Preliminary Radiogenomic Evidence for the Prediction of Metastasis and Chemotherapy Response in Pediatric Patients with Osteosarcoma Using 18F-FDG PET/CT, EZRIN, and KI67
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pediatric Osteosarcoma Patient Data
2.2. 18F-FDG PET/CT Image Texture Features
2.3. Feature Selection for the Prediction Model
2.4. Prediction Model Development Using Machine and Deep Learning
2.5. Radiogenomics Data Analysis
3. Results
3.1. Image Texture Feature Extraction from 18F-FDG PET/CT Images
3.2. Machine and Deep Learning Algorithms Using 18F-FDG PET/CT Images
3.3. Deep Learning Interpretation: t-SNE Plots
3.4. Radiogenomics Machine Learning Model
3.5. Machine Learning Prediction Model with the Random Forest Algorithm
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brueffer, C.; Vallon-Christersson, J.; Grabau, D.; Ehinger, A.; Häkkinen, J.; Hegardt, C.; Malina, J.; Chen, Y.; Bendahl, P.-O.; Manjer, J. Clinical value of RNA sequencing-based classifiers for prediction of the five conventional breast cancer biomarkers: A report from the population-based multicenter sweden cancerome analysis network—Breast initiative. JCO Precis. Oncol. 2018, 2, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Petri, B.J.; Klinge, C.M. Regulation of breast cancer metastasis signaling by miRNAs. Cancer Metastasis Rev. 2020, 39, 837–886. [Google Scholar] [CrossRef]
- Ryu, T.Y.; Kim, K.; Kim, S.-K.; Oh, J.-H.; Min, J.-K.; Jung, C.-R.; Son, M.-Y.; Kim, D.-S.; Cho, H.-S. SETDB1 regulates SMAD7 expression for breast cancer metastasis. BMB Rep. 2019, 52, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Piao, H.-L.; Kim, B.-J.; Yao, F.; Han, Z.; Wang, Y.; Xiao, Z.; Siverly, A.N.; Lawhon, S.E.; Ton, B.N. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat. Genet. 2018, 50, 1705–1715. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Son, M.-Y.; Jung, C.-R.; Kim, D.-S.; Cho, H.-S. EHMT2 is a metastasis regulator in breast cancer. Biochem. Biophys. Res. Commun. 2018, 496, 758–762. [Google Scholar] [CrossRef]
- Niu, Y.; Bao, L.; Chen, Y.; Wang, C.; Luo, M.; Zhang, B.; Zhou, M.; Wang, J.E.; Fang, Y.V.; Kumar, A. HIF2-induced long noncoding RNA RAB11B-AS1 promotes hypoxia-mediated angiogenesis and breast cancer metastasis. Cancer Res. 2020, 80, 964–975. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, J.M.; Varley, K.E.; Gertz, J.; Savic, D.S.; Roberts, B.S.; Bailey, S.K.; Shevde, L.A.; Ramaker, R.C.; Lasseigne, B.N.; Kirby, M.K. Genomic regulation of invasion by STAT3 in triple negative breast cancer. Oncotarget 2017, 8, 8226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Y.; Shi, L.; Yun, F.; Liu, X.; Chen, Y.; Wang, M.; Chen, C.; Ren, Y.; Bao, Y.; Wang, L. Transcriptome sequencing profiles reveal lncRNAs may involve in breast cancer (ER/PR positive type) by interaction with RAS associated genes. Pathol. Res. Pract. 2019, 215, 152405. [Google Scholar] [CrossRef]
- Yan, N.; Xu, H.; Zhang, J.; Xu, L.; Zhang, Y.; Zhang, L.; Xu, Y.; Zhang, F. Circular RNA profile indicates circular RNA VRK1 is negatively related with breast cancer stem cells. Oncotarget 2017, 8, 95704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Mei, J.; Xiao, Z.; Xu, B.; Jiang, X.; Zhang, Y.; Zhu, Y. Identification of five hub genes as monitoring biomarkers for breast cancer metastasis in silico. Hereditas 2019, 156, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Seo, C.H.; Kim, J.-R.; Kim, M.-S.; Cho, K.-H. Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks. Bioinformatics 2009, 25, 1898–1904. [Google Scholar] [CrossRef] [Green Version]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Beam, A.L.; Kohane, I.S. Big data and machine learning in health care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef]
- Shrestha, S.; Sengupta, P.P. Machine learning for nuclear cardiology: The way forward. J. Nucl. Cardiol. 2019, 26, 1755–1758. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.Q.; Liang, C.H.; He, L.; Tian, J.; Liang, C.S.; Chen, X.; Ma, Z.L.; Liu, Z.Y. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J. Clin. Oncol. 2016, 34, 2157–2164. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Wagner, G.P.; Kin, K.; Lynch, V.J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012, 131, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Love, M.; Anders, S.; Huber, W. Differential analysis of count data–the DESeq2 package. Genome Biol. 2014, 15, 10.1186. [Google Scholar]
- Zheng, G.; Ma, Y.; Zou, Y.; Yin, A.; Li, W.; Dong, D. HCMDB: The human cancer metastasis database. Nucleic Acids Res. 2018, 46, D950–D955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Horikoshi, M.; Li, W. ggfortify: Unified interface to visualize statistical results of popular R packages. R J. 2016, 8, 474. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Kong, D.; Cui, Q.; Wang, K.; Zhang, D.; Gong, Y.; Wu, G. Prognostic genes of breast cancer identified by gene co-expression network analysis. Front. Oncol. 2018, 8, 374. [Google Scholar] [CrossRef]
- Rivera, C.; Zandonadi, F.S.; Sánchez-Romero, C.; Soares, C.D.; Granato, D.C.; González-Arriagada, W.A.; Leme, A.F.P. Agrin has a pathological role in the progression of oral cancer. Br. J. Cancer 2018, 118, 1628–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coffin, C.M.; Lowichik, A.; Zhou, H. Treatment Effects in Pediatric Soft Tissue and Bone Tumors. Anat. Pathol. 2005, 123, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yesilkanal, A.E.; Wynne, J.P.; Frankenberger, C.; Liu, J.; Yan, J.; Elbaz, M.; Rabe, D.C.; Rustandy, F.D.; Tiwari, P. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature 2019, 568, 254–258. [Google Scholar] [CrossRef]
- Way, G.P.; Allaway, R.J.; Bouley, S.J.; Fadul, C.E.; Sanchez, Y.; Greene, C.S. A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma. BMC Genom. 2017, 18, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.-G.; Sun, J.-Y.; Tong, Q.; Li, F.-Y.; He, Z.-Y. Clinical features of brain metastases in breast cancer: An implication for hippocampal-sparing whole-brain radiation therapy. Ther. Clin. Risk Manag. 2016, 12, 1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nargis, H.; Nawaz, H.; Ditta, A.; Mahmood, T.; Majeed, M.; Rashid, N.; Muddassar, M.; Bhatti, H.; Saleem, M.; Jilani, K. Raman spectroscopy of blood plasma samples from breast cancer patients at different stages. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 222, 117210. [Google Scholar] [CrossRef] [Green Version]
- Dhanya, K.; Menon, A.; Rai, L.S. In-vitro Models in Anticancer Screening. In Phytochemistry: An In-Silico and In-Vitro Update; Springer: Berlin/Heidelberg, Germany, 2019; pp. 251–265. [Google Scholar]
- Lim, S.; Park, Y.; Hur, B.; Kim, M.; Han, W.; Kim, S. Protein interaction network (pin)-based breast cancer subsystem identification and activation measurement for prognostic modeling. Methods 2016, 110, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Kabiraj, S.; Akter, L.; Raihan, M.; Diba, N.J.; Podder, E.; Hassan, M.M. Prediction of Recurrence and Non-recurrence Events of Breast Cancer using Bagging Algorithm. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–5. [Google Scholar]
- Shao, B.; Conrad, T. Epithelial-mesenchymal transition regulatory network-based feature selection in lung cancer prognosis prediction. In Proceedings of the International Conference on Bioinformatics and Biomedical Engineering, Granada, Spain, 20–22 April 2016; pp. 135–146. [Google Scholar]
- Zhang, Y.; Deng, Q.; Liang, W.; Zou, X. An efficient feature selection strategy based on multiple support vector machine technology with gene expression data. BioMed Res. Int. 2018, 2018, 7538204. [Google Scholar] [CrossRef]
- Ganggayah, M.D.; Taib, N.A.; Har, Y.C.; Lio, P.; Dhillon, S.K. Predicting factors for survival of breast cancer patients using machine learning techniques. BMC Med. Inform. Decis. Mak. 2019, 19, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigelt, B.; Glas, A.M.; Wessels, L.F.; Witteveen, A.T.; Peterse, J.L.; van’t Veer, L.J. Gene expression profiles of primary breast tumors maintained in distant metastases. Proc. Natl. Acad. Sci. USA 2003, 100, 15901–15905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, G.; Chen, L.; Zhang, W. WGCNA application to proteomic and metabolomic data analysis. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 585, pp. 135–158. [Google Scholar]
Characteristic | Value |
---|---|
Sex, n (%) | 21 (40.38%) |
Female | 31 (59.61%) |
Male | |
Age, n (%) | 52 (100%) |
Years ≤ 14 | |
Location of primary tumor, n (%) | 33 (63.46%) |
Femur | 16 (30.76%) |
Tibia | 2 (3.84%) |
Humerus | 1 (1.92%) |
Pelvis | |
AJCC stage, n (%) | 13 (25%) |
2A | 16 (30.76%) |
2B | 4 (7.69%) |
IIA | 19 (36.53%) |
Unknown | |
Pathologic subtype, n (%) | 39 (75%) |
OB (Osteoblastic) | 10 (19.23%) |
CB (Chondroblastic) | 3 (5.76%) |
Others |
Chemotherapy Response | Random Forest | Gradient Boosting | Deep Learning | ||
Text Feature (47) | AUC > 0.6 (7) | Text Feature (47) | AUC > 0.6 (7) | Train (37): Test (15) | |
Sensitivity | 0.76 | 0.79 | 0.85 | 0.84 | 0.956 |
Specificity | 0.74 | 0.82 | 0.94 | 0.88 | 0.964 |
AUC | 0.76 | 0.80 | 0.88 | 0.86 | 0.917 |
Train accuracy | 0.71 | 0.83 | 0.77 | 0.83 | 0.978 |
Test accuracy | 0.71 | 0.83 | 0.81 | 0.81 | 0.975 |
Metastasis | Random Forest | Gradient Boosting | Deep Learning | ||
Text Feature (47) | AUC > 0.6 (17) | Text Feature (47) | AUC > 0.6 (17) | Train (37): Test (15) | |
Sensitivity | 0.77 | 0.80 | 0.76 | 0.85 | 0.958 |
Specificity | 0.74 | 0.66 | 0.76 | 0.73 | 0.990 |
AUC | 0.73 | 0.85 | 0.74 | 0.72 | 0.970 |
Train accuracy | 0.72 | 0.76 | 0.77 | 0.67 | 0.986 |
Test accuracy | 0.72 | 0.76 | 0.61 | 0.76 | 0.983 |
Chemotherapy Response | EZRIN | KI67 | Image Texture Feature + EZRIN + KI67 | NGLDM_Contrast + EZRIN+ KI67 |
Sensitivity | 0.59 | 0.57 | 0.84 | 0.87 |
Specificity | 0.44 | 0.68 | 0.75 | 0.85 |
AUC | 0.58 | 0.57 | 0.77 | 0.89 |
Train accuracy | 0.53 | 0.52 | 0.73 | 0.85 |
Test accuracy | 0.53 | 0.52 | 0.73 | 0.85 |
Metastasis | EZRIN | KI67 | Image Texture Feature+ EZRIN + KI67 | GLCM_Correlation + EZRIN+ KI67 |
Sensitivity | 0.61 | 0.54 | 0.77 | 0.91 |
Specificity | 0.42 | 0.65 | 0.55 | 0.6 |
AUC | 0.56 | 0.57 | 0.76 | 0.8 |
Train accuracy | 0.54 | 0.52 | 0.74 | 0.85 |
Test accuracy | 0.54 | 0.52 | 0.74 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-C.; Kim, J.; Kim, K.; Byun, B.H.; Lim, I.; Kong, C.-B.; Song, W.S.; Koh, J.-S.; Woo, S.-K. Preliminary Radiogenomic Evidence for the Prediction of Metastasis and Chemotherapy Response in Pediatric Patients with Osteosarcoma Using 18F-FDG PET/CT, EZRIN, and KI67. Cancers 2021, 13, 2671. https://doi.org/10.3390/cancers13112671
Kim B-C, Kim J, Kim K, Byun BH, Lim I, Kong C-B, Song WS, Koh J-S, Woo S-K. Preliminary Radiogenomic Evidence for the Prediction of Metastasis and Chemotherapy Response in Pediatric Patients with Osteosarcoma Using 18F-FDG PET/CT, EZRIN, and KI67. Cancers. 2021; 13(11):2671. https://doi.org/10.3390/cancers13112671
Chicago/Turabian StyleKim, Byung-Chul, Jingyu Kim, Kangsan Kim, Byung Hyun Byun, Ilhan Lim, Chang-Bae Kong, Won Seok Song, Jae-Soo Koh, and Sang-Keun Woo. 2021. "Preliminary Radiogenomic Evidence for the Prediction of Metastasis and Chemotherapy Response in Pediatric Patients with Osteosarcoma Using 18F-FDG PET/CT, EZRIN, and KI67" Cancers 13, no. 11: 2671. https://doi.org/10.3390/cancers13112671
APA StyleKim, B. -C., Kim, J., Kim, K., Byun, B. H., Lim, I., Kong, C. -B., Song, W. S., Koh, J. -S., & Woo, S. -K. (2021). Preliminary Radiogenomic Evidence for the Prediction of Metastasis and Chemotherapy Response in Pediatric Patients with Osteosarcoma Using 18F-FDG PET/CT, EZRIN, and KI67. Cancers, 13(11), 2671. https://doi.org/10.3390/cancers13112671