Microbiota Alterations in Precancerous Colon Lesions: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
4.1. Adenomas
4.2. Microbiota
4.3. Proteobacteria
4.4. Fusobacteria
4.5. Bacterioides
4.5.1. Depletion of Bacterial Communities in Adenoma
4.5.2. Controversial Results on the Role of Microbiota in Adenoma Development
4.5.3. Metabolomics
4.5.4. Microbiota and Adenoma Resection
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef]
- Belizário, J.E.; Napolitano, M. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front. Microbiol. 2015, 6, 1050. [Google Scholar] [CrossRef] [Green Version]
- Dulal, S.; Keku, T.O. Gut microbiome and colorectal adenomas. Cancer 2014, 20, 225–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezasoltani, S.; Asadzadeh Aghdaei, H.; Dabiri, H.; Akhavan Sepahi, A.; Modarressi, M.H.; Nazemalhosseini Mojarad, E. The association between fecal microbiota and different types of colorectal polyp as precursors of colorectal cancer. Microb. Pathog. 2018, 124, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Kanno, S.; Nosho, K.; Sukawa, Y.; Mitsuhashi, K.; Kurihara, H.; Igarashi, H.; Takahashi, T.; Tachibana, M.; Takahashi, H.; et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int. J. Cancer 2015, 137, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Nugent, J.L.; McCoy, A.N.; Addamo, C.J.; Jia, W.; Sandler, R.S.; Keku, T.O. Altered tissue metabolites correlate with microbial dysbiosis in colorectal adenomas. J. Proteome Res. 2014, 13, 1921–1929. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Mao, Y.; Liao, M.; Xu, Y.; Chen, Y.; Huang, X.; Wei, C.; Wu, C.; Wang, Q.; Pan, X.; et al. Gut microbiome associated with APC gene mutation in patients with intestinal adenomatous polyps. Int. J. Biol. Sci. 2020, 16, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Liang, S.; Jia, H.; Stadlmayr, A.; Tang, L.; Lan, Z.; Zhang, D.; Xia, H.; Xu, X.; Jie, Z.; et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun. 2015, 6, 6528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wachsmannova, L.; Majek, J.; Zajac, V.; Stevurkova, V.; Ciernikova, S. The study of bacteria in biopsies from Slovak colorectal adenoma and carcinoma patients. Neoplasma 2018, 65, 644–648. [Google Scholar] [CrossRef]
- Mangifesta, M.; Mancabelli, L.; Milani, C.; Gaiani, F.; De’Angelis, N.; De’Angelis, G.L.; Van Sinderen, D.; Ventura, M.; Turroni, F. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Sci. Rep. 2018, 8, 13974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.M.; Yu, Y.N.; Wang, J.L.; Lin, Y.W.; Kong, X.; Yang, C.Q.; Yang, L.; Liu, Z.J.; Yuan, Y.Z.; Liu, F.; et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am. J. Clin. Nutr. 2013, 97, 1044–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanapareddy, N.; Legge, R.M.; Jovov, B.; McCoy, A.; Burcal, L.; Araujo-Perez, F.; A Randall, T.; Galanko, J.; Benson, A.; Sandler, R.S.; et al. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J. 2012, 6, 1858–1868. [Google Scholar] [CrossRef] [Green Version]
- De Maio, G.; Zama, E.; Rengucci, C.; Calistri, D. What influences preneoplastic colorectal lesion recurrence? Oncotarget 2017, 8, 12406–12416. [Google Scholar] [CrossRef]
- Kambara, T.; Simms, L.A.; Whitehall, V.L.J.; Spring, K.J.; Wynter, C.V.A.; Walsh, M.D.; Barker, M.A.; Arnold, S.; McGivern, A.; Matsubara, N.; et al. BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 2004, 53, 1137–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, C.; Antonelli, G.; Dumonceau, J.M.; Regula, J.; Bretthauer, M.; Chaussade, S.; Dekker, E.; Ferlitsch, M.; Gimeno-Garcia, A.; Jover, R.; et al. Post-polypectomy colonoscopy surveillance: European Society of Gastrointestinal Endoscopy (ESGE) Guideline, Update 2020. Endoscopy 2020, 52, 687–700. [Google Scholar] [CrossRef] [PubMed]
- Proctor, L.M. The Human Microbiome Project in 2011 and beyond. Cell. Host. Microbe 2011, 10, 287–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Citters, G.W.; Lin, H.C. Management of small intestinal bacterial overgrowth. Curr. Gastroenterol. Rep. 2005, 7, 317–320. [Google Scholar] [CrossRef]
- Mutch, D.M.; Simmering, R.; Donnicola, D.; Fotopoulos, G.; Holzwarth, J.A.; Williamson, G.; Corthésy-Theulaz, I. Impact of commensal microbiota on murine gastrointestinal tract gene ontologies. Physiol. Genom. 2004, 19, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Montalban-Arques, A.; De Schryver, P.; Bossier, P.; Gorkiewicz, G.; Mulero, V.; Gatlin, D.M.; Galindo-Villegas, J. Selective Manipulation of the Gut Microbiota Improves Immune Status in Vertebrates. Front. Immunol. 2015, 6, 512. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Kawasaki, A.; Yang, K.; Fujimoto, Y.; Masumoto, J.; Breukink, E.; Nuñez, G.; Fukase, K.; Inohara, N. A role of lipophilic peptidoglycan-related molecules in induction of Nod1-mediated immune responses. J. Biol. Chem. 2007, 282, 11757–11764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.A.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The gut microbiota and host health: A new clinical frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, T.C.; Artis, D.; Sonnenberg, G.F. Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunol. Rev. 2014, 260, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Tyler, A.D.; Smith, M.I.; Silverberg, M.S. Analyzing the human microbiome: A “how to” guide for physicians. Am. J. Gastroenterol. 2014, 109, 983–993. [Google Scholar] [CrossRef]
- Goedert, J.J.; Gong, Y.; Hua, X.; Zhong, H.; He, Y.; Peng, P.; Yu, G.; Wang, W.; Ravel, J.; Shi, J.; et al. Fecal microbiota characteristics of patients with colorectal adenoma detected by screening: A population-based study. EBioMedicine 2015, 2, 597–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.J.; Rawls, J.F.; Randall, T.; Burcal, L.; Mpande, C.N.; Jenkins, N.; Jovov, B.; Abdo, Z.; Sandler, R.S.; Keku, T.O. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes 2010, 1, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Duncan, S.H.; Hold, G.L.; Harmsen, H.J.M.; Stewart, C.S.; Flint, H.J. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 2002, 52, 2141–2146. [Google Scholar] [PubMed] [Green Version]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; DiBaise, J.K.; Zuccolo, A.; Kudrna, D.; Braidotti, M.; Yu, Y.; Parameswaran, P.; Crowell, M.D.; Wing, R.; Rittmann, B.E.; et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA 2009, 106, 2365–2370. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Chen, J.; Zheng, J.; Hu, G.; Wang, J.; Huang, C.; Lou, L.; Wang, X.; Zeng, Y. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci. Rep. 2016, 6, 26337. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Koido, S.; Odamaki, T.; Kajihara, M.; Kato, K.; Horiuchi, S.; Adachi, S.; Arakawa, H.; Yoshida, S.; Akasu, T.; et al. Metagenomic analyses of the gut microbiota associated with colorectal adenoma. PLoS ONE 2019, 14, e0212406. [Google Scholar] [CrossRef]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.J.; Blugeon, S.; Bridonneau, C.; Furet, J.P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef] [Green Version]
- Louis, P.; Flint, H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 2009, 294, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, K.; Chung, S.K.; Vanamala, J.; Xu, B. Causal relationship between diet-induced gut microbiota changes and diabetes: A novel strategy to transplant Faecalibacterium prausnitzii in preventing diabetes. Int. J. Mol. Sci. 2018, 19, 3720. [Google Scholar] [CrossRef] [Green Version]
- McCoy, A.N.; Araújo-Pérez, F.; Azcárate-Peril, A.; Yeh, J.J.; Sandler, R.S.; Keku, T.O. Fusobacterium is associated with colorectal adenomas. PLoS ONE 2013, 8, e53653. [Google Scholar] [CrossRef]
- Peters, B.A.; Dominianni, C.; Shapiro, J.A.; Church, T.R.; Wu, J.; Miller, G.; Yuen, E.; Freiman, H.; Lustbader, I.; Salik, J.; et al. Erratum to: The gut microbiota in conventional and serrated precursors of colorectal cancer. Microbiome 2017, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.; Kim, N.; Park, J.H.; Kim, Y.S.; Lee, J.; Kim, H.W.; Choi, Y.J.; Shin, C.M.; Park, Y.S.; Lee, N.H.; et al. Comparisons of gut microbiota among healthy control, patients with conventional adenoma, sessile serrated adenoma, and colorectal cancer. J. Cancer Prev. 2017, 22, 108–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.H.; Han, D.S.; Oh, Y.H.; Lee, A.R.; Lee, Y.R.; Eun, C.S. Role of Fusobacteria in the serrated pathway of colorectal carcinogenesis. Sci. Rep. 2016, 6, 25271. [Google Scholar] [CrossRef]
- Kim, M.; Vogtmann, E.; Ahlquist, D.A.; Devens, M.E.; Kisiel, J.B.; Taylor, W.R.; White, B.A.; Hale, V.L.; Sung, J.; Chia, N.; et al. Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal Cancer Pathogenesis. mBio 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sze, M.A.; Baxter, N.T.; Ruffin, M.T.; Rogers, M.A.M.; Schloss, P.D. Normalization of the microbiota in patients after treatment for colonic lesions. Microbiome 2017, 5, 150. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.Y.; Xie, Y.H.; Qiu, Y.W.; Chen, Y.X.; Fang, J.Y. Moderate alteration to gut microbiota brought by colorectal adenoma resection. J. Gastroenterol. Hepatol. 2019, 34, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
Reference | Year | Methods for Microbiota Analysis | qPCR | N. of Patients | Samples | Area |
---|---|---|---|---|---|---|
Liang et al. | 2020 | Metagenomic sequencing | NA | 35 (adenomatous polyps) | Stool | China |
Yu et al. | 2019 | 16S rRNA gene sequencing | NA | 20 (CRA) | Stool | China |
Mangifesta et al. | 2018 | 16S rRNA gene sequencing; qPCR (Fusobacterium nucleatum). | The deduced cell number was evaluated by comparing the cycle threshold (Ct) values obtained with those from a standard curve. Standard curves were calculated from serial dilutions of a culture with a known cell number (as determined by viable count assessment) for the bacterial strain versus Ct produced for each target gene. Results are expressed as genome copy numbers/gr. | 12 (4 adenomatous polyps, 8 hyperplastic polyps) | Biopsy of Colonic Mucosa with Polyp and Healthy Marginal Tissue | Italy |
Rezasoltani et al. | 2018 | Absolute qPCR (Streptococcus bovis/gallolyticus, Enterococcus faecalis, Enterotoxigenic Bacteroides fragilis, F. nucleatum, Porphyromonas spp., Lactobacillus spp., Roseburia spp. and Bifidobacterium spp) | The standard curve was plotted, by eight dilution points each tested in duplicate, using DNA obtained from reference strains. Results are expressed as CT. | 118 (31 normal controls, 21 hyperplastic polyp, 16 sessile serrated polyp, 29 tubular adenoma, 21 villous/tubuvillous polyp) | Stool | Iran |
Wachsmannova et al. | 2018 | ENTEROtest 24 plus MALDI-TOF mass spectrometry Gentamicin-protection assay to distinguish intracellular bacteria | NA | 29 (10 CRA, 10 CRC, 9 healthy subjects) | Biopsy samples | Slovakia |
Sze et al. | 2017 | 16S rRNA gene sequencing | NA | 67 (adenoma, N = 22, advanced adenoma, N = 19, carcinoma, N = 26). | Stool | USA |
Yoon et al. | 2017 | 16S rRNA gene 454-pyrosequencing | NA | 24 (healthy control, conventional adenoma, sessile serrated adenoma, CRC, each n = 6) | Biopsy samples | Korea |
Lu et al. | 2016 | 16S rRNA gene pyrosequencing | NA | 51 (31 adenoma, 20 healthy volunteers) | Adenoma mucosal biopsy samples and adjacent normal colonic mucosa | China |
Park et al. | 2016 | 16S rRNA gene pyrosequencing | NA | 26 (8, tubular adenoma, 10 sessile serrated adenoma/polyp, 8 CRC) | Colorectal mucosal tissue | Korea |
Goedert et al. | 2015 | 16S rRNA gene sequencing | NA | 61 (24 normal patients, 20 CRA, 2 CRC, 15 with other conditions) | Stool | USA, China |
Nugent et al. | 2014 | qPCR (Lactobacillus sp., Escherichia coli, Bifidobacterium sp., Clostridium sp., Bacteroide sp., Eubacteria) | To generate a standard curve, the target 16S rRNA was amplified from a positive control strain by PCR. Results are expressed as Log Transformed Copy Number. | 30 (15 adenoma, 15 adenoma-free control subjects) | Rectal mucosal biopsies | USA |
Chen et al. | 2013 | 16S rRNA gene 454-pyrosequencing | qPCR assays to determine the amounts of total bacteria, Bacteroides genus, and Bifidobacteria spp. A constructed plasmid was chosen to create a 10-log fold standard curve. | 94 (47 sex- and age matched patients with advanced CRA and healthy subjects) | Stool | China |
Sanapareddy et al. | 2012 | 16S rRNA gene 454 titanium pyrosequencing | Abundance of a specific taxon was calculated by the delta–delta threshold cycle (DDCt) method. | 71 (33 subjects with adenomas and 38 subjects without adenomas (controls) | Mucosal biopsies | USA |
Shen et al. | 2010 | 16S rRNA gene sequencing | NA | 44 patients (normal colonic mucosa of 21 adenoma and 23 non-adenoma subjects) | Colorectal biopsies | USA |
Feng et al. | 2015 | Metagenomic sequencing | NA | 147 (57 healthy controls, 44 advanced adenoma, 46 carcinoma) | Stool | Austria |
Ito et al. | 2015 | Quantitative PCR for F. nucleatum. | The Ct values for F. nucleatum were normalized to prostaglandin transporter (PGT) comparative analysis of the cycle thresholds (DCt). Results were expressed as 2-ΔΔCt | 465 premalignant lesions (343 serrated lesions and 122 non-serrated adenomas) and 511 CRC | Tumor tissue specimens | Japan |
Kim et al. | 2020 | 16S rRNA gene sequencing | NA | 240 (patients with advanced adenoma, N = 102), matched controls n = 102), patients with CRC, N = 36) | Stool | USA |
Peters et al. | 2016 | 16S rRNA gene sequencing | NA | 540 Conventional adenoma cases (N = 144), serrated polyp cases (N = 73), or polyp-free controls (N = 323). | Stool | USA |
Saito et al. | 2019 | 16S rRNA gene sequencing | NA | 81 (47 CRA, 24 intramucosal colorectal cancer, 10 healthy subjects) | Colonoscopy aspirates | Japan |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aprile, F.; Bruno, G.; Palma, R.; Mascellino, M.T.; Panetta, C.; Scalese, G.; Oliva, A.; Severi, C.; Pontone, S. Microbiota Alterations in Precancerous Colon Lesions: A Systematic Review. Cancers 2021, 13, 3061. https://doi.org/10.3390/cancers13123061
Aprile F, Bruno G, Palma R, Mascellino MT, Panetta C, Scalese G, Oliva A, Severi C, Pontone S. Microbiota Alterations in Precancerous Colon Lesions: A Systematic Review. Cancers. 2021; 13(12):3061. https://doi.org/10.3390/cancers13123061
Chicago/Turabian StyleAprile, Francesca, Giovanni Bruno, Rossella Palma, Maria Teresa Mascellino, Cristina Panetta, Giulia Scalese, Alessandra Oliva, Carola Severi, and Stefano Pontone. 2021. "Microbiota Alterations in Precancerous Colon Lesions: A Systematic Review" Cancers 13, no. 12: 3061. https://doi.org/10.3390/cancers13123061
APA StyleAprile, F., Bruno, G., Palma, R., Mascellino, M. T., Panetta, C., Scalese, G., Oliva, A., Severi, C., & Pontone, S. (2021). Microbiota Alterations in Precancerous Colon Lesions: A Systematic Review. Cancers, 13(12), 3061. https://doi.org/10.3390/cancers13123061