rep. 2019, 9, 4848. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, N.-W.; Felip, E.; Perez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Mok, T.S.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Laktionov, K.P.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Piha-Paul, S.A.; Oh, D.-Y.; Ueno, M.; Malka, D.; Chung, H.C.; Nagrial, A.; Kelley, R.K.; Ros, W.; Italiano, A.; Nakagawa, K.; et al. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028 studies. Int. J. Cancer 2020. [Google Scholar] [CrossRef]
- Scheel, A.H.; Dietel, M.; Heukamp, L.C.; Jöhrens, K.; Kirchner, T.; Reu, S.; Rüschoff, J.; Schildhaus, H.U.; Schirmacher, P.; Tiemann, M.; et al. Predictive PD-L1 immunohistochemistry for non-small cell lung cancer: Current state of the art and experiences of the first German harmonization study. Pathologe 2016, 37, 557–567. [Google Scholar] [CrossRef]
Variation | Total | TMB < 10 | TMB > 10 | ||||
---|---|---|---|---|---|---|---|
N = 417 | N = 260 | (62.35%) | N = 157 | (37.65%) | |||
Age | Median | 66 | 66 | 66 | |||
Mean (±SD) | 65.0 | (11.8) | 64.7 | (12.5) | 65.7 | (10.5) | |
Range | 21–92 | 21–92 | 93–90 | ||||
<65 years | 199 | (47.72%) | 126 | (48.46%) | 73 | (46.50%) | |
≥65 years | 218 | (52.28%) | 134 | (51.54%) | 84 | (53.50%) | |
Sex | Female | 177 | (42.45%) | 140 | (53.85%) | 100 | (63.69%) |
Male | 240 | (57.55%) | 120 | (46.15%) | 57 | (36.31%) | |
Histology | Adenocarcinoma | 308 | (73.86%) | 201 | (77.31%) | 107 | (68.15%) |
Squamous | 33 | (7.91%) | 14 | (5.38%) | 19 | (12.10%) | |
Adeno-squamous | 1 | (0.24%) | 1 | (0.38%) | |||
Large-cell neuroendocrine | 2 | (0.48%) | 2 | (1.27%) | |||
SCLC | 4 | (0.96%) | 4 | (1.54%) | |||
NOS | 69 | (16.55%) | 40 | (15.38%) | 29 | (18.47%) | |
EGFR Status | Mutant | 62 | (14.87%) | 47 | (18.08%) | 15 | (9.55%) |
Wild type | 355 | (85.13%) | 213 | (81.92%) | 142 | (90.45%) | |
targetable EGFR mutation | 41 | (66.13%) | 33 | (12.69%) | 8 | (5.10%) | |
targetable EGFR plus resistance mutation T790M | 3 | (4.84%) | 3 | (1.15%) | |||
EGFR exon 20 insertion | 6 | (9.68%) | 6 | (2.31%) | |||
other / variant of unknown significance | 12 | (19.35%) | 5 | (1.92%) | 7 | (4.46%) | |
BRAF Status | Mutant | 36 | (8.63%) | 20 | (7.69%) | 16 | (10.19%) |
Wild type | 381 | (91.37%) | 240 | (92.31%) | 141 | (89.81%) | |
V600E / class I * | 9 | (25.00%) | 8 | (3.08%) | 1 | (0.64%) | |
non-V600E / class II * | 11 | (30.56%) | 5 | (1.92%) | 6 | (3.82%) | |
non-V600E / class III * | 5 | (13.89%) | 3 | (1.15%) | 2 | (1.27%) | |
other mutation / variant of unknown significance | 11 | (30.56%) | 4 | (1.54%) | 7 | (4.46%) | |
Gene Fusions | Mutant | 41 | (9.83%) | 32 | (12.31%) | 9 | (5.73%) |
Wild type | 368 | (88.25%) | 223 | (85.77%) | 145 | (92.36%) | |
n.d. | 8 | (1.92%) | 5 | (1.92%) | 3 | (1.91%) | |
ALK translocation | 15 | (36.59%) | 14 | (5.38%) | 1 | (0.64%) | |
ROS1 translocation | 2 | (4.88%) | 1 | (0.38%) | 1 | (0.64%) | |
RET translocation | 3 | (7.32%) | 3 | (1.15%) | |||
other fusions / translocation of unknown significance | 21 | (51.22%) | 14 | (5.38%) | 7 | (4.46%) | |
PD-L1 TPS | <1% | 123 | (29.50%) | 79 | (30.38%) | 44 | (28.03%) |
≥1% and <5% | 50 | (11.99%) | 26 | (10.00%) | 24 | (15.29%) | |
≥5% and <50% | 79 | (18.94%) | 55 | (21.15%) | 24 | (15.29%) | |
≥50% | 99 | (23.74%) | 53 | (20.38%) | 46 | (29.30%) | |
n.d. | 66 | (15.83%) | 47 | (18.08%) | 19 | (12.10%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schatz, S.; Falk, M.; Jóri, B.; Ramdani, H.O.; Schmidt, S.; Willing, E.-M.; Menon, R.; Groen, H.J.M.; Diehl, L.; Kröger, M.; et al. Integration of Tumor Mutation Burden and PD-L1 Testing in Routine Laboratory Diagnostics in Non-Small Cell Lung Cancer. Cancers 2020, 12, 1685. https://doi.org/10.3390/cancers12061685
Schatz S, Falk M, Jóri B, Ramdani HO, Schmidt S, Willing E-M, Menon R, Groen HJM, Diehl L, Kröger M, et al. Integration of Tumor Mutation Burden and PD-L1 Testing in Routine Laboratory Diagnostics in Non-Small Cell Lung Cancer. Cancers. 2020; 12(6):1685. https://doi.org/10.3390/cancers12061685
Chicago/Turabian StyleSchatz, Stefanie, Markus Falk, Balázs Jóri, Hayat O. Ramdani, Stefanie Schmidt, Eva-Maria Willing, Roopika Menon, Harry J. M. Groen, Linda Diehl, Matthias Kröger, and et al. 2020. "Integration of Tumor Mutation Burden and PD-L1 Testing in Routine Laboratory Diagnostics in Non-Small Cell Lung Cancer" Cancers 12, no. 6: 1685. https://doi.org/10.3390/cancers12061685
APA StyleSchatz, S., Falk, M., Jóri, B., Ramdani, H. O., Schmidt, S., Willing, E.-M., Menon, R., Groen, H. J. M., Diehl, L., Kröger, M., Wesseler, C., Griesinger, F., Hoffknecht, P., Tiemann, M., & Heukamp, L. C. (2020). Integration of Tumor Mutation Burden and PD-L1 Testing in Routine Laboratory Diagnostics in Non-Small Cell Lung Cancer. Cancers, 12(6), 1685. https://doi.org/10.3390/cancers12061685