HLA Evolutionary Divergence as a Prognostic Marker for AML Patients Undergoing Allogeneic Stem Cell Transplantation
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kolb, H.-J. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood J. Am. Soc. Hematol. 2008, 112, 4371–4383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, P.; Maeda, Y.; Liu, C.; Krijanovski, O.I.; Korngold, R.; Ferrara, J.L. A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses. Nat. Med. 2005, 11, 1244–1249. [Google Scholar] [CrossRef]
- Rezvani, K.; Yong, A.S.; Savani, B.N.; Mielke, S.; Keyvanfar, K.; Gostick, E.; Price, D.A.; Douek, D.C.; Barrett, A.J. Graft-versus-leukemia effects associated with detectable Wilms tumor-1–specific T lymphocytes after allogeneic stem-cell transplantation for acute lymphoblastic leukemia. Blood J. Am. Soc. Hematol. 2007, 110, 1924–1932. [Google Scholar]
- Pierini, F.; Lenz, T.L. Divergent allele advantage at human MHC genes: Signatures of past and ongoing selection. Mol. Biol. Evol. 2018, 35, 2145–2158. [Google Scholar] [CrossRef]
- Reche, P.A.; Reinherz, E.L. Sequence variability analysis of human class I and class II MHC molecules: Functional and structural correlates of amino acid polymorphisms. J. Mol. Biol. 2003, 331, 623–641. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Weiskopf, D.; Angelo, M.A.; Sidney, J.; Peters, B.; Sette, A. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J. Immunol. 2013, 191, 5831–5839. [Google Scholar] [CrossRef] [Green Version]
- Chowell, D.; Krishna, C.; Pierini, F.; Makarov, V.; Rizvi, N.A.; Kuo, F.; Morris, L.G.; Riaz, N.; Lenz, T.L.; Chan, T.A. Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat. Med. 2019, 25, 1715–1720. [Google Scholar] [CrossRef] [PubMed]
- Abelin, J.G.; Keskin, D.B.; Sarkizova, S.; Hartigan, C.R.; Zhang, W.; Sidney, J.; Stevens, J.; Lane, W.; Zhang, G.L.; Eisenhaure, T.M. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 2017, 46, 315–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berlin, C.; Kowalewski, D.; Schuster, H.; Mirza, N.; Walz, S.; Handel, M.; Schmid-Horch, B.; Salih, H.; Kanz, L.; Rammensee, H. Mapping the HLA ligandome landscape of acute myeloid leukemia: A targeted approach toward peptide-based immunotherapy. Leukemia 2015, 29, 647–659. [Google Scholar] [CrossRef]
- Grantham, R. Amino acid difference formula to help explain protein evolution. Science 1974, 185, 862–864. [Google Scholar] [CrossRef] [PubMed]
- Gratwohl, A. The EBMT risk score. Bone Marrow Transplant. 2012, 47, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Armand, P.; Kim, H.T.; Cutler, C.S.; Ho, V.T.; Koreth, J.; Ritz, J.; Alyea, E.P.; Antin, J.H.; Soiffer, R.J. A prognostic score for patients with acute leukemia or myelodysplastic syndromes undergoing allogeneic stem cell transplantation. Biol. Blood Marrow Transplant. 2008, 14, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Gooley, T.A.; Chien, J.W.; Pergam, S.A.; Hingorani, S.; Sorror, M.L.; Boeckh, M.; Martin, P.J.; Sandmaier, B.M.; Marr, K.A.; Appelbaum, F.R. Reduced mortality after allogeneic hematopoietic-cell transplantation. New Engl. J. Med. 2010, 363, 2091–2101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döhner, H.; Estey, E.H.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Burnett, A.K.; Dombret, H.; Fenaux, P.; Grimwade, D.; Larson, R.A. Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010, 115, 453–474. [Google Scholar] [CrossRef]
- Chowell, D.; Morris, L.G.; Grigg, C.M.; Weber, J.K.; Samstein, R.M.; Makarov, V.; Kuo, F.; Kendall, S.M.; Requena, D.; Riaz, N. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018, 359, 582–587. [Google Scholar] [CrossRef] [Green Version]
- Kowalewski, D.J.; Schuster, H.; Backert, L.; Berlin, C.; Kahn, S.; Kanz, L.; Salih, H.R.; Rammensee, H.-G.; Stevanovic, S.; Stickel, J.S. HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). Proc. Natl. Acad. Sci. USA 2015, 112, E166–E175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagorsen, D.; Scheibenbogen, C.; Marincola, F.M.; Letsch, A.; Keilholz, U. Natural T cell immunity against cancer. Clin. Cancer Res. 2003, 9, 4296–4303. [Google Scholar]
- Stevanović, S.; Pasetto, A.; Helman, S.R.; Gartner, J.J.; Prickett, T.D.; Howie, B.; Robins, H.S.; Robbins, P.F.; Klebanoff, C.A.; Rosenberg, S.A. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 2017, 356, 200–205. [Google Scholar] [CrossRef]
- Robinson, J.; Guethlein, L.A.; Cereb, N.; Yang, S.Y.; Norman, P.J.; Marsh, S.G.; Parham, P. Distinguishing functional polymorphism from random variation in the sequences of > 10,000 HLA-A,-B and-C alleles. PLoS Genet. 2017, 13, e1006862. [Google Scholar] [CrossRef]
- McGranahan, N.; Rosenthal, R.; Hiley, C.T.; Rowan, A.J.; Watkins, T.B.; Wilson, G.A.; Birkbak, N.J.; Veeriah, S.; Van Loo, P.; Herrero, J. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 2017, 171, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
- Aptsiauri, N.; Ruiz-Cabello, F.; Garrido, F. The transition from HLA-I positive to HLA-I negative primary tumors: The road to escape from T-cell responses. Curr. Opin. Immunol. 2018, 51, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Christopher, M.J.; Petti, A.A.; Rettig, M.P.; Miller, C.A.; Chendamarai, E.; Duncavage, E.J.; Klco, J.M.; Helton, N.M.; O’Laughlin, M.; Fronick, C.C. Immune escape of relapsed AML cells after allogeneic transplantation. New Engl. J. Med. 2018, 379, 2330–2341. [Google Scholar] [CrossRef] [PubMed]
- Yarchoan, M.; Johnson, B.A., III; Lutz, E.R.; Laheru, D.A.; Jaffee, E.M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 2017, 17, 209. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Doherty, P.C.; Zinkernagel, R.M. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 1975, 256, 50–52. [Google Scholar] [CrossRef]
- Penn, D.J.; Damjanovich, K.; Potts, W.K. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc. Natl. Acad. Sci. USA 2002, 99, 11260–11264. [Google Scholar] [CrossRef] [Green Version]
- Thursz, M.R.; Thomas, H.C.; Greenwood, B.M.; Hill, A.V. Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nat. Genet. 1997, 17, 11–12. [Google Scholar] [CrossRef]
- Zheng, H.; Matte-Martone, C.; Li, H.; Anderson, B.E.; Venketesan, S.; Sheng Tan, H.; Jain, D.; McNiff, J.; Shlomchik, W.D. Effector memory CD4+ T cells mediate graft-versus-leukemia without inducing graft-versus-host disease. Blood J. Am. Soc. Hematol. 2008, 111, 2476–2484. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Matte-Martone, C.; Jain, D.; McNiff, J.; Shlomchik, W.D. Central memory CD8+ T cells induce graft-versus-host disease and mediate graft-versus-leukemia. J. Immunol. 2009, 182, 5938–5948. [Google Scholar] [CrossRef] [Green Version]
- Stevanović, S.; Griffioen, M.; Nijmeijer, B.; Van Schie, M.; Stumpf, A.; Rutten, C.; Willemze, R.; Falkenburg, J. Human allo-reactive CD4+ T cells as strong mediators of anti-tumor immunity in NOD/scid mice engrafted with human acute lymphoblastic leukemia. Leukemia 2012, 26, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Stevanović, S.; van Bergen, C.A.; Van Luxemburg-Heijs, S.A.; Van der Zouwen, B.; Jordanova, E.S.; Kruisselbrink, A.B.; van de Meent, M.; Harskamp, J.C.; Claas, F.H.; Marijt, E.W. HLA class II upregulation during viral infection leads to HLA-DP–directed graft-versus-host disease after CD4+ donor lymphocyte infusion. Blood J. Am. Soc. Hematol. 2013, 122, 1963–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraverty, R.; Eom, H.-S.; Sachs, J.; Buchli, J.; Cotter, P.; Hsu, R.; Zhao, G.; Sykes, M. Host MHC class II+ antigen-presenting cells and CD4 cells are required for CD8-mediated graft-versus-leukemia responses following delayed donor leukocyte infusions. Blood 2006, 108, 2106–2113. [Google Scholar] [CrossRef] [Green Version]
- Borst, J.; Ahrends, T.; Bąbała, N.; Melief, C.J.; Kastenmüller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2018, 18, 635–647. [Google Scholar] [CrossRef]
- Lenz, T.L. Computational prediction of MHC II-antigen binding supports divergent allele advantage and explains trans-species polymorphism. Evol. Int. J. Org. Evol. 2011, 65, 2380–2390. [Google Scholar] [CrossRef] [PubMed]
- Petersdorf, E.W.; Gooley, T.; Malkki, M.; Anasetti, C.; Martin, P.; Woolfrey, A.; Smith, A.; Mickelson, E.; Hansen, J.A. The biological significance of HLA-DP gene variation in haematopoietic cell transplantation. Br. J. Haematol. 2001, 112, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Piersma, S.J.; Welters, M.J.; Van Der Hulst, J.M.; Kloth, J.N.; Kwappenberg, K.M.; Trimbos, B.J.; Melief, C.J.; Hellebrekers, B.W.; Fleuren, G.J.; Kenter, G.G. Human papilloma virus specific T cells infiltrating cervical cancer and draining lymph nodes show remarkably frequent use of HLA-DQ and–DP as a restriction element. Int. J. Cancer 2008, 122, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, K.E.; Goswami, M.; Hourigan, C.S.; Oetjen, K.A. Immunological effects of hypomethylating agents. Expert Rev. Hematol. 2017, 10, 745–752. [Google Scholar] [CrossRef]
- Gang, A.; Frøsig, T.M.; Brimnes, M.; Lyngaa, R.; Treppendahl, M.; Grønbæk, K.; Dufva, I.; Thor Straten, P.; Hadrup, S.R. 5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies. Blood Cancer J. 2014, 4, e197. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.E.; Braun, T.; Penza, S.L.; Beatty, P.; Cornetta, K.; Martino, R.; Drobyski, W.R.; Barrett, A.J.; Porter, D.L.; Giralt, S. Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem-cell transplantation. J. Clin. Oncol. 2002, 20, 405–412. [Google Scholar] [CrossRef]
- Cornelissen, J.J.; Gratwohl, A.; Schlenk, R.F.; Sierra, J.; Bornhaeuser, M.; Juliusson, G.; Råcil, Z.; Rowe, J.M.; Russell, N.; Mohty, M. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: An integrated-risk adapted approach. Nat. Rev. Clin. Oncol. 2012, 9, 579. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.; Barker, D.J.; Georgiou, X.; Cooper, M.A.; Flicek, P.; Marsh, S.G. IPD-IMGT/HLA Database. Nucleic Acids Res. 2020, 48, D948–D955. [Google Scholar] [PubMed]
- Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.; Billis, K.; Cummins, C.; Gall, A.; Girón, C.G. Ensembl 2018. Nucleic Acids Res. 2018, 46, D754–D761. [Google Scholar] [CrossRef] [PubMed]
Characteristic | All Patients (n = 171) | HEDtotal Low (n = 46) | HEDtotal High (n = 125) | p-Value |
---|---|---|---|---|
Follow-up after HSCT (mo.) | ||||
Median | 59.4 | 51.6 | 62.6 | |
Range | 2.1–173.3 | 2.1–173.3 | 5.5–127.8 | |
Age at Allo-HSCT (yr.) | ||||
Median | 56 | 59 | 55 | 0.30 † |
Range | 21–75 | 21–71 | 22–75 | |
Sex (no. (%)) | ||||
Male | 98 (57.3) | 28 (60.9) | 70 (56.0) | 0.57 ‡ |
Female | 73 (42.7) | 18 (39.1) | 55 (44.0) | |
Karnofsky index (no. (%)) | 0.23 § | |||
≥90 | 115 (67.3) | 31 (67.4) | 84 (67.2) | |
<90 | 35 (20.5) | 12 (26.1) | 23 (18.4) | |
n.a. | 21 (12.3) | 3 (6.5) | 18 (14.4) | |
WHO 2016 subtype (no. (%)) | ||||
RGN | 86 (50.3) | 21 (45.7) | 65 (52.0) | 0.22 § |
MDS-related | 31 (18.1) | 13 (28.3) | 18 (14.4) | |
Therapy-related | 8 (4.7) | 2 (4.3) | 6 (4.8) | |
NOS | 46 (26.9) | 10 (21.7) | 36 (28.8) | |
EBMT risk score (no. (%)) | ||||
1 | 3 (1.8) | 1 (2.2) | 2 (1.6) | 0.23 § |
2 | 28 (16.4) | 6 (13.0) | 22 (17.6) | |
3 | 52 (30.4) | 8 (17.4) | 44 (35.2) | |
4 | 32 (18.7) | 11 (23.9) | 21 (16.8) | |
5 | 38 (22.2) | 14 (30.4) | 24 (19.2) | |
6–7 | 10 (5.8) | 3 (6.5) | 7 (5.6) | |
n.a. | 8 (4.7) | 3 (6.5) | 5 (4.0) | |
ELN risk group ¶ (no. (%)) | ||||
Favorable | 19 (11.1) | 5 (10.9) | 14 (11.2) | 0.81 § |
Intermediate | 110 (64.3) | 32 (69.6) | 78 (62.4) | |
Adverse | 26 (15.2) | 9 (19.6) | 17 (13.6) | |
n.a. | 16 (9.4) | 0 (0.0) | 16 (12.8) | |
HSCT setting (no. (%)) | ||||
1st line consolidation | 106 (62.0) | 25 (54.3) | 81 (64.8) | 0.44 § |
Salvage therapy || | 42 (24.6) | 14 (30.4) | 28 (22.4) | |
Relapse | 23 (13.5) | 7 (15.2) | 16 (12.8) | |
Conditioning regimen (no. (%)) | ||||
FLAMSA | 10 (5.8) | 4 (8.7) | 6 (4.8) | 0.32 § |
FLAMSA-Flu/Bu | 41 (24.0) | 16 (34.8) | 25 (20.0) | |
Flu/TBI | 16 (9.4) | 4 (8.7) | 12 (9.6) | |
Cy/TBI | 19 (11.1) | 3 (6.5) | 16 (12.8) | |
Bu/Cy | 24 (14.0) | 5 (10.9) | 19 (15.2) | |
Flu/BCNU/Mel | 8 (4.7) | 1 (2.2) | 7 (5.6) | |
Flu/Bu | 27 (15.8) | 8 (17.4) | 19 (15.2) | |
Flu/Treosulfan | 18 (10.5) | 2 (4.3) | 16 (12.8) | |
Other | 8 (4.7) | 3 (6.5) | 5 (4.0) | |
Remission at HSCT (no. (%)) | 0.16 § | |||
CR/CRi | 103 (60.2) | 22 (47.8) | 81 (64.8) | |
PR | 23 (13.5) | 8 (17.4) | 15 (12.0) | |
RD | 37 (21.6) | 13 (28.3) | 24 (19.2) | |
n.a. | 8 (4.7) | 3 (6.5) | 5 (4.0) | |
Donor (no. (%)) | ||||
HLA-ident sibling | 63 (36.8) | 23 (50.0) | 40 (32.0) | 0.03 § |
HLA-ident foreign donor | 108 (63.2) | 23 (50.0) | 85 (68.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roerden, M.; Nelde, A.; Heitmann, J.S.; Klein, R.; Rammensee, H.-G.; Bethge, W.A.; Walz, J.S. HLA Evolutionary Divergence as a Prognostic Marker for AML Patients Undergoing Allogeneic Stem Cell Transplantation. Cancers 2020, 12, 1835. https://doi.org/10.3390/cancers12071835
Roerden M, Nelde A, Heitmann JS, Klein R, Rammensee H-G, Bethge WA, Walz JS. HLA Evolutionary Divergence as a Prognostic Marker for AML Patients Undergoing Allogeneic Stem Cell Transplantation. Cancers. 2020; 12(7):1835. https://doi.org/10.3390/cancers12071835
Chicago/Turabian StyleRoerden, Malte, Annika Nelde, Jonas S. Heitmann, Reinhild Klein, Hans-Georg Rammensee, Wolfgang A. Bethge, and Juliane S. Walz. 2020. "HLA Evolutionary Divergence as a Prognostic Marker for AML Patients Undergoing Allogeneic Stem Cell Transplantation" Cancers 12, no. 7: 1835. https://doi.org/10.3390/cancers12071835
APA StyleRoerden, M., Nelde, A., Heitmann, J. S., Klein, R., Rammensee, H. -G., Bethge, W. A., & Walz, J. S. (2020). HLA Evolutionary Divergence as a Prognostic Marker for AML Patients Undergoing Allogeneic Stem Cell Transplantation. Cancers, 12(7), 1835. https://doi.org/10.3390/cancers12071835