Association of the Metabolic Score Using Baseline FDG-PET/CT and dNLR with Immunotherapy Outcomes in Advanced NSCLC Patients Treated with First-Line Pembrolizumab
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Correlation between Biomarkers
2.3. Metabolic Score and Correlation with Patient’s Outcomes
2.4. Survival: Progression-Free Survival (PFS) and Overall Survival (OS)
2.5. Response: DCR and ORR
3. Discussion
4. Materials and Methods
4.1. Patients Selection
4.2. FDG-PET/CT Acquisition
4.3. FDG-PET/CT Image and Biological Analyses
4.4. Metabolic Score (TMTV and dNLR)
4.5. PD-L1 Expression (TPS)
4.6. Outcomes: Survival (OS and PFS) and Response Evaluation Criteria (DCR and ORR)
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reck, M. Pembrolizumab as first-line therapy for metastatic non-small-cell lung cancer. Immunotherapy 2018, 10, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; de Castro, G.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Final analysis of the phase III KEYNOTE-042 study: Pembrolizumab (Pembro) versus platinum-based chemotherapy (Chemo) as first-line therapy for patients (Pts) with PD-L1-positive locally advanced/metastatic NSCLC. Ann. Oncol. 2019, 30 (Suppl. S2), i38. [Google Scholar] [CrossRef]
- Hui, R.; Garon, E.B.; Goldman, J.W.; Leighl, N.B.; Hellmann, M.D.; Patnaik, A.; Gandhi, L.; Eder, J.P.; Ahn, M.-J.; Horn, L.; et al. Pembrolizumab as first-line therapy for patients with PD-L1-positive advanced non-small cell lung cancer: A phase 1 trial. Ann. Oncol. 2017, 28, 874–881. [Google Scholar] [CrossRef]
- Aguilar, E.J.; Ricciuti, B.; Gainor, J.F.; Kehl, K.L.; Kravets, S.; Dahlberg, S.; Nishino, M.; Sholl, L.M.; Adeni, A.; Subegdjo, S.; et al. Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression. Ann. Oncol. 2019, 30, 1653–1659. [Google Scholar] [CrossRef] [Green Version]
- Peters, S.; Reck, M.; Smit, E.F.; Mok, T.; Hellmann, M.D. How to make the best use of immunotherapy as first-line treatment of advanced/metastatic non-small-cell lung cancer. Ann. Oncol. 2019, 30, 884–896. [Google Scholar] [CrossRef]
- Yu, Y.; Zeng, D.; Ou, Q.; Liu, S.; Li, A.; Chen, Y.; Lin, D.; Gao, Q.; Zhou, H.; Liao, W.; et al. Association of Survival and Immune-Related Biomarkers with Immunotherapy in Patients with Non-Small Cell Lung Cancer: A Meta-analysis and Individual Patient-Level Analysis. JAMA Netw. Open 2019, 2, e196879. [Google Scholar] [CrossRef] [Green Version]
- Lardinois, D.; Weder, W.; Hany, T.F.; Kamel, E.M.; Korom, S.; Seifert, B.; von Schulthess, G.K.; Steinert, H.C. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N. Engl. J. Med. 2003, 348, 2500–2507. [Google Scholar] [CrossRef] [Green Version]
- Fischer, B.; Lassen, U.; Mortensen, J.; Larsen, S.; Loft, A.; Bertelsen, A.; Ravn, J.; Clementsen, P.; Høgholm, A.; Larsen, K.; et al. Preoperative staging of lung cancer with combined PET-CT. N. Engl. J. Med. 2009, 361, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Goldfarb, L.; Duchemann, B.; Chouahnia, K.; Zelek, L.; Soussan, M. Monitoring anti-PD-1-based immunotherapy in non-small cell lung cancer with FDG PET: Introduction of iPERCIST. EJNMMI Res. 2019, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Vansteenkiste, J.; Fischer, B.M.; Dooms, C.; Mortensen, J. Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: Systematic review. Lancet Oncol. 2004, 5, 531–540. [Google Scholar] [CrossRef]
- Hoekstra, C.J.; Stroobants, S.G.; Smit, E.F.; Vansteenkiste, J.; van Tinteren, H.; Postmus, P.E.; Golding, R.P.; Biesma, B.; Schramel, F.J.H.M.; van Zandwijk, N.; et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J. Clin. Oncol. 2005, 23, 8362–8370. [Google Scholar] [CrossRef] [PubMed]
- Pöttgen, C.; Levegrün, S.; Theegarten, D.; Marnitz, S.; Grehl, S.; Pink, R.; Eberhardt, W.; Stamatis, G.; Gauler, T.; Antoch, G.; et al. Value of 18F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in non-small-cell lung cancer for prediction of pathologic response and times to relapse after neoadjuvant chemoradiotherapy. Clin. Cancer Res. 2006, 12, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Tanizaki, J.; Haratani, K.; Hayashi, H.; Chiba, Y.; Nakamura, Y.; Yonesaka, K.; Kudo, K.; Kaneda, H.; Hasegawa, Y.; Tanaka, K.; et al. Peripheral Blood Biomarkers Associated with Clinical Outcome in Non-Small Cell Lung Cancer Patients Treated with Nivolumab. J. Thorac. Oncol. 2018, 13, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Prelaj, A.; Tay, R.; Ferrara, R.; Chaput, N.; Besse, B.; Califano, R. Predictive biomarkers of response for immune checkpoint inhibitors in non-small-cell lung cancer. Eur. J. Cancer 2019, 106, 144–159. [Google Scholar] [CrossRef]
- Seban, R.-D.; Robert, C.; Dercle, L.; Yeh, R.; Dunant, A.; Reuze, S.; Schernberg, A.; Sun, R.; Mignot, F.; Terroir, M.; et al. Increased bone marrow SUVmax on 18F-FDG PET is associated with higher pelvic treatment failure in patients with cervical cancer treated by chemoradiotherapy and brachytherapy. Oncoimmunology 2019, 8, e1574197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polverari, G.; Ceci, F.; Bertaglia, V.; Reale, M.L.; Rampado, O.; Gallio, E.; Passera, R.; Liberini, V.; Scapoli, P.; Arena, V.; et al. 18F-FDG Pet Parameters and Radiomics Features Analysis in Advanced Nsclc Treated with Immunotherapy as Predictors of Therapy Response and Survival. Cancers 2020, 12, 1163. [Google Scholar] [CrossRef]
- Seban, R.-D.; Mezquita, L.; Berenbaum, A.; Dercle, L.; Botticella, A.; Le Pechoux, C.; Caramella, C.; Deutsch, E.; Grimaldi, S.; Adam, J.; et al. Baseline metabolic tumor burden on FDG PET/CT scans predicts outcome in advanced NSCLC patients treated with immune checkpoint inhibitors. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1147–1157. [Google Scholar] [CrossRef]
- Munn, L.L. Cancer and inflammation. Wiley Interdiscip Rev. Syst. Biol. Med. 2017, 9, e1370. [Google Scholar] [CrossRef] [Green Version]
- Ferrucci, P.F.; Ascierto, P.A.; Pigozzo, J.; Del Vecchio, M.; Maio, M.; Antonini Cappellini, G.C.; Guidoboni, M.; Queirolo, P.; Savoia, P.; Mandalà, M.; et al. Baseline neutrophils and derived neutrophil-to-lymphocyte ratio: Prognostic relevance in metastatic melanoma patients receiving ipilimumab. Ann. Oncol. 2016, 27, 732–738. [Google Scholar] [CrossRef]
- Capone, M.; Giannarelli, D.; Mallardo, D.; Madonna, G.; Festino, L.; Grimaldi, A.M.; Vanella, V.; Simeone, E.; Paone, M.; Palmieri, G.; et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J. Immunother. Cancer 2018, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Meyers, D.E.; Stukalin, I.; Vallerand, I.A.; Lewinson, R.T.; Suo, A.; Dean, M.; North, S.; Pabani, A.; Cheng, T.; Heng, D.Y.C.; et al. The Lung Immune Prognostic Index Discriminates Survival Outcomes in Patients with Solid Tumors Treated with Immune Checkpoint Inhibitors. Cancers 2019, 11, 1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezquita, L.; Auclin, E.; Ferrara, R.; Charrier, M.; Remon, J.; Planchard, D.; Ponce, S.; Ares, L.P.; Leroy, L.; Audigier-Valette, C.; et al. Association of the Lung Immune Prognostic Index with Immune Checkpoint Inhibitor Outcomes in Patients with Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2018, 4, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Bañobre, J.; Areses-Manrique, M.C.; Mosquera-Martínez, J.; Cortegoso, A.; Afonso-Afonso, F.J.; de Dios-Álvarez, N.; Fernández-Núñez, N.; Azpitarte-Raposeiras, C.; Amenedo, M.; Santomé, L.; et al. Evaluation of the lung immune prognostic index in advanced non-small cell lung cancer patients under nivolumab monotherapy. Transl. Lung Cancer Res. 2019, 8, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Seban, R.-D.; Nemer, J.S.; Marabelle, A.; Yeh, R.; Deutsch, E.; Ammari, S.; Moya-Plana, A.; Mokrane, F.-Z.; Gartrell, R.D.; Finkel, G.; et al. Prognostic and theranostic 18F-FDG PET biomarkers for anti-PD1 immunotherapy in metastatic melanoma: Association with outcome and transcriptomics. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2298–2310. [Google Scholar] [CrossRef]
- Seban, R.-D.; Moya-Plana, A.; Antonios, L.; Yeh, R.; Marabelle, A.; Deutsch, E.; Schwartz, L.H.; Gómez, R.G.H.; Saenger, Y.; Robert, C.; et al. Prognostic 18F-FDG PET biomarkers in metastatic mucosal and cutaneous melanoma treated with immune checkpoint inhibitors targeting PD-1 and CTLA-4. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2301–2312. [Google Scholar] [CrossRef]
- Castello, A.; Toschi, L.; Rossi, S.; Mazziotti, E.; Lopci, E. The immune-metabolic-prognostic index and clinical outcomes in patients with non-small cell lung carcinoma under checkpoint inhibitors. J. Cancer Res. Clin. Oncol. 2020, 146, 1235–1243. [Google Scholar] [CrossRef]
- Volterrani, D.; Daniele, G.; Mazzarri, S.; Guidoccio, F.; Dardano, A.; Giusti, L.; Fantechi, L.; Manca, G.; Morrone, C.; Del Prato, S.; et al. Annual Congress of the European Association of Nuclear Medicine October 12–16, 2019 Barcelona, Spain. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1–952. [Google Scholar] [CrossRef]
- Bleeker, S.E.; Moll, H.A.; Steyerberg, E.W.; Donders, A.R.T.; Derksen-Lubsen, G.; Grobbee, D.E.; Moons, K.G.M. External validation is necessary in prediction research: A clinical example. J. Clin. Epidemiol. 2003, 56, 826–832. [Google Scholar] [CrossRef]
- Zahorec, R. Ratio of neutrophil to lymphocyte counts--rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl. Lek. Listy 2001, 102, 5–14. [Google Scholar] [PubMed]
- Castello, A.; Rossi, S.; Toschi, L.; Mazziotti, E.; Lopci, E. Hyper-progressive Disease in Patients With Non-Small Cell Lung Cancer Treated With Checkpoint Inhibitors: The Role of 18F-FDG PET/CT. J. Nucl. Med. 2019, 61, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Seban, R.-D.; Schwartz, L.H.; Bonardel, G.; Dercle, L. Diagnosis of Hyper-progressive Disease in Patients Treated with Checkpoint Inhibitors using 18F-FDG PET/CT. J. Nucl. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, C.; Zhang, X.; Fu, S.; Xue, C.; Ma, Y.; Fang, W.; Yang, Y.; Hou, X.; Huang, Y.; et al. Immune-checkpoint inhibitor plus chemotherapy versus conventional chemotherapy for first-line treatment in advanced non-small cell lung carcinoma: A systematic review and meta-analysis. J. Immunother. Cancer 2018, 6, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benitez, J.C.; Recondo, G.; Rassy, E.; Mezquita, L. The LIPI score and inflammatory biomarkers for selection of patients with solid tumors treated with checkpoint inhibitors. Q. J. Nucl. Med. Mol. Imaging 2020, 64, 162–174. [Google Scholar] [CrossRef]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef] [Green Version]
- Houdek, Š.; Büchler, T.; Kindlová, E. Comparison of RECIST 1.1 and iRECIST for Response Evaluation in Solid Tumours. Klin. Onkol. 2017, 30, 32–39. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Ito, K.; Schöder, H.; Teng, R.; Humm, J.L.; Ni, A.; Wolchok, J.D.; Weber, W.A. Prognostic value of baseline metabolic tumor volume measured on 18F-fluorodeoxyglucose positron emission tomography/computed tomography in melanoma patients treated with ipilimumab therapy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 930–939. [Google Scholar] [CrossRef]
Clinical Characteristics | Median (range), n (%) |
---|---|
Patient demographics | |
Age (years) | 65 (37–86) |
Gender (Male/Female) | 38 (60%)/25 (40%) |
Body Mass Index (kg/m2) | 24.0 (16.9–40.3) |
Performance Status (ECOG) | 1 (0–3) |
Smoking history (current/former/no) | 28 (44%)/32 (51%)/3 (5%) |
Histology | |
Non-squamous | 50 (80%) |
Squamous | 13 (20%) |
PD-L1 expression | |
TPS: 90–100% | 19 (30%) |
TPS: 50–89% | 44 (70%) |
Molecular alterations | |
BRAFv600E-ROS1-RET-METex14-HER2ex20 | 5 (8%) |
KRAS | 17 (27%) |
Wild-Type | 17 (27%) |
Unknown | 24 (38%) |
Biology | |
Neutrophils (G/L) | 6.3 (2.4–15.8) |
dNLR | 2.2 (0.9–14,1) |
Lymphocytes (G/L) | 1.6 (0.3–3.9) |
Hemoblobin (g/dL) | 12.7 (8.3–16.0) |
Platelets (G/L) | 342 (134–639) |
LDH* (UI/L) | 242 (105–2197) |
Albumin (g/dL) | 35 (23–47) |
C-Reactive-Protein (mg/dL) | 26.4 (1.0–183.5) |
Treatment | |
Steroid use * | 13 (21%) |
Staging | |
Stage (IIIb/IV) | 10 (16%)/53 (84%) |
Number of metastatic sites | 2 (0–6) |
Metastasis: adrenal/brain/liver/bone | 17 (27%)/9 (14%)/9 (14%)/11 (17%) |
Pet Imaging Characteristics | |
Tumor glucose uptake | |
Tumor SUVmax | 18.0 (5.4–41.4) |
Metabolic tumor burden (TB) | |
Total metabolic tumor volume (TMTV) (cm3) | 84.0 (12.4–427.9) |
Survival | |
Progression | 37 (59%) |
Death | 18 (29%) |
Best Response Rate | |
Progressive disease | 22 (35%) |
Stable disease | 4 (6%) |
Complete response | 2 (3%) |
Partial response | 35 (56%) |
Progression-Free Survival | Overall Survival | |||||||
---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | |||||
Variable | HR (CI 95%) | p Value | HR (CI 95%) | p Value | HR (CI 95%) | p Value | HR (CI 95%) | p Value |
ECOG PS (≥2 vs. <2) | 1.9 (0.9–4.0) | 0.09 | - | - | 2.9 (1.0–8.6) | 0.05 | 3.1 (0.9–9.6) | 0.06 |
Histology (SCC vs. non-SCC) | 1.1 (0.5–2.5) | 0.74 | - | - | 1.1 (0.4–3.3) | 0.77 | - | - |
Smokers (never vs. always) | 0.4 (0.1–1.3) | 0.12 | - | - | 1.4 (0.2–10.1) | 0.78 | - | - |
PD-L1 expression (TPS ≥90 vs. <90%) | 0.8 (0.4–1.7) | 0.58 | - | - | 0.8 (0.3–2.4) | 0.59 | - | - |
dNLR (>3 vs. ≤3) | 2.2 (1.1–4.4) | 0.02 | 2.0 (1.1–4.0) | 0.04 | 3.6 (1.4–9.1) | <0.01 | 3.4 (1.3–8.8) | 0.01 |
Hemoglobin (≤12 vs. >12 g/dL) | 1.6 (0.8–3.2) | 0.14 | - | - | 2.0 (0.8–4.9) | 0.16 | - | - |
LDH* (>ULN vs. ≤ULN) | 1.7 (0.8–4.0) | 0.19 | - | - | 1.5 (0.5–5.1) | 0.48 | - | - |
N metastatic sites (>3 vs. ≤3) | 1.2 (0.5–2.7) | 0.69 | - | - | 1.2 (0.4–3.5) | 0.81 | - | - |
Liver metastasis (yes vs. no) | 1.8 (0.8–4.2) | 0.15 | 1.6 (0.5–4.7) | 0.44 | - | - | ||
Tumor SUVmax (>16.5 vs. ≤16.5) | 0.7 (0.3–1.3) | 0.21 | - | - | 0.8 (0.3–2.0) | 0.62 | - | - |
TMTV (>75 vs. ≤75 cm3) | 2.0 (1.1–3.9) | 0.04 | 1.8 (0.9–3.5) | 0.08 | 2.9 (1.1–7.8) | 0.03 | 2.1 (0.8–6.0) | 0.09 |
Log-Rank Tests | Progression-Free Survival | Overall Survival | |||||
---|---|---|---|---|---|---|---|
Variable | n | Median PFS (Months) | 95%CI | p Value | Median PFS (Months) | 95%CI | p Value |
Metabolic score | 0.01 | <0.01 | |||||
Good (TMTV ≤ 75 cm3 and dNLR ≤ 3) | 25 | 13.8 | 8.4–18.9 | 17.9 | 14.6–NR | ||
Intermediate (TMTV > 75 cm3 or dNLR > 3) | 27 | 6.6 | 2.0–11.2 | 15.1 | 12.1–20.0 | ||
Poor (TMTV > 75 cm3 and dNLR > 3) | 11 | 1.9 | 1.3–2.5 | 5.2 | 1.9–8.5 |
DCR | ORR | |||
---|---|---|---|---|
Parameter | p Value | OR (CI 95%) | p Value | OR (CI 95%) |
ECOG PS | ||||
≥2 | 0.34 | 1 (reference) | 0.69 | 1 (reference) |
<2 | 1.8 (0.5–6.3) | 1.3 (0.4–4.9) | ||
Histology | ||||
SCC | 0.76 | 1 (reference) | 0.82 | 1 (reference) |
Non-SCC | 1.2 (0.3–4.3) | 0.9 (0.2–3.0) | ||
Smokers | ||||
Never | 0.85 | 1 (reference) | 0.48 | 1 (reference) |
Always | 1.1 (0.1–10.5) | 3.0 (0.3–9.5) | ||
PD-L1 expression (TPS) | ||||
90–100% | 1 (reference) | 1 (reference) | ||
50–89% | 0.83 | 0.9 (0.3–2.7) | 0.93 | 1.0 (0.3–2.8) |
dNLR | ||||
>3 | 0.01 | 1 (reference) | 0.04 | 1 (reference) |
≤3 | 4.9 (1.5–16.3) | 3.3 (1.1–10.5) | ||
Hemoglobin | ||||
≤12 g/dL | 0.47 | 1 (reference) | 0.62 | 1 (reference) |
>12 g/dL | 1.5 (0.5–4.4) | 1.3 (0.5–3.7) | ||
LDH * | ||||
>ULN | 0.07 | 1 (reference) | 0.02 | 1 (reference) |
≤ULN | 2.8 (0.9–8.1) | 5.8 (1.4–24.7) | ||
N metastatic sites | ||||
>3 | 0.14 | 1 (reference) | 0.33 | 1 (reference) |
≤3 | 2.7 (0.7–10.2) | 1.9 (0.5–7.1) | ||
Liver metastasis | ||||
Yes | 0.17 | 1 (reference) | 0.35 | 1 (reference) |
No | 2.7 (0.6–9.4) | 2.0 (0.5–8.2) | ||
Tumor SUVmax | ||||
>16.5 | 0.31 | 1 (reference) | 0.24 | 1 (reference) |
≤16.5 | 0.6 (0.2–1.6) | 0.5 (0.2–1.5) | ||
TMTV | ||||
>75 cm3 | 0.02 | 1 (reference) | 0.09 | 1 (reference) |
≤75 cm3 | 3.8 (1.2–11.6) | 2.5 (0.9–7.0) |
Logistic Regression | No Clinical Benefit | |||
---|---|---|---|---|
DCR | ORR | |||
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Metabolic Score (n = 63) | ||||
Good (TMTV ≤ 75 cm3 and dNLR ≤ 3) | 1 (reference) | 1 (reference) | ||
Intermediate (TMTV > 75 cm3 or dNLR > 3) | 5.6 (1.3–23.4) | 0.02 | 2.7 (0.9–8.8) | 0.08 |
Poor (TMTV > 75 cm3 and dNLR > 3) | 9.8 (1.9–31.9) | <0.01 | 4.3 (1.0–18.3) | 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seban, R.-D.; Assié, J.-B.; Giroux-Leprieur, E.; Massiani, M.-A.; Soussan, M.; Bonardel, G.; Chouaid, C.; Playe, M.; Goldfarb, L.; Duchemann, B.; et al. Association of the Metabolic Score Using Baseline FDG-PET/CT and dNLR with Immunotherapy Outcomes in Advanced NSCLC Patients Treated with First-Line Pembrolizumab. Cancers 2020, 12, 2234. https://doi.org/10.3390/cancers12082234
Seban R-D, Assié J-B, Giroux-Leprieur E, Massiani M-A, Soussan M, Bonardel G, Chouaid C, Playe M, Goldfarb L, Duchemann B, et al. Association of the Metabolic Score Using Baseline FDG-PET/CT and dNLR with Immunotherapy Outcomes in Advanced NSCLC Patients Treated with First-Line Pembrolizumab. Cancers. 2020; 12(8):2234. https://doi.org/10.3390/cancers12082234
Chicago/Turabian StyleSeban, Romain-David, Jean-Baptiste Assié, Etienne Giroux-Leprieur, Marie-Ange Massiani, Michael Soussan, Gérald Bonardel, Christos Chouaid, Margot Playe, Lucas Goldfarb, Boris Duchemann, and et al. 2020. "Association of the Metabolic Score Using Baseline FDG-PET/CT and dNLR with Immunotherapy Outcomes in Advanced NSCLC Patients Treated with First-Line Pembrolizumab" Cancers 12, no. 8: 2234. https://doi.org/10.3390/cancers12082234
APA StyleSeban, R. -D., Assié, J. -B., Giroux-Leprieur, E., Massiani, M. -A., Soussan, M., Bonardel, G., Chouaid, C., Playe, M., Goldfarb, L., Duchemann, B., Mezquita, L., Girard, N., & Champion, L. (2020). Association of the Metabolic Score Using Baseline FDG-PET/CT and dNLR with Immunotherapy Outcomes in Advanced NSCLC Patients Treated with First-Line Pembrolizumab. Cancers, 12(8), 2234. https://doi.org/10.3390/cancers12082234