Inhibition of CDK4/6 as Therapeutic Approach for Ovarian Cancer Patients: Current Evidences and Future Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Role of CDK4 and CDK6 in the Control of Cell Cycle Progression
3. Non-Cell Cycle Dependent Activities of CDK4 and CDK6
4. Mechanism of Action of CDK4/6 Inhibitors
5. Expression of CDK4 and CDK6 Containing Complexes in Ovarian Cancer
6. Combination Strategies of CDK4/6 Inhibitors with Conventional Cytotoxic Agents
7. Use of CDK4/6 Inhibitors as Single Agents in Ovarian Cancer Patients
8. Clinical Experiences on the Use of CDK 4/6i with Chemotherapy
9. CDK4/6 Inhibitors Safety and Tolerability Profile
10. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurse, P. A Long Twentieth Century of the Cell Cycle and Beyond. Cell 2000, 100, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Grimmler, M.; Wang, Y.; Mund, T.; Cilensek, Z.; Keidel, E.-M.; Waddell, M.B.; Jäkel, H.; Kullmann, M.; Kriwacki, R.W.; Hengst, L. Cdk-Inhibitory Activity and Stability of P27Kip1 Are Directly Regulated by Oncogenic Tyrosine Kinases. Cell 2007, 128, 269–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, I.; Sun, J.; Arnaout, A.; Kahn, H.; Hanna, W.; Narod, S.; Sun, P.; Tan, C.-K.; Hengst, L.; Slingerland, J. P27 Phosphorylation by Src Regulates Inhibition of Cyclin E-Cdk2. Cell 2007, 128, 281–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sicinski, P.; Donaher, J.L.; Parker, S.B.; Li, T.; Fazeli, A.; Gardner, H.; Haslam, S.Z.; Bronson, R.T.; Elledge, S.J.; Weinberg, R.A. Cyclin D1 Provides a Link between Development and Oncogenesis in the Retina and Breast. Cell 1995, 82, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Sicinski, P.; Donaher, J.L.; Geng, Y.; Parker, S.B.; Gardner, H.; Park, M.Y.; Robker, R.L.; Richards, J.S.; McGinnis, L.K.; Biggers, J.D.; et al. Cyclin D2 Is an FSH-Responsive Gene Involved in Gonadal Cell Proliferation and Oncogenesis. Nature 1996, 384, 470–474. [Google Scholar] [CrossRef]
- Sicinska, E.; Aifantis, I.; Le Cam, L.; Swat, W.; Borowski, C.; Yu, Q.; Ferrando, A.A.; Levin, S.D.; Geng, Y.; Von Boehmer, H.; et al. Requirement for Cyclin D3 in Lymphocyte Development and T Cell Leukemias. Cancer Cell 2003, 4, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Malumbres, M.; Sotillo, R.; Santamaría, D.; Galán, J.; Cerezo, A.; Ortega, S.; Dubus, P.; Barbacid, M. Mammalian Cells Cycle without the D-Type Cyclin-Dependent Kinases Cdk4 and Cdk6. Cell 2004, 118, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Kozar, K.; Ciemerych, M.A.; Rebel, V.I.; Shigematsu, H.; Zagozdzon, A.; Sicinska, E.; Geng, Y.; Yu, Q.; Bhattacharya, S.; Bronson, R.T.; et al. Mouse Development and Cell Proliferation in the Absence of D-Cyclins. Cell 2004, 118, 477–491. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Geng, Y.; Sicinski, P. Specific Protection against Breast Cancers by Cyclin D1 Ablation. Nature 2001, 411, 1017–1021. [Google Scholar] [CrossRef]
- Yu, Q.; Sicinska, E.; Geng, Y.; Ahnström, M.; Zagozdzon, A.; Kong, Y.; Gardner, H.; Kiyokawa, H.; Harris, L.N.; Stål, O.; et al. Requirement for CDK4 Kinase Function in Breast Cancer. Cancer Cell 2006, 9, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.J.; Li, X.; Hydbring, P.; Sanda, T.; Stefano, J.; Christie, A.L.; Signoretti, S.; Look, A.T.; Kung, A.L.; Von Boehmer, H.; et al. The Requirement for Cyclin D Function in Tumor Maintenance. Cancer Cell 2012, 22, 438–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, R.S.; Crown, J.P.; Lang, I.; Boer, K.; Bondarenko, I.M.; Kulyk, S.O.; Ettl, J.; Patel, R.; Pinter, T.; Schmidt, M.; et al. The Cyclin-Dependent Kinase 4/6 Inhibitor Palbociclib in Combination with Letrozole versus Letrozole Alone as First-Line Treatment of Oestrogen Receptor-Positive, HER2-Negative, Advanced Breast Cancer (PALOMA-1/TRIO-18): A Randomised Phase 2 Study. Lancet Oncol. 2015, 16, 25–35. [Google Scholar] [CrossRef]
- Schettini, F.; De Santo, I.; Rea, C.G.; De Placido, P.; Formisano, L.; Giuliano, M.; Arpino, G.; De Laurentiis, M.; Puglisi, F.; De Placido, S.; et al. CDK 4/6 Inhibitors as Single Agent in Advanced Solid Tumors. Front. Oncol. 2018, 8, 608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schettini, F.; Giudici, F.; Giuliano, M.; Cristofanilli, M.; Arpino, G.; Del Mastro, L.; Puglisi, F.; De Placido, S.; Paris, I.; De Placido, P.; et al. Overall Survival of CDK4/6-Inhibitor-Based Treatments in Clinically Relevant Subgroups of Metastatic Breast Cancer: Systematic Review and Meta-Analysis. J. Natl. Cancer Inst. 2020, 112, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Basile, D.; Gerratana, L.; Corvaja, C.; Pelizzari, G.; Franceschin, G.; Bertoli, E.; Palmero, L.; Zara, D.; Alberti, M.; Buriolla, S.; et al. First- and Second-Line Treatment Strategies for Hormone-Receptor (HR)-Positive HER2-Negative Metastatic Breast Cancer: A Real-World Study. Breast 2021, 57, 104–112. [Google Scholar] [CrossRef]
- Im, S.-A.; Lu, Y.-S.; Bardia, A.; Harbeck, N.; Colleoni, M.; Franke, F.; Chow, L.; Sohn, J.; Lee, K.-S.; Campos-Gomez, S.; et al. Overall Survival with Ribociclib plus Endocrine Therapy in Breast Cancer. N. Engl. J. Med. 2019, 381, 307–316. [Google Scholar] [CrossRef]
- Niesvizky, R.; Badros, A.Z.; Costa, L.J.; Ely, S.A.; Singhal, S.B.; Stadtmauer, E.A.; Haideri, N.A.; Yacoub, A.; Hess, G.; Lentzsch, S.; et al. Phase 1/2 Study of Cyclin-Dependent Kinase (CDK)4/6 Inhibitor Palbociclib (PD-0332991) with Bortezomib and Dexamethasone in Relapsed/Refractory Multiple Myeloma. Leuk. Lymphoma 2015, 56, 3320–3328. [Google Scholar] [CrossRef]
- Taylor, J.W.; Parikh, M.; Phillips, J.J.; James, C.D.; Molinaro, A.M.; Butowski, N.A.; Clarke, J.L.; Oberheim-Bush, N.A.; Chang, S.M.; Berger, M.S.; et al. Phase-2 Trial of Palbociclib in Adult Patients with Recurrent RB1-Positive Glioblastoma. J. Neurooncol. 2018, 140, 477–483. [Google Scholar] [CrossRef]
- Martin, P.; Ruan, J.; Furman, R.; Rutherford, S.; Allan, J.; Chen, Z.; Huang, X.; DiLiberto, M.; Chen-Kiang, S.; Leonard, J.P. A Phase I Trial of Palbociclib plus Bortezomib in Previously Treated Mantle Cell Lymphoma. Leuk. Lymphoma 2019, 60, 2917–2921. [Google Scholar] [CrossRef]
- Besse, B.; Barlesi, F.; Demedts, I.; Fuentes Pradera, J.; Robinet, G.; Gazzah, A.; Soldatenkova, V.; Frimodt-Moller, B.; Kim, J.S.; Vansteenkiste, J. A Phase 1b Study of Necitumumab in Combination with Abemaciclib in Patients with Stage IV Non-Small Cell Lung Cancer. Lung Cancer 2019, 137, 136–143. [Google Scholar] [CrossRef]
- Adkins, D.; Ley, J.; Neupane, P.; Worden, F.; Sacco, A.G.; Palka, K.; Grilley-Olson, J.E.; Maggiore, R.; Salama, N.N.; Trinkaus, K.; et al. Palbociclib and Cetuximab in Platinum-Resistant and in Cetuximab-Resistant Human Papillomavirus-Unrelated Head and Neck Cancer: A Multicentre, Multigroup, Phase 2 Trial. Lancet Oncol. 2019, 20, 1295–1305. [Google Scholar] [CrossRef]
- Dean, J.L.; McClendon, A.K.; Knudsen, E.S. Modification of the DNA Damage Response by Therapeutic CDK4/6 Inhibition. J. Biol. Chem. 2012, 287, 29075–29087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvador-Barbero, B.; Álvarez-Fernández, M.; Zapatero-Solana, E.; El Bakkali, A.; Menéndez, M.D.C.; López-Casas, P.P.; Di Domenico, T.; Xie, T.; VanArsdale, T.; Shields, D.J.; et al. CDK4/6 Inhibitors Impair Recovery from Cytotoxic Chemotherapy in Pancreatic Adenocarcinoma. Cancer Cell 2020, 37, 340–353. [Google Scholar] [CrossRef] [PubMed]
- Pesch, A.M.; Hirsh, N.H.; Chandler, B.C.; Michmerhuizen, A.R.; Ritter, C.L.; Androsiglio, M.P.; Wilder-Romans, K.; Liu, M.; Gersch, C.L.; Larios, J.M.; et al. Short-Term CDK4/6 Inhibition Radiosensitizes Estrogen Receptor-Positive Breast Cancers. Clin. Cancer Res. 2020, 26, 6568–6580. [Google Scholar] [CrossRef] [PubMed]
- Dall’Acqua, A.; Sonego, M.; Pellizzari, I.; Pellarin, I.; Canzonieri, V.; D’Andrea, S.; Benevol, S.; Sorio, R.; Giorda, G.; Califano, D.; et al. CDK6 Protects Epithelial Ovarian Cancer from Platinum-Induced Death via FOXO3 Regulation. EMBO Mol. Med. 2017, 9, 1415–1433. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Boudreault, J.; Wang, N.; Poulet, S.; Daliah, G.; Yan, G.; Moamer, A.; Burgos, S.A.; Sabri, S.; Ali, S.; et al. Differential Regulation of Cancer Progression by CDK4/6 Plays a Central Role in DNA Replication and Repair Pathways. Cancer Res. 2020. [Google Scholar] [CrossRef]
- Watt, A.C.; Cejas, P.; DeCristo, M.J.; Metzger-Filho, O.; Lam, E.Y.N.; Qiu, X.; BrinJones, H.; Kesten, N.; Coulson, R.; Font-Tello, A.; et al. CDK4/6 Inhibition Reprograms the Breast Cancer Enhancer Landscape by Stimulating AP-1 Transcriptional Activity. Nat. Cancer 2021, 2, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Anders, L.; Ke, N.; Hydbring, P.; Choi, Y.J.; Widlund, H.R.; Chick, J.M.; Zhai, H.; Vidal, M.; Gygi, S.P.; Braun, P.; et al. A Systematic Screen for CDK4/6 Substrates Links FOXM1 Phosphorylation to Senescence Suppression in Cancer Cells. Cancer Cell 2011, 20, 620–634. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Sun, Y.; Ji, P.; Li, X.; Cogdell, D.; Yang, D.; Parker Kerrigan, B.C.; Shmulevich, I.; Chen, K.; Sood, A.K.; et al. MiR-506 Suppresses Proliferation and Induces Senescence by Directly Targeting the CDK4/6-FOXM1 Axis in Ovarian Cancer. J. Pathol. 2014, 233, 308–318. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Ou, Y.; Yang, G.; Deng, K.; Wang, Q.; Wang, Z.; Wang, W.; Zhang, Q.; Wang, H.; et al. CDK4/6 Inhibition Blocks Cancer Metastasis through a USP51-ZEB1-Dependent Deubiquitination Mechanism. Signal Transduct. Target. Ther. 2020, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Yu, J.; Deng, M.; Yin, Y.; Zhang, H.; Luo, K.; Qin, B.; Li, Y.; Wu, C.; Ren, T.; et al. CDK4/6-Dependent Activation of DUB3 Regulates Cancer Metastasis through SNAIL1. Nat. Commun. 2017, 8, 13923. [Google Scholar] [CrossRef]
- Fusté, N.P.; Fernández-Hernández, R.; Cemeli, T.; Mirantes, C.; Pedraza, N.; Rafel, M.; Torres-Rosell, J.; Colomina, N.; Ferrezuelo, F.; Dolcet, X.; et al. Cytoplasmic Cyclin D1 Regulates Cell Invasion and Metastasis through the Phosphorylation of Paxillin. Nat. Commun. 2016, 7, 11581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, J.; Balaji, U.; Freinkman, E.; Witkiewicz, A.K.; Knudsen, E.S. Metabolic Reprogramming of Pancreatic Cancer Mediated by CDK4/6 Inhibition Elicits Unique Vulnerabilities. Cell Rep. 2016, 14, 979–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goel, S.; DeCristo, M.J.; Watt, A.C.; BrinJones, H.; Sceneay, J.; Li, B.B.; Khan, N.; Ubellacker, J.M.; Xie, S.; Metzger-Filho, O.; et al. CDK4/6 Inhibition Triggers Anti-Tumour Immunity. Nature 2017, 548, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Schaer, D.A.; Beckmann, R.P.; Dempsey, J.A.; Huber, L.; Forest, A.; Amaladas, N.; Li, Y.; Wang, Y.C.; Rasmussen, E.R.; Chin, D.; et al. The CDK4/6 Inhibitor Abemaciclib Induces a T Cell Inflamed Tumor Microenvironment and Enhances the Efficacy of PD-L1 Checkpoint Blockade. Cell Rep. 2018, 22, 2978–2994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Bu, X.; Wang, H.; Zhu, Y.; Geng, Y.; Nihira, N.T.; Tan, Y.; Ci, Y.; Wu, F.; Dai, X.; et al. Cyclin D-CDK4 Kinase Destabilizes PD-L1 via Cullin 3-SPOP to Control Cancer Immune Surveillance. Nature 2018, 553, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.-F.; Li, J.; Jiang, K.; Wang, R.; Ge, J.-L.; Yang, H.; Liu, S.-J.; Jia, L.-T.; Wang, L.; Chen, B.-L. CDK4/6 Inhibition Promotes Immune Infiltration in Ovarian Cancer and Synergizes with PD-1 Blockade in a B Cell-Dependent Manner. Theranostics 2020, 10, 10619–10633. [Google Scholar] [CrossRef]
- Senderowicz, A.M.; Headlee, D.; Stinson, S.F.; Lush, R.M.; Kalil, N.; Villalba, L.; Hill, K.; Steinberg, S.M.; Figg, W.D.; Tompkins, A.; et al. Phase I Trial of Continuous Infusion Flavopiridol, a Novel Cyclin-Dependent Kinase Inhibitor, in Patients with Refractory Neoplasms. J. Clin. Oncol. 1998, 16, 2986–2999. [Google Scholar] [CrossRef]
- Otto, T.; Sicinski, P. Cell Cycle Proteins as Promising Targets in Cancer Therapy. Nat. Rev. Cancer 2017, 17, 93–115. [Google Scholar] [CrossRef] [Green Version]
- Toogood, P.L. Cyclin-Dependent Kinase Inhibitors for Treating Cancer. Med. Res. Rev. 2001, 21, 487–498. [Google Scholar] [CrossRef]
- Toogood, P.L.; Harvey, P.J.; Repine, J.T.; Sheehan, D.J.; VanderWel, S.N.; Zhou, H.; Keller, P.R.; McNamara, D.J.; Sherry, D.; Zhu, T.; et al. Discovery of a Potent and Selective Inhibitor of Cyclin-Dependent Kinase 4/6. J. Med. Chem. 2005, 48, 2388–2406. [Google Scholar] [CrossRef] [PubMed]
- Baughn, L.B.; Di Liberto, M.; Wu, K.; Toogood, P.L.; Louie, T.; Gottschalk, R.; Niesvizky, R.; Cho, H.; Ely, S.; Moore, M.A.S.; et al. A Novel Orally Active Small Molecule Potently Induces G1 Arrest in Primary Myeloma Cells and Prevents Tumor Growth by Specific Inhibition of Cyclin-Dependent Kinase 4/6. Cancer Res. 2006, 66, 7661–7667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garber, K. The Cancer Drug That Almost Wasn’t. Science 2014, 345, 865–867. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Roberts, P.J.; Sorrentino, J.A.; Bisi, J.E.; Storrie-White, H.; Tiessen, R.G.; Makhuli, K.M.; Wargin, W.A.; Tadema, H.; Van Hoogdalem, E.-J.; et al. Transient CDK4/6 Inhibition Protects Hematopoietic Stem Cells from Chemotherapy-Induced Exhaustion. Sci. Transl. Med. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Fernández, M.; Malumbres, M. Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. Cancer Cell 2020, 37, 514–529. [Google Scholar] [CrossRef]
- Roskoski, R. Cyclin-Dependent Protein Serine/Threonine Kinase Inhibitors as Anticancer Drugs. Pharmacol. Res. 2019, 139, 471–488. [Google Scholar] [CrossRef]
- Braal, C.L.; Jongbloed, E.M.; Wilting, S.M.; Mathijssen, R.H.J.; Koolen, S.L.W.; Jager, A. Inhibiting CDK4/6 in Breast Cancer with Palbociclib, Ribociclib, and Abemaciclib: Similarities and Differences. Drugs 2021, 81, 317–331. [Google Scholar] [CrossRef]
- Patch, A.-M.; Christie, E.L.; Etemadmoghadam, D.; Garsed, D.W.; George, J.; Fereday, S.; Nones, K.; Cowin, P.; Alsop, K.; Bailey, P.J.; et al. Whole-Genome Characterization of Chemoresistant Ovarian Cancer. Nature 2015, 521, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Worsley, S.D.; Jennings, B.A.; Khalil, K.H.; Mole, M.; Girling, A.C. Cyclin D1 Amplification and Expression in Human Breast Carcinoma: Correlation with Histological Prognostic Markers and Oestrogen Receptor Expression. Clin. Mol. Pathol. 1996, 49, M46–M50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhar, K.K.; Branigan, K.; Parkes, J.; Howells, R.E.; Hand, P.; Musgrove, C.; Strange, R.C.; Fryer, A.A.; Redman, C.W.; Hoban, P.R. Expression and Subcellular Localization of Cyclin D1 Protein in Epithelial Ovarian Tumour Cells. Br. J. Cancer 1999, 81, 1174–1181. [Google Scholar] [CrossRef] [Green Version]
- Sui, L.; Tokuda, M.; Ohno, M.; Hatase, O.; Hando, T. The Concurrent Expression of P27(Kip1) and Cyclin D1 in Epithelial Ovarian Tumors. Gynecol. Oncol. 1999, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Bali, A.; O’Brien, P.M.; Edwards, L.S.; Sutherland, R.L.; Hacker, N.F.; Henshall, S.M. Cyclin D1, P53, and P21Waf1/Cip1 Expression Is Predictive of Poor Clinical Outcome in Serous Epithelial Ovarian Cancer. Clin. Cancer Res. 2004, 10, 5168–5177. [Google Scholar] [CrossRef] [Green Version]
- Masciullo, V.; Scambia, G.; Marone, M.; Giannitelli, C.; Ferrandina, G.; Bellacosa, A.; Benedetti Panici, P.; Mancuso, S. Altered Expression of Cyclin D1 and CDK4 Genes in Ovarian Carcinomas. Int. J. Cancer 1997, 74, 390–395. [Google Scholar] [CrossRef]
- Hashimoto, T.; Yanaihara, N.; Okamoto, A.; Nikaido, T.; Saito, M.; Takakura, S.; Yasuda, M.; Sasaki, H.; Ochiai, K.; Tanaka, T. Cyclin D1 Predicts the Prognosis of Advanced Serous Ovarian Cancer. Exp. Ther. Med. 2011, 2, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, H.; Makki, M.S.; Wen, J.; Dai, Y.; Shi, Q.; Liu, Q.; Zhou, X.; Wang, J. Overexpression of β-Catenin and CyclinD1 Predicts a Poor Prognosis in Ovarian Serous Carcinomas. Int. J. Clin. Exp. Pathol. 2014, 7, 264–271. [Google Scholar]
- Abdelrahman, A.E.; Fathy, A.; Elsebai, E.A.; Nawar, N.; Etman, W.M. Prognostic Impact of Apaf-1, Cyclin D1, and AQP-5 in Serous Ovarian Carcinoma Treated with the First-Line Chemotherapy. Ann. Diagn. Pathol. 2018, 35, 27–37. [Google Scholar] [CrossRef]
- Chu, S.; Rushdi, S.; Zumpe, E.T.; Mamers, P.; Healy, D.L.; Jobling, T.; Burger, H.G.; Fuller, P.J. FSH-Regulated Gene Expression Profiles in Ovarian Tumours and Normal Ovaries. Mol. Hum. Reprod. 2002, 8, 426–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyrönlahti, A.; Rämö, M.; Tamminen, M.; Unkila-Kallio, L.; Butzow, R.; Leminen, A.; Nemer, M.; Rahman, N.; Huhtaniemi, I.; Heikinheimo, M.; et al. GATA-4 Regulates Bcl-2 Expression in Ovarian Granulosa Cell Tumors. Endocrinology 2008, 149, 5635–5642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakuma, M.; Akahira, J.-I.; Ito, K.; Niikura, H.; Moriya, T.; Okamura, K.; Sasano, H.; Yaegashi, N. Promoter Methylation Status of the Cyclin D2 Gene Is Associated with Poor Prognosis in Human Epithelial Ovarian Cancer. Cancer Sci. 2007, 98, 380–386. [Google Scholar] [CrossRef]
- Chang, L.; Guo, R.; Yuan, Z.; Shi, H.; Zhang, D. LncRNA HOTAIR Regulates CCND1 and CCND2 Expression by Sponging MiR-206 in Ovarian Cancer. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2018, 49, 1289–1303. [Google Scholar] [CrossRef]
- Levidou, G.; Korkolopoulou, P.; Thymara, I.; Vassilopoulos, I.; Saetta, A.A.; Gakiopoulou, H.; Konstantinidou, A.; Kairi-Vassilatou, E.; Pavlakis, K.; Patsouris, E. Expression and Prognostic Significance of Cyclin D3 in Ovarian Adenocarcinomas. Int. J. Gynecol. Pathol. 2007, 26, 410–417. [Google Scholar] [CrossRef]
- Sui, L.; Dong, Y.; Ohno, M.; Sugimoto, K.; Tai, Y.; Hando, T.; Tokuda, M. Implication of Malignancy and Prognosis of P27(Kip1), Cyclin E, and Cdk2 Expression in Epithelial Ovarian Tumors. Gynecol. Oncol. 2001, 83, 56–63. [Google Scholar] [CrossRef]
- Nakayama, N.; Nakayama, K.; Shamima, Y.; Ishikawa, M.; Katagiri, A.; Iida, K.; Miyazaki, K. Gene Amplification CCNE1 Is Related to Poor Survival and Potential Therapeutic Target in Ovarian Cancer. Cancer 2010, 116, 2621–2634. [Google Scholar] [CrossRef]
- Pils, D.; Bachmayr-Heyda, A.; Auer, K.; Svoboda, M.; Auner, V.; Hager, G.; Obermayr, E.; Reiner, A.; Reinthaller, A.; Speiser, P.; et al. Cyclin E1 (CCNE1) as Independent Positive Prognostic Factor in Advanced Stage Serous Ovarian Cancer Patients—A Study of the OVCAD Consortium. Eur. J. Cancer 2014, 50, 99–110. [Google Scholar] [CrossRef]
- Yang, L.; Fang, D.; Chen, H.; Lu, Y.; Dong, Z.; Ding, H.-F.; Jing, Q.; Su, S.-B.; Huang, S. Cyclin-Dependent Kinase 2 Is an Ideal Target for Ovary Tumors with Elevated Cyclin E1 Expression. Oncotarget 2015, 6, 20801–20812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karst, A.M.; Jones, P.M.; Vena, N.; Ligon, A.H.; Liu, J.F.; Hirsch, M.S.; Etemadmoghadam, D.; Bowtell, D.D.L.; Drapkin, R. Cyclin E1 Deregulation Occurs Early in Secretory Cell Transformation to Promote Formation of Fallopian Tube-Derived High-Grade Serous Ovarian Cancers. Cancer Res. 2014, 74, 1141–1152. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, E.; Wang, T.-L.; Doberstein, K.; Bahadirli-Talbott, A.; Ayhan, A.; Sehdev, A.S.; Drapkin, R.; Kurman, R.J.; Shih, I.-M. CCNE1 Amplification and Centrosome Number Abnormality in Serous Tubal Intraepithelial Carcinoma: Further Evidence Supporting Its Role as a Precursor of Ovarian High-Grade Serous Carcinoma. Mod. Pathol. 2016, 29, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Ayhan, A.; Kuhn, E.; Wu, R.-C.; Ogawa, H.; Bahadirli-Talbott, A.; Mao, T.-L.; Sugimura, H.; Shih, I.-M.; Wang, T.-L. CCNE1 Copy-Number Gain and Overexpression Identify Ovarian Clear Cell Carcinoma with a Poor Prognosis. Mod. Pathol. 2017, 30, 297–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, D.; Etemadmoghadam, D.; Caldon, C.E.; Au-Yeung, G.; Deng, N.; Hutchinson, R.; Australian Ovarian Cancer Study Group; Bowtell, D.; Waring, P. 19q12 Amplified and Non-Amplified Subsets of High Grade Serous Ovarian Cancer with Overexpression of Cyclin E1 Differ in Their Molecular Drivers and Clinical Outcomes. Gynecol. Oncol. 2018, 151, 327–336. [Google Scholar] [CrossRef]
- Sapoznik, S.; Aviel-Ronen, S.; Bahar-Shany, K.; Zadok, O.; Levanon, K. CCNE1 Expression in High Grade Serous Carcinoma Does Not Correlate with Chemoresistance. Oncotarget 2017, 8, 62240–62247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, S.; Wilson, A.J.; Hirst, J.; Roby, K.F.; Fadare, O.; Crispens, M.A.; Beeghly-Fadiel, A.; Khabele, D. CCNE1 and BRD4 Co-Amplification in High-Grade Serous Ovarian Cancer Is Associated with Poor Clinical Outcomes. Gynecol. Oncol. 2020, 157, 405–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, A.M.; Enwere, E.; McIntyre, J.B.; Wilson, H.; Nwaroh, C.; Wiebe, N.; Ou, Y.; Liu, S.; Wiedemeyer, K.; Rambau, P.F.; et al. Combined CCNE1 High-Level Amplification and Overexpression Is Associated with Unfavourable Outcome in Tubo-Ovarian High-Grade Serous Carcinoma. J. Pathol. Clin. Res. 2020, 6, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Marone, M.; Scambia, G.; Giannitelli, C.; Ferrandina, G.; Masciullo, V.; Bellacosa, A.; Benedetti-Panici, P.; Mancuso, S. Analysis of Cyclin E and CDK2 in Ovarian Cancer: Gene Amplification and RNA Overexpression. Int. J. Cancer 1998, 75, 34–39. [Google Scholar] [CrossRef]
- Sui, L.; Dong, Y.; Ohno, M.; Goto, M.; Inohara, T.; Sugimoto, K.; Tai, Y.; Hando, T.; Tokuda, M. Inverse Expression of Cdk4 and P16 in Epithelial Ovarian Tumors. Gynecol. Oncol. 2000, 79, 230–237. [Google Scholar] [CrossRef]
- Duan, L.; Yan, Y.; Wang, G.; Xing, Y.L.; Sun, J.; Wang, L.L. ΜiR-182-5p Functions as a Tumor Suppressor to Sensitize Human Ovarian Cancer Cells to Cisplatin through Direct Targeting the Cyclin Dependent Kinase 6 (CDK6). J. BUON 2020, 25, 2279–2286. [Google Scholar] [PubMed]
- Perrone, F.; Baldassarre, G.; Indraccolo, S.; Signoriello, S.; Chiappetta, G.; Esposito, F.; Ferrandina, G.; Franco, R.; Mezzanzanica, D.; Sonego, M.; et al. Biomarker Analysis of the MITO2 Phase III Trial of First-Line Treatment in Ovarian Cancer: Predictive Value of DNA-PK and Phosphorylated ACC. Oncotarget 2016, 7, 72654–72661. [Google Scholar] [CrossRef] [Green Version]
- Anttila, M.A.; Kosma, V.M.; Hongxiu, J.; Puolakka, J.; Juhola, M.; Saarikoski, S.; Syrjänen, K. P21/WAF1 Expression as Related to P53, Cell Proliferation and Prognosis in Epithelial Ovarian Cancer. Br. J. Cancer 1999, 79, 1870–1878. [Google Scholar] [CrossRef] [Green Version]
- Schmider, A.; Gee, C.; Friedmann, W.; Lukas, J.J.; Press, M.F.; Lichtenegger, W.; Reles, A. P21 (WAF1/CIP1) Protein Expression Is Associated with Prolonged Survival but Not with P53 Expression in Epithelial Ovarian Carcinoma. Gynecol. Oncol. 2000, 77, 237–242. [Google Scholar] [CrossRef]
- Rose, S.L.; Goodheart, M.J.; DeYoung, B.R.; Smith, B.J.; Buller, R.E. P21 Expression Predicts Outcome in P53-Null Ovarian Carcinoma. Clin. Cancer Res. 2003, 9, 1028–1032. [Google Scholar] [PubMed]
- Skirnisdottir, I.; Seidal, T. Association of P21, P21 P27 and P21 P53 Status to Histological Subtypes and Prognosis in Low-Stage Epithelial Ovarian Cancer. Cancer Genom. Proteom. 2013, 10, 27–34. [Google Scholar]
- Alrehaili, A.A.; AlMourgi, M.; Gharib, A.F.; Elsawy, W.H.; Ismail, K.A.; Hagag, H.M.; Anjum, F.; Raafat, N. Clinical Significance of P27 Kip1 Expression in Advanced Ovarian Cancer. Appl. Cancer Res. 2020, 40, 6. [Google Scholar] [CrossRef]
- Hafez, M.M.; Alhoshani, A.R.; Al-Hosaini, K.A.; Alsharari, S.D.; Al Rejaie, S.S.; Sayed-Ahmed, M.M.; Al-Shabanah, O.A. SKP2/P27Kip1 Pathway Is Associated with Advanced Ovarian Cancer in Saudi Patients. Asian Pac. J. Cancer Prev. 2015, 16, 5807–5815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konecny, G.E.; Winterhoff, B.; Kolarova, T.; Qi, J.; Manivong, K.; Dering, J.; Yang, G.; Chalukya, M.; Wang, H.-J.; Anderson, L.; et al. Expression of P16 and Retinoblastoma Determines Response to CDK4/6 Inhibition in Ovarian Cancer. Clin. Cancer Res. 2011, 17, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Sallum, L.F.; Andrade, L.; Ramalho, S.; Ferracini, A.C.; de Andrade Natal, R.; Brito, A.B.C.; Sarian, L.O.; Derchain, S. WT1, P53 and P16 Expression in the Diagnosis of Low- and High-Grade Serous Ovarian Carcinomas and Their Relation to Prognosis. Oncotarget 2018, 9, 15818–15827. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Walsh, M.D.; McGuckin, M.A.; Gabrielli, B.G.; Cummings, M.C.; Wright, R.G.; Hurst, T.; Khoo, S.K.; Parsons, P.G. Increased Expression of Cyclin-Dependent Kinase Inhibitor 2 (CDKN2A) Gene Product P16INK4A in Ovarian Cancer Is Associated with Progression and Unfavourable Prognosis. Int. J. Cancer 1997, 74, 57–63. [Google Scholar] [CrossRef]
- Kommoss, S.; du Bois, A.; Ridder, R.; Trunk, M.J.; Schmidt, D.; Pfisterer, J.; Kommoss, F. AGO-OVAR Independent Prognostic Significance of Cell Cycle Regulator Proteins P16(INK4a) and PRb in Advanced-Stage Ovarian Carcinoma Including Optimally Debulked Patients: A Translational Research Subprotocol of a Randomised Study of the Arbeitsgemeinschaft Gynaekologische Onkologie Ovarian Cancer Study Group. Br. J. Cancer 2007, 96, 306–313. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.-E.; Wang, L.; Lu, K.H.; Mills, G.B.; Bondy, M.L.; Wei, Q. Methylation and Messenger RNA Expression of P15INK4b but Not P16INK4a Are Independent Risk Factors for Ovarian Cancer. Clin. Cancer Res. 2005, 11, 4968–4976. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, F.; Altinisik, J.; Karateke, A.; Coksuer, H.; Buyru, N. Methylation of Tumor Suppressor Genes in Ovarian Cancer. Exp. Ther. Med. 2012, 4, 1092–1096. [Google Scholar] [CrossRef]
- Arcellana-Panlilio, M.Y.; Egeler, R.M.; Ujack, E.; Magliocco, A.; Stuart, G.C.E.; Robbins, S.M.; Coppes, M.J. Evidence of a Role for the INK4 Family of Cyclin-Dependent Kinase Inhibitors in Ovarian Granulosa Cell Tumors. Genes Chromosom. Cancer 2002, 35, 176–181. [Google Scholar] [CrossRef]
- Felisiak-Golabek, A.; Dansonka-Mieszkowska, A.; Rzepecka, I.K.; Szafron, L.; Kwiatkowska, E.; Konopka, B.; Podgorska, A.; Rembiszewska, A.; Kupryjanczyk, J. P19(INK4d) MRNA and Protein Expression as New Prognostic Factors in Ovarian Cancer Patients. Cancer Biol. Ther. 2013, 14, 973–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karst, A.M.; Levanon, K.; Duraisamy, S.; Liu, J.F.; Hirsch, M.S.; Hecht, J.L.; Drapkin, R. Stathmin 1, a Marker of PI3K Pathway Activation and Regulator of Microtubule Dynamics, Is Expressed in Early Pelvic Serous Carcinomas. Gynecol. Oncol. 2011, 123, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Roberts, P.J.; Bisi, J.E.; Strum, J.C.; Combest, A.J.; Darr, D.B.; Usary, J.E.; Zamboni, W.C.; Wong, K.-K.; Perou, C.M.; Sharpless, N.E. Multiple Roles of Cyclin-Dependent Kinase 4/6 Inhibitors in Cancer Therapy. J. Natl. Cancer Inst. 2012, 104, 476–487. [Google Scholar] [CrossRef]
- Roberts, P.J.; Kumarasamy, V.; Witkiewicz, A.K.; Knudsen, E.S. Chemotherapy and CDK4/6 Inhibitors: Unexpected Bedfellows. Mol. Cancer Ther. 2020, 19, 1575–1588. [Google Scholar] [CrossRef] [PubMed]
- Lheureux, S.; Gourley, C.; Vergote, I.; Oza, A.M. Epithelial Ovarian Cancer. Lancet 2019, 393, 1240–1253. [Google Scholar] [CrossRef] [Green Version]
- Siddik, Z.H. Cisplatin: Mode of Cytotoxic Action and Molecular Basis of Resistance. Oncogene 2003, 22, 7265–7279. [Google Scholar] [CrossRef] [Green Version]
- Galluzzi, L.; Vitale, I.; Michels, J.; Brenner, C.; Szabadkai, G.; Harel-Bellan, A.; Castedo, M.; Kroemer, G. Systems Biology of Cisplatin Resistance: Past, Present and Future. Cell Death Dis. 2014, 5, e1257. [Google Scholar] [CrossRef] [Green Version]
- Iyengar, M.; O’Hayer, P.; Cole, A.; Sebastian, T.; Yang, K.; Coffman, L.; Buckanovich, R.J. CDK4/6 Inhibition as Maintenance and Combination Therapy for High Grade Serous Ovarian Cancer. Oncotarget 2018, 9, 15658–15672. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; Liu, C.; Tao, Z.; Wang, M.; Jia, Y.; Sang, X.; Shen, L.; Xue, Y.; Jiang, K.; Luo, F.; et al. MYC Status as a Determinant of Synergistic Response to Olaparib and Palbociclib in Ovarian Cancer. EBioMedicine 2019, 43, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Konecny, G.E.; Wahner Hendrickson, A.E.; Jatoi, A.; Burton, J.K.; Paroly, J.; Glaspy, J.A.; Dowdy, S.C.; Slamon, D.J. A Multicenter Open-Label Phase II Study of the Efficacy and Safety of Palbociclib a Cyclin-Dependent Kinases 4 and 6 Inhibitor in Patients with Recurrent Ovarian Cancer. J. Clin. Oncol. 2016, 34, 5557. [Google Scholar] [CrossRef]
- Colon-Otero, G.; Zanfagnin, V.; Hou, X.; Foster, N.R.; Asmus, E.J.; Wahner Hendrickson, A.; Jatoi, A.; Block, M.S.; Langstraat, C.L.; Glaser, G.E.; et al. Phase II Trial of Ribociclib and Letrozole in Patients with Relapsed Oestrogen Receptor-Positive Ovarian or Endometrial Cancers. ESMO Open 2020, 5, e000926. [Google Scholar] [CrossRef] [PubMed]
- Swiecicki, P.L.; Durm, G.; Bellile, E.; Bhangale, A.; Brenner, J.C.; Worden, F.P. A Multi-Center Phase II Trial Evaluating the Efficacy of Palbociclib in Combination with Carboplatin for the Treatment of Unresectable Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma. Investig. New Drugs 2020, 38, 1550–1558. [Google Scholar] [CrossRef]
- Tan, A.R.; Wright, G.S.; Thummala, A.R.; Danso, M.A.; Popovic, L.; Pluard, T.J.; Han, H.S.; Vojnović, Ž.; Vasev, N.; Ma, L.; et al. Trilaciclib plus Chemotherapy versus Chemotherapy Alone in Patients with Metastatic Triple-Negative Breast Cancer: A Multicentre, Randomised, Open-Label, Phase 2 Trial. Lancet Oncol. 2019, 20, 1587–1601. [Google Scholar] [CrossRef]
- Clark, A.S.; McAndrew, N.P.; Troxel, A.; Feldman, M.; Lal, P.; Rosen, M.; Burrell, J.; Redlinger, C.; Gallagher, M.; Bradbury, A.R.; et al. Combination Paclitaxel and Palbociclib: Results of a Phase I Trial in Advanced Breast Cancer. Clin. Cancer Res. 2019, 25, 2072–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast Cancer. Lancet 2021, 397, 1750–1769. [Google Scholar] [CrossRef]
- Vaughn, D.J.; Hwang, W.-T.; Lal, P.; Rosen, M.A.; Gallagher, M.; O’Dwyer, P.J. Phase 2 Trial of the Cyclin-Dependent Kinase 4/6 Inhibitor Palbociclib in Patients with Retinoblastoma Protein-Expressing Germ Cell Tumors. Cancer 2015, 121, 1463–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skowron, M.A.; Vermeulen, M.; Winkelhausen, A.; Becker, T.K.; Bremmer, F.; Petzsch, P.; Schönberger, S.; Calaminus, G.; Köhrer, K.; Albers, P.; et al. CDK4/6 Inhibition Presents as a Therapeutic Option for Paediatric and Adult Germ Cell Tumours and Induces Cell Cycle Arrest and Apoptosis via Canonical and Non-Canonical Mechanisms. Br. J. Cancer 2020, 123, 378–391. [Google Scholar] [CrossRef]
- Nghiem, P.; Park, P.K.; Kim, Y.; Vaziri, C.; Schreiber, S.L. ATR Inhibition Selectively Sensitizes G1 Checkpoint-Deficient Cells to Lethal Premature Chromatin Condensation. Proc. Natl. Acad. Sci. USA 2001, 98, 9092–9097. [Google Scholar] [CrossRef] [Green Version]
- Bogani, G.; Lopez, S.; Mantiero, M.; Ducceschi, M.; Bosio, S.; Ruisi, S.; Sarpietro, G.; Guerrisi, R.; Brusadelli, C.; Dell’Acqua, A.; et al. Immunotherapy for Platinum-Resistant Ovarian Cancer. Gynecol. Oncol. 2020, 158, 484–488. [Google Scholar] [CrossRef]
Cyclin/CDK | Palbociclib | Ribociclib | Abemaciclib |
---|---|---|---|
cycD1/CDK4 | 11 nM | 10 nM | 2 nM |
cycD3/CDK4 | 9 nM | ||
CDK6 | 15 nM | 39 nM | 9.9 nM |
cycA-E/CDK2 | >20 mM | >50 mM | 0.5 mM |
cycT1/CDK9 | NR | NR | 57 nM |
p25/CDK5 | >40 mM | >10 mM | 0.3 mM |
Gene (Protein) | Histotype | Number of Cases | Technique Used | Notes | Ref |
---|---|---|---|---|---|
CCND1 (cyclin D1) | EC, CCC, MC, SOC, Poorly differentiated | 43 | IHC | Overexpression in 26% of borderline and low-grade tumor samples | [51] |
EC, CCC, MC, SOC, Mixed | 81 | IHC, Western blot, RFLP-PCR | Amplification and overexpression not related to tumor stage or patients’ survival | [52] | |
Benign, Borderline, EC, CCC, MC, SOC, Undifferentiated | 79 | IHC | High-level of Cyclin D1 in borderline and low grade tumors | [53] | |
Serous EOC | 134 | IHC | Increased expression predicts shorter OS. Inverse correlation between CCND1 and CDKN1B expression | [54] | |
EC, MC, SOC, Undifferentiated, other | 65 | Southern and, Northern blot | Increased expression in 18% of cases; no impact on PSF | [55] | |
Advanced serous EOC | 66 | IHC | High expression predicts shorter patients’ PSF and OS | [56] | |
LGSOC (n = 26) HGSOC (n = 34) | 60 | IHC | Expressed in 67% of HGSOC samples. Expression predicts shorter OS | [57] | |
LGSOC (n = 27) HGSOC (n = 23) | 50 | IHC | Upregulation observed in HGOSC and FIGO stage III; high expression predicts shorter patients’ OS | [58] | |
EOC | 1307 | GEP | mRNA expression not related to patients’ survival | [27] | |
CCND2 (cyclin D2) | EC, GCT, SOC, Normal OV | 24 | RT-PCR | mRNA overexpressed in GCT | [59] |
GCT | 78 | RT-PCR IHC | Protein overexpressed in 42% of analyzed samples | [60] | |
EC, CCC, MC, SOC | 71 | MS-PCR | Promoter hyper-methylation associated with advance stage, residual tumor size, and shorter PSF | [61] | |
Well, moderate poor differentiated | 92 | RT-PCR | Higher expression in tumors respect to normal tissues | [62] | |
CCND3 (cyclin D3) | EC, CC, MC, SOC, poorly differentiated | 109 | IHC | Expression decreased in high grade/high stage tumors; absent expression predicts poor survival | [63] |
EOC | 1307 | GEP | High mRNA expression predicts shorter patients’ survival | [27] | |
CCNE1 (cyclin E1) | Benign, Borderline, SOC, MC, EC, CCC Undifferentiated | 103 | IHC, Western blot | High expression predicts shorter patients’ OS | [64] |
Serous EOC | 134 | IHC | Overexpression increased with tumor grade | [54] | |
SOC, MC, EC, CCC | 88 | IHC, FISH | Amplification associated with higher tumor grade and stage predicts shorter patients’ PSF and OS | [65] | |
Serous EOC | 172 | RT-PCR | High expression predicts shorter patients’ OS | [66] | |
Normal, Benign, SOC, MC, EC, CCC | 117 | IHC | Overexpression in 40% of analyzed tumors | [67] | |
HGSOC | 140 | FISH IHC | High expression predicts shorter patients’ OS | [68] | |
HGSOC STIC | 80 | IHC, FISH | Amplification was higher in HGSOC than STIC | [69] | |
CCC, EC, SOC | 207 | IHC, FISH | Amplification and overexpression associated with worse outcome in stage I tumor | [70] | |
HGSOC | 262 | ISH, IHC | Amplification and higher expression predict shorter patients’ OS | [71] | |
HGSOC | 40 | IHC | No relation between CCNE1 level and response neoadjuvant chemotherapy | [72] | |
HGSOC | 110 | IHC | High expression predicts platinum resistance and shorter patients’ OS | [73] | |
HGSOC | 48 | CISH, IHC, Nanostring digital PCR | Amplification and higher expression predict shorter patients’ OS | [74] | |
CCNE2 (cyclin E2) | EOC | 172 | RT-PCR | Amplification and expression had no significant impact on clinical outcome | [66] |
CDK2 | SOC, MC, EC, Undifferentiated | 108 | Southern blot RT PCR | Amplification in 6.4% of analyzed samples | [75] |
Benign, Borderline, SOC, MC, CCC, EC, Undifferentiated | 103 | IHC, Western blot, | High expression correlated with high tumor stage and predicts shorter patients’ OS | [64] | |
CDK4 | EC, MC, SOC, Undifferentiated, other | 48 | Southern and Northern blot | Not amplified in the analyzed tumors | [55] |
Benign, Borderline, SOC, MC, EC, CCC, Undifferentiated | 103 | IHC, Western blot | Overexpressed in malignant tumors. Overexpression associated with low CDKN2A expression and shorter OS | [76] | |
EOC | 1307 | GEP | mRNA expression not related to patients’ survival | [27] | |
CDK6 | EOC | 30 | IHC, RT-PCR | Upregulated in tumors compared to adjacent normal tissue | [77] |
EOC | 1307 | mRNA | High mRNA expression predicts shorter patients’ survival | [27] | |
HG-EOC | 73 | IHC, Western blot | Overexpression in 74% of analyzed tumors | [27] | |
SOC, MC, EC, CCC, Mixed Undifferentiated | 223 | IHC | High expression in 80% of analyzed tumors. Prevalent cytoplasmic localization | [78] | |
CDKN1A (p21WAF1) | EC, CCC, MC, SOC, Mixed | 316 | IHC | Low expression predicts shorter OS in older patients | [79] |
EC, CCC, MC, SOC, Mixed Undifferentiated | 106 | IHC | Higher expression in early stage tumor (FIGO I /II), associated with no tumor recurrence | [80] | |
EC, CCC, MC, SOC, NOSa, Others | 267 | IHC | Higher expression in in p53 WT samples predicts longer patients’ OS | [81] | |
EC, CCC, MC, SOC, Anaplastic | 129 | IHC, | Expression higher in CCC lower in MC; no relation with tumor grade, stage or survival | [82] | |
CDKN1B (p27KIP1) | Serous Non-serous | 88 | IHC RT-PCR | Lower nuclear staining and mRNA level in tumor compared to normal tissue; expression associated with lower stages, good prognosis and better response to chemotherapy | [83] |
Not-specified | 200 | RT-PCR Western blot | Down-regulation of p27 in tumor compared to normal tissues | [84] | |
CDKN2A (p16INK4A) | EC, SOC, MC, CCC, Mixed, Undifferentiated | 263 | IHC | Low expression predicts shorter patients’ OS | [85] |
HGSOC LGSOC | 106 | IHC | Increased expression of p16INK4A in high grade ovarian tumors | [86] | |
EC, SOC, MC, CCC, Mixed, Undifferentiated | 190 | IHC | High expression in malignant tumors related to shorter patients’ OS | [87] | |
EC, SOC, MC, Transitional cell, Undifferentiated | 300 | IHC | Low expression predicts shorter patients’ OS | [88] | |
CDKN2B (p15INK4B) | Serous EOC | 52 | MS-PCR RT-PCR | Promoter hyper-methylation and lower mRNA expression in cancer compared to normal | [89] |
EC, SOC, MC, CCC, EC, Brenner, GCT | 75 | MS-PCR | Promoter hyper-methylation in CCC samples | [90] | |
CDKN2C (p18INK4C) | GCT | 15 | RT-PCR | Expressed in all tumors, without any relation to clinic-pathological factors | [91] |
CDKN2D (p19INK4D) | EC, CCC, SOC, Undifferentiated Mixed | 445 | IHC RT-PCR | High expression in advanced tumor grade or stage associated with shorter patients’ OS | [92] |
Title | Phase | Population | Intervention | Primary Endpoint (s) | Status | NCT |
---|---|---|---|---|---|---|
Palbociclib With Cisplatin or Carboplatin in Advanced Solid Tumors | I | Solid neoplasms including ovarian cancer | Cisplatin on day 1 and palbociclib on days 2–22. Treatment repeats every 28 days. | Incidence of adverse events; incidence of DLT; RP2D | R | NCT02897375 |
PF-07104091 as a Single Agent and in Combination Therapy | I/II | Platinum resistant ovarian cancer, advanced breast cancer; NSCLC, SCLC | PF-07104091 (CDK2 inhibitor) administered orally alone or in combination with palbociclib and letrozole. | Incidence of adverse events; incidence of DLT | R | NCT04553133 |
Ribociclib with Platinum-based Chemotherapy in Recurrent Platinum Sensitive Ovarian Cancer | I | Recurrent platinum sensitive ovarian cancer | Participants will receive 200, 400, or 600 mg of ribociclib per day in combination with carboplatin + paclitaxel. Subjects will receive 6 cycles of carboplatin + paclitaxel given weekly with ribociclib. | MTD | NR | NCT03056833 |
Ribociclib and Gemcitabine Hydrochloride in Treating Patients With Advanced or Metastatic Solid Tumors | I | Advanced solid neoplasms | Patients receive gemcitabine hydrochloride on days 1 and 8 and ribociclib on days 8–14. Courses repeat every 21 days. | MTD | NR | NCT03237390 |
Testing the Addition of Abemaciclib to Olaparib for Women With Recurrent Ovarian Cancer | I | Platinum-resistant ovarian cancer | Patients receive olaparib on days 1–28 and abemaciclib on days 8–28 of cycle 1 and days 1–28 of subsequent cycles. Cycles repeat every 28 days. | RP2D | NYR | NCT04633239 |
Abemaciclib for the Treatment of Recurrent Ovarian or Endometrial Cancer | II | Hormone receptor positive recurrent ovarian or endometrial cancers | Patients receive abemaciclib on days 1–28. Patients with tumors that are hormone receptor positive also receive and anastrozole or letrozole per standard of care. Cycles repeat every 28 days. | Progression-free survival | NYR | NCT04469764 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dall’Acqua, A.; Bartoletti, M.; Masoudi-Khoram, N.; Sorio, R.; Puglisi, F.; Belletti, B.; Baldassarre, G. Inhibition of CDK4/6 as Therapeutic Approach for Ovarian Cancer Patients: Current Evidences and Future Perspectives. Cancers 2021, 13, 3035. https://doi.org/10.3390/cancers13123035
Dall’Acqua A, Bartoletti M, Masoudi-Khoram N, Sorio R, Puglisi F, Belletti B, Baldassarre G. Inhibition of CDK4/6 as Therapeutic Approach for Ovarian Cancer Patients: Current Evidences and Future Perspectives. Cancers. 2021; 13(12):3035. https://doi.org/10.3390/cancers13123035
Chicago/Turabian StyleDall’Acqua, Alessandra, Michele Bartoletti, Nastaran Masoudi-Khoram, Roberto Sorio, Fabio Puglisi, Barbara Belletti, and Gustavo Baldassarre. 2021. "Inhibition of CDK4/6 as Therapeutic Approach for Ovarian Cancer Patients: Current Evidences and Future Perspectives" Cancers 13, no. 12: 3035. https://doi.org/10.3390/cancers13123035
APA StyleDall’Acqua, A., Bartoletti, M., Masoudi-Khoram, N., Sorio, R., Puglisi, F., Belletti, B., & Baldassarre, G. (2021). Inhibition of CDK4/6 as Therapeutic Approach for Ovarian Cancer Patients: Current Evidences and Future Perspectives. Cancers, 13(12), 3035. https://doi.org/10.3390/cancers13123035