Comparison of RECIST 1.1 and iRECIST in Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Study Characteristics
2.2. Comparison of Endpoints between RECIST 1.1 and iRECIST
2.2.1. Response-Related Endpoints
2.2.2. Survival Endpoints
3. Discussion
4. Materials and Methods
4.1. Search Strategy
4.2. Eligibility Criteria
4.3. Data Extraction
4.4. Definition of Endpoints for Treatment Efficacy
4.5. Quality Assessment
4.6. Statistical Analysis for Meta-Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borcoman, E.; Kanjanapan, Y.; Champiat, S.; Kato, S.; Servois, V.; Kurzrock, R.; Goel, S.; Bedard, P.; Le Tourneau, C. Novel patterns of response under immunotherapy. Ann. Oncol. 2019, 30, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Chehrazi-Raffle, A.; Reddi, S.; Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J. Immunother. Cancer 2018, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Beaver, J.A.; Hazarika, M.; Mulkey, F.; Mushti, S.; Chen, H.; He, K.; Sridhara, R.; Goldberg, K.B.; Chuk, M.K.; Chi, D.C.; et al. Patients with melanoma treated with an anti-PD-1 antibody beyond RECIST progression: A US Food and Drug Administration pooled analysis. Lancet Oncol. 2018, 19, 229–239. [Google Scholar] [CrossRef]
- Hodi, F.S.; Hwu, W.-J.; Kefford, R.; Weber, J.S.; Daud, A.; Hamid, O.; Patnaik, A.; Ribas, A.; Robert, C.; Gangadhar, T.C.; et al. Evaluation of Immune-Related Response Criteria and RECIST v1.1 in Patients With Advanced Melanoma Treated With Pembrolizumab. J. Clin. Oncol. 2016, 34, 1510–1517. [Google Scholar] [CrossRef]
- Chiou, V.L.; Burotto, M. Pseudoprogression and Immune-Related Response in Solid Tumors. J. Clin. Oncol. 2015, 33, 3541–3543. [Google Scholar] [CrossRef] [Green Version]
- Nishino, M.; Giobbie-Hurder, A.; Gargano, M.; Suda, M.; Ramaiya, N.H.; Hodi, F.S. Developing a common language for tumor response to immunotherapy: Immune-related response criteria using unidimensional measurements. Clin. Cancer Res. 2013, 19, 3936–3943. [Google Scholar] [CrossRef] [Green Version]
- Wolchok, J.D.; Hoos, A.; O’Day, S.; Weber, J.S.; Hamid, O.; Lebbé, C.; Maio, M.; Binder, M.; Bohnsack, O.; Nichol, G.; et al. Guidelines for the evaluation of immune therapy activity in solid tumors: Immune-related response criteria. Clin. Cancer Res. 2009, 15, 7412–7420. [Google Scholar] [CrossRef] [Green Version]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef] [Green Version]
- Erasmus, J.J.; Gladish, G.W.; Broemeling, L.; Sabloff, B.S.; Truong, M.T.; Herbst, R.S.; Munden, R.F. Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: Implications for assessment of tumor response. J. Clin. Oncol. 2003, 21, 2574–2582. [Google Scholar] [CrossRef]
- Persigehl, T.; Lennartz, S.; Schwartz, L.H. iRECIST: How to do it. Cancer Imaging 2020, 20, 2. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.I.; Hammer, M.; Bagley, S.J.; Aggarwal, C.; Bauml, J.M.; Thompson, J.C.; Nachiappan, A.C.; Simone, C.B., 2nd; Langer, C.J. Radiologic Pseudoprogression during Anti-PD-1 Therapy for Advanced Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 978–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tazdait, M.; Mezquita, L.; Lahmar, J.; Ferrara, R.; Bidault, F.; Ammari, S.; Balleyguier, C.; Planchard, D.; Gazzah, A.; Soria, J.-C.; et al. Patterns of responses in metastatic NSCLC during PD-1 or PDL-1 inhibitor therapy: Comparison of RECIST 1.1, irRECIST and iRECIST criteria. Eur. J. Cancer 2018, 88, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Amrane, K.; Le Goupil, D.; Quere, G.; Delcroix, O.; Gouva, S.; Schick, U.; Salaun, P.Y.; Abgral, R.; Alavi, Z.; Keromnes, N.; et al. Prediction of response to immune checkpoint inhibitor therapy using 18F-FDG PET/CT in patients with melanoma. Medicine 2019, 98, e16417. [Google Scholar] [CrossRef] [PubMed]
- Beer, L.; Hochmair, M.; Haug, A.R.; Schwabel, B.; Kifjak, D.; Wadsak, W.; Fuereder, T.; Fabikan, H.; Fazekas, A.; Schwab, S.; et al. Comparison of RECIST, iRECIST, and PERCIST for the Evaluation of Response to PD-1/PD-L1 Blockade Therapy in Patients With Non-Small Cell Lung Cancer. Clin. Nucl. Med. 2019, 44, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-C.; Chang, W.-C.; Chen, C.-B.; Wang, C.-L.; Lin, Y.-F.; Ho, M.-M.; Cheng, C.-Y.; Huang, P.-W.; Hsu, C.-W.; Lin, G. Response evaluation for immunotherapy through semi-automatic software based on RECIST 1.1, irRC, and iRECIST criteria: Comparison with subjective assessment. Acta Radiol. 2020, 61, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Voorwerk, L.; Slagter, M.; Horlings, H.M.; Sikorska, K.; van de Vijver, K.K.; de Maaker, M.; Nederlof, I.; Kluin, R.J.C.; Warren, S.; Ong, S.; et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: The TONIC trial. Nat. Med. 2019, 25, 920–928. [Google Scholar] [CrossRef]
- Liang, H.; Xu, Y.; Chen, M.; Zhong, W.; Wang, M.; Zhao, J. Patterns of response in metastatic NSCLC during PD-1 or PD-L1 inhibitor therapy: Comparison of the RECIST 1.1 and iRECIST criteria. Thorac. Cancer 2020, 11, 1068–1075. [Google Scholar] [CrossRef]
- Mulkey, F.; Theoret, M.R.; Keegan, P.; Pazdur, R.; Sridhara, R. Comparison of iRECIST versus RECIST V.1.1 in patients treated with an anti-PD-1 or PD-L1 antibody: Pooled FDA analysis. J. Immunother. Cancer 2020, 8, e000146. [Google Scholar] [CrossRef] [Green Version]
- Won, S.E.; Park, H.J.; Byun, S.; Pyo, J.; Kim, J.H.; Choi, C.M.; Lee, J.C.; Lee, D.H.; Kim, S.W.; Yoon, S.; et al. Impact of pseudoprogression and treatment beyond progression on outcome in patients with non-small cell lung cancer treated with immune checkpoint inhibitors. Oncoimmunology 2020, 9, 1776058. [Google Scholar] [CrossRef]
- Shah, A.N.; Flaum, L.; Helenowski, I.; Santa-Maria, C.A.; Jain, S.; Rademaker, A.; Nelson, V.; Tsarwhas, D.; Cristofanilli, M.; Gradishar, W. Phase II study of pembrolizumab and capecitabine for triple negative and hormone receptor-positive, HER2-negative endocrine-refractory metastatic breast cancer. J. Immunother. Cancer 2020, 8, e000173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuokaya, W.; Kimura, T.; Yanagisawa, T.; Kimura, S.; Tsuzuki, S.; Koike, Y.; Iwamoto, Y.; Enei, Y.; Tanaka, M.; Urabe, F.; et al. Comparison of the Immunotherapy Response Evaluation Criteria in Solid Tumours (iRECIST) with RECIST for capturing treatment response of patients with metastatic urothelial carcinoma treated with pembrolizumab. BJU Int. 2020, 127, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Kim, K.W.; Pyo, J.; Suh, C.H.; Yoon, S.; Hatabu, H.; Nishino, M. Incidence of Pseudoprogression during Immune Checkpoint Inhibitor Therapy for Solid Tumors: A Systematic Review and Meta-Analysis. Radiology 2020, 297, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, V.; Yarchoan, M.; Hansen, A.R.; Wang, H.; Verde, F.; Sharon, E.; Collyar, D.; Chow, L.Q.M.; Forde, P.M. Immuno-oncology Trial Endpoints: Capturing Clinically Meaningful Activity. Clin. Cancer Res. 2017, 23, 4959–4969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinetti, M.E.; Studenski, S.A. Comparative effectiveness research and patients with multiple chronic conditions. N. Engl. J. Med. 2011, 364, 2478–2481. [Google Scholar] [CrossRef]
- Davidoff, F.; Batalden, P.; Stevens, D.; Ogrinc, G.; Mooney, S.E.; SQUIRE Development Group. Publication guidelines for quality improvement studies in health care: Evolution of the SQUIRE project. BMJ 2009, 338, a3152. [Google Scholar] [CrossRef]
- Guyot, P.; Ades, A.E.; Ouwens, M.J.; Welton, N.J. Enhanced secondary analysis of survival data: Reconstructing the data from published Kaplan-Meier survival curves. BMC Med. Res. Methodol. 2012, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration. Clinical Trial Endpoints for the Approval of Cancer Drugs and Biologics Guidance for Windustry. 2018. Available online: https://www.fda.gov/media/71195/download (accessed on 22 July 2020).
- Villaruz, L.C.; Socinski, M.A. The clinical viewpoint: Definitions, limitations of RECIST, practical considerations of measurement. Clin. Cancer Res. 2013, 19, 2629–2636. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2011. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 1 June 2020).
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Liang, F.; Zhang, S.; Wang, Q.; Li, W. Treatment effects measured by restricted mean survival time in trials of immune checkpoint inhibitors for cancer. Ann. Oncol. 2018, 29, 1320–1324. [Google Scholar] [CrossRef]
- Uno, H.; Wittes, J.; Fu, H.; Solomon, S.D.; Claggett, B.; Tian, L.; Cai, T.; Pfeffer, M.A.; Evans, S.R.; Wei, L.J. Alternatives to Hazard Ratios for Comparing the Efficacy or Safety of Therapies in Noninferiority Studies. Ann. Intern. Med. 2015, 163, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uno, H.; Claggett, B.; Tian, L.; Inoue, E.; Gallo, P.; Miyata, T.; Schrag, D.; Takeuchi, M.; Uyama, Y.; Zhao, L.; et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J. Clin. Oncol. 2014, 32, 2380–2385. [Google Scholar] [CrossRef] [PubMed]
- Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
Study | Study Design | Tumor | Agent (s) | Prior Systemic Therapy (%) | Median Follow-Up (Months) | No. of Patients | Median PFS per RECIST 1.1 (Months) | Median iPFS per iRECIST (Months) | Median OS (Months) |
---|---|---|---|---|---|---|---|---|---|
Katz et al. (2018) [12] | Observational (Retrospective) | NSCLC | Anti-PD-1 monotherapy | 100 | NA | 166 | NA | NA | NA |
Tazdait et al. (2018) [13] | Observational (Retrospective) | NSCLC | Anti-PD-1 or anti-PD-L1 monotherapy or anti-PD-1 combined with targeted agent | 100 | 8.2 | 160 | NA | NA | 11.3 |
Amrane et al. (2019) [14] | Observational (Retrospective) | Melanoma | Anti-PD-1 or anti-CTLA-4 monotherapy | 21.6 | NA | 37 | Not reached | Not reached | 36.6 |
Beer et al. (2019) [15] | Observational (Prospective) | NSCLC | Anti-PD-1 or anti-PD-L1 monotherapy | 92.9, 1 line | 12 | 42 | 10.6 | 10.5 | 20.0 |
Lai et al. (2019) [16] | Observational (Retrospective) | Multiple (NSCLC, Melanoma, HCC) | Anti-PD-1 or anti-CTLA-4 monotherapy or combination of anti-PD-1 and anti-CTLA-4 | NA | NA | 21 | NA | NA | NA |
Voorwerk et al. (2019) b [17] | RCT | Breast cancer | Anti-PD-1 monotherapy | 100 | 19.9 | 66 | 1.9 | 1.9 | NA |
Liang et al. (2020) [18] | Observational (Retrospective) | NSCLC | Anti-PD-1 or anti-PD-L1 monotherapy or combination of anti-PD-1 and anti-PD-L1 | 83.7, 1–3 lines | NA | 43 | 5.4 | 6.2 | Not reached |
Mulkey et al. (2020) b [19] | Pooled analysis of 14 RCTs | Multiple (melanoma, SCC, NSCLC, RCC, HNSCC) | Anti-PD-1 or anti-PD-L1 monotherapy | NA | NA | 4751 | 3.9 | 4.2 | NA |
Anti-CTLA-4 monotherapy | NA | NA | 613 a | NA | NA | NA | |||
Won et al. (2020) [20] | Observational (Retrospective) | NSCLC | Anti-PD-1 or anti-PD-L1 monotherapy | NA | 6.7 | 189 | 3.8 | 4.1 | 12.1 |
Shah et al. (2020) [21] | Phase II clinical trial | Breast cancer | Combination of anti-PD-1 and chemotherapy | 73.7, 1–6 lines | NA | 30 | 4.0 | 4.0 | 15.4 |
Fukuokaya et al. (2020) [22] | Observational (Retrospective) | Urothelial carcinoma | Anti-PD-1 monotherapy | 100, 1–2 lines | 8.2 | 91 | NA | NA | Not reached |
Characteristics | No. of Study | Overall Response Rate (%) | Disease Control Rate (%) | PD Date Discordance Rate (%) | ||||
---|---|---|---|---|---|---|---|---|
Pooled ORR | Pooled iORR | p Value | Pooled DCR | Pooled DCR | p Value | Pooled Rate of Discordance | ||
Tumor Type | ||||||||
NSCNC | 4 | 22.3 (17.7–26.9) | 23.6 (18.8–28.3) | 0.72 | 51.5 (45.1–57.8) | 54.4 (46.6–62.3) | 0.56 | 2.9 (1.3–4.4) |
Breast cancer | 2 * | 17.8 (9.6–26.1) | 17.8 (9.6–26.1) | >0.99 | 29.6 (8.3–51) | 29.6 (8.3–51) | >0.99 | 2.9 (−5.1–11) |
Others | 4 * | 51.7 (44.8–58.5) | 29.8 (24.7–35) | >0.99 | 44.9 (33.3–56.6) | 51.7 (44.8–58.5) | 0.33 | 4.9 (4.3–5.5) |
Drug type | ||||||||
Anti-PD-1 or anti-PD-L1 monotherapy | 6 | 24.8 (20–29.7) | 26.4 (21–31.7) | 0.68 | 45.3 (34.1–56.6) | 48.9 (36.9–60.9) | 0.67 | 4.7 (3.9–5.5) |
Others | 5 | 21.3 (14.8–27.7) | 21.4 (15.3–27.5) | 0.98 | 45.5 (31.9–59) | 50.2 (42.8–57.5) | 0.63 | 2.7 (0.8–4.7) |
RCT vs Non-RCT | ||||||||
RCT | 2 | 23.7 (15.8–31.6) | 24.2 (15.9–32.5) | 0.93 | 38.0 (5.8–70.2) | 39.0 (4.8–73.2) | 0.97 | 4.9 (4.3–5.5) |
Non-RCT | 9 | 23.1 (18.6–27.6) | 24.9 (19.3–30.5) | 0.63 | 47.3 (40.2–54.3) | 51.0 (47.1–54.9) | 0.36 | 3.4 (2.1–4.6) |
Patient recruitment | ||||||||
Prospective | 4 | 22.6 (16.3–28.9) | 23.5 (16.6–30.4) | 0.85 | 47.8 (29.2–66.5) | 49.6 (29.4–69.8) | 0.90 | 4.5 (2.7–6.2) |
Retrospective | 7 | 26.2 (18.9–29.5) | 25.8 (19.7–32) | 0.69 | 44.5 (38.2–50.9) | 49.3 (45.2–53.4) | 0.23 | 3.5 (2.1–4.9) |
Prior treatment | ||||||||
Prior systemic treatment in all patients | 4 | 23.6 (17.8–29.5) | 25.2 (16.2–34.2) | 0.78 | 35.4 (20.6–50.2) | 40.0 (21.7–58.2) | 0.72 | 5.4 (1.6–9.2) |
Others | 7 | 23.5 (18.3–28.8) | 24.6 (19.1–30) | 0.79 | 50.7 (43.8–57.6) | 53.8 (48.7–59) | 0.48 | 3.6 (2–5.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.J.; Kim, G.H.; Kim, K.W.; Lee, C.W.; Yoon, S.; Chae, Y.K.; Tirumani, S.H.; Ramaiya, N.H. Comparison of RECIST 1.1 and iRECIST in Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Cancers 2021, 13, 120. https://doi.org/10.3390/cancers13010120
Park HJ, Kim GH, Kim KW, Lee CW, Yoon S, Chae YK, Tirumani SH, Ramaiya NH. Comparison of RECIST 1.1 and iRECIST in Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Cancers. 2021; 13(1):120. https://doi.org/10.3390/cancers13010120
Chicago/Turabian StylePark, Hyo Jung, Gun Ha Kim, Kyung Won Kim, Choong Wook Lee, Shinkyo Yoon, Young Kwang Chae, Sree Harsha Tirumani, and Nikhil H. Ramaiya. 2021. "Comparison of RECIST 1.1 and iRECIST in Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis" Cancers 13, no. 1: 120. https://doi.org/10.3390/cancers13010120
APA StylePark, H. J., Kim, G. H., Kim, K. W., Lee, C. W., Yoon, S., Chae, Y. K., Tirumani, S. H., & Ramaiya, N. H. (2021). Comparison of RECIST 1.1 and iRECIST in Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Cancers, 13(1), 120. https://doi.org/10.3390/cancers13010120