18F-FDG, 11C-Methionine, and 68Ga-Pentixafor PET/CT in Patients with Smoldering Multiple Myeloma: Imaging Pattern and Clinical Features
Abstract
:1. Introduction
2. Methods
2.1. Patient Population
2.2. Imaging Acquisition and Analysis
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Imaging Patterns and Clinical Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Mateos, M.V.; Gonzalez-Calle, V. Smoldering Multiple Myeloma: Who and When to Treat. Clin. Lymphoma Myeloma Leuk. 2017, 17, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V.; Landgren, O.; Mateos, M.V. Smoldering multiple myeloma. Blood 2015, 125, 3069–3075. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Remstein, E.D.; Therneau, T.M.; Dispenzieri, A.; Kurtin, P.J.; Hodnefield, J.M.; Larson, D.R.; Plevak, M.F.; Jelinek, D.F.; Fonseca, R.; et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl. J. Med. 2007, 356, 2582–2590. [Google Scholar] [CrossRef] [PubMed]
- Cocito, F.; Mangiacavalli, S.; Ferretti, V.V.; Cartia, C.S.; Ganzetti, M.; Benveuti, P.; Pompa, A.; Catalano, M.; Fugazza, E.; Landini, B.; et al. Smoldering multiple myeloma: The role of different scoring systems in identifying high-risk patients in real-life practice. Leuk. Lymphoma 2019, 60, 2968–2974. [Google Scholar] [CrossRef] [PubMed]
- Lakshman, A.; Rajkumar, S.V.; Buadi, F.K.; Binder, M.; Gertz, M.A.; Lacy, M.Q.; Dispenzieri, A.; Dingli, D.; Fonder, A.L.; Hayman, S.R.; et al. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J. 2018, 8, 59. [Google Scholar] [CrossRef]
- Hillengass, J.; Usmani, S.; Rajkumar, S.V.; Durie, B.G.M.; Mateos, M.V.; Lonial, S.; Joao, C.; Anderson, K.C.; Garcia-Sanz, R.; Riva, E.; et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol. 2019, 20, e302–e312. [Google Scholar] [CrossRef]
- Siontis, B.; Kumar, S.; Dispenzieri, A.; Drake, M.T.; Lacy, M.Q.; Buadi, F.; Dingli, D.; Kapoor, P.; Gonsalves, W.; Gertz, M.A. Positron emission tomography-computed tomography in the diagnostic evaluation of smoldering multiple myeloma: Identification of patients needing therapy. Blood Cancer J. 2015, 5, e364. [Google Scholar] [CrossRef] [Green Version]
- Lapa, C.; Garcia-Velloso, M.J.; Luckerath, K.; Samnick, S.; Schreder, M.; Otero, P.R.; Schmid, J.S.; Herrmann, K.; Knop, S.; Buck, A.K.; et al. (11)C-Methionine-PET in Multiple Myeloma: A Combined Study from Two Different Institutions. Theranostics 2017, 7, 2956–2964. [Google Scholar] [CrossRef]
- Lapa, C.; Knop, S.; Schreder, M.; Rudelius, M.; Knott, M.; Jorg, G.; Samnick, S.; Herrmann, K.; Buck, A.K.; Einsele, H. 11C-Methionine-PET in Multiple Myeloma: Correlation with Clinical Parameters and Bone Marrow Involvement. Theranostics 2016, 6, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Lapa, C.; Schreder, M.; Schirbel, A.; Samnick, S.; Kortum, K.M.; Herrmann, K.; Kropf, S.; Einsele, H.; Buck, A.K.; Wester, H.J.; et al. [(68)Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [(18)F]FDG and laboratory values. Theranostics 2017, 7, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Cao, X.; Luo, Y.; Li, J.; Feng, J.; Li, F. Chemokine receptor-4 targeted PET/CT with (68)Ga-Pentixafor in assessment of newly diagnosed multiple myeloma: Comparison to (18)F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef] [PubMed]
- Morales-Lozano, M.I.; Viering, O.; Samnick, S.; Rodriguez-Otero, P.; Buck, A.K.; Marcos-Jubilar, M.; Rasche, L.; Prieto, E.; Kortum, K.M.; San-Miguel, J.; et al. (18)F-FDG and (11)C-Methionine PET/CT in Newly Diagnosed Multiple Myeloma Patients: Comparison of Volume-Based PET Biomarkers. Cancers 2020, 12, 1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanni, C.; Versari, A.; Chauvie, S.; Bertone, E.; Bianchi, A.; Rensi, M.; Bello, M.; Gallamini, A.; Patriarca, F.; Gay, F.; et al. Interpretation criteria for FDG PET/CT in multiple myeloma (IMPeTUs): Final results. IMPeTUs (Italian myeloma criteria for PET USe). Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Dankerl, A.; Liebisch, P.; Glatting, G.; Friesen, C.; Blumstein, N.M.; Kocot, D.; Wendl, C.; Bunjes, D.; Reske, S.N. Multiple Myeloma: Molecular Imaging with 11C-Methionine PET/CT--Initial Experience. Radiology 2007, 242, 498–508. [Google Scholar] [CrossRef]
- Lopez-Corral, L.; Gutierrez, N.C.; Vidriales, M.B.; Mateos, M.V.; Rasillo, A.; Garcia-Sanz, R.; Paiva, B.; San Miguel, J.F. The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells. Clin. Cancer Res. 2011, 17, 1692–1700. [Google Scholar] [CrossRef] [Green Version]
- Neben, K.; Jauch, A.; Hielscher, T.; Hillengass, J.; Lehners, N.; Seckinger, A.; Granzow, M.; Raab, M.S.; Ho, A.D.; Goldschmidt, H. Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J. Clin. Oncol. 2013, 31, 4325–4332. [Google Scholar] [CrossRef]
- Peled, A.; Klein, S.; Beider, K.; Burger, J.A.; Abraham, M. Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies. Cytokine 2018, 109, 11–16. [Google Scholar] [CrossRef]
- Waldschmidt, J.M.; Simon, A.; Wider, D.; Muller, S.J.; Follo, M.; Ihorst, G.; Decker, S.; Lorenz, J.; Chatterjee, M.; Azab, A.K.; et al. CXCL12 and CXCR7 are relevant targets to reverse cell adhesion-mediated drug resistance in multiple myeloma. Br. J. Haematol. 2017, 179, 36–49. [Google Scholar] [CrossRef]
- Vande Broek, I.; Leleu, X.; Schots, R.; Facon, T.; Vanderkerken, K.; Van Camp, B.; Van Riet, I. Clinical significance of chemokine receptor (CCR1, CCR2 and CXCR4) expression in human myeloma cells: The association with disease activity and survival. Haematologica 2006, 91, 200–206. [Google Scholar] [PubMed]
Case | Age at Diagnosis, Years | Sex | SMM Subtye | BMPC Infiltration Rate | Cytogenetics | Crea, mg/dL | Hb, g/dL | LDH, IU/L | B2M, mg/L | Calcium, mmol/L | Time of Follow Up in Months | Progression to MM | MM Defining Events | First Line Therapy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 58 | f | LC λ | 40% | NA | 0.65 | 12.9 | 200 | 2.0 | 2.5 | 51 | Yes | λ/κ FLC ratio ≥100 | None * |
2 | 74 | f | LC λ | 10% | t (11;14) | 0.77 | 11.6 | 219 | 1.7 | 2.3 | 50 | No | None | None |
3 | 65 | m | IgG κ | 15% | t (4;14), gain1q21 | 0.86 | 14.2 | 143 | 1.5 | 2.3 | 51 | Yes | Bone lesion | VCD + ASCT |
4 | 57 | m | IgA κ | 10% | HDMM, gain1q21 | 0.63 | 12.1 | 204 | 2.2 | 2.5 | 48 | No | None | None |
5 | 71 | m | IgG κ | 17.5% | NA | 1.20 | 12.4 | 167 | 3.3 | 2.3 | 47 | No | None | None |
6 | 54 | m | IgG κ | 20% | NA | 0.90 | 13.8 | 165 | NA | 2.3 | 44 | No | None | None |
7 | 44 | m | IgA λ | 10% | NA | 0.89 | 15.6 | 154 | 1.7 | 2.5 | 37 | No | None | None |
8 | 66 | m | IgG κ | 12.5% | HDMM | 1.10 | 13.2 | 156 | 2.0 | 2.4 | 9 | No | None | None |
9 | 41 | m | IgG λ | 20% | t (4;14), del13q14 | 0.99 | 15.5 | 155 | 1.8 | 2.5 | 43 | Yes | λ/κ FLC ratio ≥100 | PAD-Rev + ASCT |
10 | 69 | m | IgG λ | 20% | t (11;14) | 1.45 | 10.5 | 259 | 3.3 | 2.4 | 41 | No | None | None |
Case | 18F-FDG PET/CT | 11C-Methionine PET/CT | 68Ga-Pentixafor PET/CT | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PET | SUVmax of LV L2-L4 | SUVmean of LV L2-L4 | SUVmean in RA | TBRmax | TBRmean | PET | SUVmax of LV L2-L4 | SUVmean of LV L2-L4 | SUVmean in RA | TBRmax | TBRmean | PET | SUVmax of LV L2-L4 | SUVmean of LV L2-L4 | SUVmean in RA | TBRmax | TBRmean | |
1 | neg | 4.50 | 3.44 | 2.33 | 1.93 | 1.47 | pos | 6.85 | 5.59 | 0.86 | 7.97 | 6.50 | pos | 12.82 | 7.99 | 1.98 | 6.47 | 4.03 |
2 | neg | 2.83 | 1.98 | 2.28 | 1.24 | 0.87 | neg | 3.33 | 2.54 | 1.46 | 2.28 | 1.74 | neg | 4.46 | 2.67 | 1.91 | 2.33 | 1.40 |
3 | neg | 2.26 | 1.39 | 1.04 | 2.18 | 1.34 | neg | 3.36 | 2.21 | 1.30 | 2.58 | 1.70 | neg | 4.31 | 1.60 | 1.82 | 2.37 | 0.88 |
4 | neg | 3.68 | 2.33 | 2.66 | 1.38 | 0.87 | neg | 4.38 | 2.96 | 1.22 | 3.59 | 2.42 | pos | 11.71 | 3.23 | 1.70 | 6.89 | 1.90 |
5 | neg | 1.66 | 1.08 | 1.56 | 1.07 | 0.69 | pos | 2.62 | 1.76 | 0.66 | 3.97 | 2.67 | neg | 3.28 | 1.63 | 1.16 | 2.83 | 1.40 |
6 | neg | 2.35 | 1.68 | 1.41 | 1.67 | 1.19 | neg | 4.09 | 2.44 | 0.47 | 8.71 | 5.19 | pos | 6.99 | 4.40 | 2.17 | 3.22 | 2.03 |
7 | neg | 3.34 | 2.04 | 1.49 | 2.24 | 1.37 | neg | 5.07 | 3.16 | 1.20 | 4.22 | 2.63 | neg | 5.25 | 2.64 | 1.17 | 4.48 | 2.26 |
8 | neg | 3.16 | 2.18 | 1.61 | 1.96 | 1.35 | neg | 5.02 | 3.46 | 1.06 | 4.74 | 3.27 | neg | 5.90 | 3.17 | 1.86 | 3.17 | 1.71 |
9 | neg | 3.29 | 2.23 | 1.54 | 2.14 | 1.45 | neg | 5.76 | 4.07 | 0.87 | 6.62 | 4.67 | pos | 7.09 | 4.32 | 1.49 | 4.76 | 2.90 |
10 | neg | 2.45 | 1.59 | 1.85 | 1.32 | 0.86 | neg | 3.35 | 2.47 | 1.26 | 2.66 | 1.96 | pos | 4.73 | 2.96 | 2.34 | 2.02 | 1.27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Dierks, A.; Kertels, O.; Kircher, M.; Schirbel, A.; Samnick, S.; Buck, A.K.; Knorz, S.; Böckle, D.; Scheller, L.; et al. 18F-FDG, 11C-Methionine, and 68Ga-Pentixafor PET/CT in Patients with Smoldering Multiple Myeloma: Imaging Pattern and Clinical Features. Cancers 2020, 12, 2333. https://doi.org/10.3390/cancers12082333
Zhou X, Dierks A, Kertels O, Kircher M, Schirbel A, Samnick S, Buck AK, Knorz S, Böckle D, Scheller L, et al. 18F-FDG, 11C-Methionine, and 68Ga-Pentixafor PET/CT in Patients with Smoldering Multiple Myeloma: Imaging Pattern and Clinical Features. Cancers. 2020; 12(8):2333. https://doi.org/10.3390/cancers12082333
Chicago/Turabian StyleZhou, Xiang, Alexander Dierks, Olivia Kertels, Malte Kircher, Andreas Schirbel, Samuel Samnick, Andreas K. Buck, Sebastian Knorz, David Böckle, Lukas Scheller, and et al. 2020. "18F-FDG, 11C-Methionine, and 68Ga-Pentixafor PET/CT in Patients with Smoldering Multiple Myeloma: Imaging Pattern and Clinical Features" Cancers 12, no. 8: 2333. https://doi.org/10.3390/cancers12082333
APA StyleZhou, X., Dierks, A., Kertels, O., Kircher, M., Schirbel, A., Samnick, S., Buck, A. K., Knorz, S., Böckle, D., Scheller, L., Messerschmidt, J., Barakat, M., Kortüm, K. M., Rasche, L., Einsele, H., & Lapa, C. (2020). 18F-FDG, 11C-Methionine, and 68Ga-Pentixafor PET/CT in Patients with Smoldering Multiple Myeloma: Imaging Pattern and Clinical Features. Cancers, 12(8), 2333. https://doi.org/10.3390/cancers12082333