Overview of the Ultrasound Classification Systems in the Field of Thyroid Cytology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overview of ACR-TIRADS
3. TIRADS Challenges and Pitfalls
4. Results from Applying TIRADS
5. Other Thyroid Nodule Ultrasound Scoring Systems
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Al Dawish, M.A.; Rober, A.A.; Thabet, M.A.; Braham, R. Thyroid nodule management: Thyroid-stimulating hormone, ultrasound and cytological classification system for predicting malignancy. Cancer Inform. 2018, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Grani, G.; Sponziello, M.; Pecce, V.; Ramundo, V.; Durante, C. Contemporary thyroid evaluation and management. J. Clin. Endocrinol. Metab. 2020, 105, 2869–2883. [Google Scholar] [CrossRef]
- Ardakani, A.A.; Mohammadzadeh, A.; Yaghoubi, N.; Ghaemmaghami, Z.; Reiazi, R.; Jafari, A.H.; Hekmat, S.; Shiran, M.B.; Bitarafa-Rajabi, A. Predictive quantitative sonographic features on classification of hot and cold thyroid nodules. Eur. J. Radiol. 2018, 101, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Tappouni, R.R.; Itri, J.N.; Mc Queen, T.S.; Lalwani, N.; Ou, J.J. ACR TI-RADS: Pitfalls, solutions and future directions. Radiographics 2019, 39, 2040–2052. [Google Scholar] [CrossRef] [PubMed]
- Grant, E.G.; Tessler, F.N.; Hoang, J.K.; Langer, J.E.; Beland, M.D.; Berland, L.L.; Cronan, J.J.; Desser, T.S.; Frates, M.C.; Hamper, U.M.; et al. Thyroid ultrasound reporting lexicon: White paper of the ACR thyroid imaging reporting and data system (TIRADS) committee. J. Am. Coll. Radiol. 2015, 12, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2019, 14, 587–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauger, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1–33. [Google Scholar]
- Shin, J.H.; Back, J.H.; Chung, J.; Ha, E.J.; Kiim, J.H.; Lee, Y.H.; Lim, H.K.; Moon, W.J.; Na, D.G.; Park, J.S.; et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: Revised Korean society of thyroid radiology consensus statement and recommendations. Korean J. Radiol. 2016, 17, 370–395. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Cibas, E.S. The Bethesda System for Reporting Thyroid Cytopathology, 2nd ed.; Springer: Berlin, Germany, 2018. [Google Scholar]
- Nardi, F.; Basolo, F.; Crescenzi, A.; Fadda, G.; Frasoldati, A.; Orlandi, F.; Palombini, L.; Papini, E.; Zini, M.; Pontecorvi, A.; et al. Italian consensus for the classification and reporting of thyroid cytology. J. Endocrinol. Investig. 2014, 37, 593–599. [Google Scholar] [CrossRef]
- Fadda, G.; Basolo, F.; Bondi, A.; Bussolati, G.; Crescenzi, A.; Nappi, O.; Nardi, F.; Papotti, M.; Taddei, G.; Palombini, L.; et al. Cytological classification of thyroid nodules. Proposal of the SIAPEC-IAP italian consensus working group. Pathologica 2010, 102, 405–406. [Google Scholar]
- Horvarth, E.; Majlis, S.; Rossi, R.; Franco, C.; Niedmann, J.P.; Castro, A.; Dominguez, M.S.L. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J. Clin. Endocrinol. Metab. 2009, 94, 1748–1751. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, H.J.; Jang, H.W.; Kim, H.K.; Yi, J.H.; Lee, W.; Kim, S.H. A proposal for a thyroid imaging reporting and data system for ultrasound features of thyroid carcinoma. Thyroid 2009, 19, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.Y.; Han, K.H.; Yoon, J.H.; Moon, H.J.; Son, E.J.; Park, S.H.; Jung, H.K.; Choi, J.S.; Kim, B.M.; Kim, E.K. Thyroid imaging reporting and data system for US features of nodules: A step in establishing better stratification of cancer risk. Radiology 2011, 260, 892–899. [Google Scholar] [CrossRef] [Green Version]
- Na, D.G.; Back, J.H.; Sung, J.Y.; Kim, J.H.; Kim, J.K.; Choi, Y.J.; Seo, H. Thyroid imaging reporting and data system risk stratification of thyroid noduels: Categorization based on solidity and echogenicity. Thyroid 2016, 26, 562–572. [Google Scholar] [CrossRef]
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durant, C.; Ngu, R.; Leenhardt, L. European thyroid association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: The EU-TIRADS. Eur. Thyroid. J. 2017, 6, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Frates, M.C.; Benson, C.B.; Charboneau, J.W.; Cibas, E.S.; Clark, O.H.; Coleman, B.G.; Cronan, J.J.; Doubilet, P.M.; Evans, D.B.; Goellner, J.R.; et al. Management of thyroid nodules detected at US: Society of radiologists in ultrasound consensus conference statement. Radiology 2005, 237, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Gharib, H.; Papini, E.; Garber, J.R.; Duick, D.S.; Harrell, R.M.; Hegedüs, L.; Paschke, R.; Valcavi, R.; Vitti, P. AACE/ACE/AME Task Force on Thyroid Nodules American association of clinical endocrinologist, american college of endocrinology, and associazione medici endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: 2016 update. Endocrin. Pract. 2016, 22, 622–639. [Google Scholar]
- National comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology and (NCCN Guidelines) and Thyroid Carcinoma (Version 2.2014); National Comprehensive Cancer Network: Washington, DC, USA, 2014. [Google Scholar]
- Atilla, F.D.; Saydam, B.O.; Erarslan, N.A.; Unlu, A.G.; Yasar, H.Y.; Ozer, M.; Akinci, B. Does the ACR TIRADS scoring allow us to safely avoid nnecessary thyroid biopsy? single center analysis in a large cohort. Endocrine 2018, 61, 398–402. [Google Scholar] [CrossRef]
- Ha, E.J.; Na, D.G.; Back, J.H.; Sung, J.Y.; Kim, J.H.; Kang, S.Y. US fine needle aspiration biopsy for thyroid malignancy: Diagnostic performance of seven society guidelines applied to 2000thyroid nodules. Radiology 2018, 287, 893–900. [Google Scholar] [CrossRef]
- Eze, O.P.; Cai, G.; Baloch, Z.W.; Khan, A.; Virk, R.; Hammers, L.W.; Udelsman, R.; Roman, S.A.; Sosa, J.A.; Carling, T.; et al. Vanishing thyroid tumors. A diagnostic dilemma after ultrasonography-guided fine needle aspiration. Thyroid 2013, 23, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, P.; Deniwar, A.; Mohamed, H.E.; Sholl, A.; Murad, F.; Aslam, R.; Kandil, E.; Bhatia, P. Vanishing tumors of thyroid: Histological variations after fine needle aspiration. Gland Surg. 2016, 5, 270–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kholová, I. Vanishing thyroid gland tumors: Infarction as consequence of FNA? Diagn. Cytopathol. 2016, 44, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Shayganfar, A.; Hashemi, P.; Esfahani, M.M.; Ghanei, A.M.; Moghadam, N.A.; Ebrahimian, S. Prediction of thryoid nodule maliganncy using thyroid imaging reporting and data system (TI-RADS) and nodule size. Clin. Imag. 2020, 60, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.L.M.; Junior, C.O.M.; Graf, H.; Cavalvanti, T.; Trippia, M.A.; da Silveira Ugino, R.T.; de Oliveira, G.L.; Granella, V.H.; de Carvalho, G.A. ACR TI-RADS and ATA US scores are helful for the management of thyroid nodules with indeterminate cytology. BMC Endocr. Disord. 2019, 19, 112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, P.; Tian, S.M. Usefulness of combined use of contrast-enhanced ultrasound and TI-RADS classification for the differentiation of benign from malignant lesions of thyroid nodules. Eur. Radiol. 2017, 27, 1527–1536. [Google Scholar] [CrossRef] [Green Version]
- Maia, F.F.R.; Matos, P.S.; Pavin, E.J.; Vassallo, J.; Zantut-Wittmann, D.E. Thyroid imaging reporting and data system score combined with Bethesda system for maliganncy risk stratification in thyroid nodules with indeterminate results on cytology. Clin. Endocrinol. 2015, 82, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Rocha, T.G.; Rosario, P.W.; Silva, A.L.; Nunes, M.B.; Calsolari, M.R. Ultrasonography classification of the american thyroid association for predicting malignancy in thyroid nodules >1cm with indterminate cytology: A proscpective study authors. Horm. Metab. Res. 2018, 50, 597–601. [Google Scholar]
- Chaigeau, R.; Russ, G.; Royer, B.; Bigorgne, C.; Bienvenu-Perrard, M.; Rouxel, A.; Leenhardt, L.; Belin, L.; Buffet, C. TI-RADS score is of limited clinical value for risk stratification of indeterminate cytological resluts. Eur. J. Endocrinol. 2018, 179, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Valderrabano, P.; Mcgettigan, M.J.; Iam, C.A. Thyroid nodules with indeterminate cytology: Utility of the american thyroid association sonographic patterns for cancer risk. Thyroid 2018, 28, 1–29. [Google Scholar] [CrossRef]
- Rahal, A.J.; Falsarella, P.M.; Rocha, R.D.; Lima, J.P.; Iani, M.J.; Vieira, F.A.; Queiroz, M.R.; Hidal, J.T.; Francisco Neto , M.J.; Garcia, R.G.; et al. Correlation of thyroid imaging reporting and data system (TI-RADS) and fine needle aspiration: Experience in 1000 nodules. Einstein 2016, 14, 119–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grani, G.; Lamartina, L.; Ascoli, V.; Bosco, D.; Biffoni, M.; Giacomelli, L.; Maranghi, M.; Falcone, R.; Ramundo, V.; Cantisani, V.; et al. Reducing the number of unnecessary thyroid biopsies while improving diagnostic accuracy: Toward the right TIRADS. J. Clin. Endocrinol. Metab. 2019, 104, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Friedrich-Rust, M.; Meyer, G.; Dauth, N.; Berner, C.; Bogdanou, D.; Herrmann, E.; Zeuzem, S.; Bojunga, J. Interobserver agreement of thyroid imaging reporting and data system (TI-RADS) and strain elastography for the assessment of thyroid nodules. PLoS ONE 2013, 8, e77927. [Google Scholar] [CrossRef] [Green Version]
- Middleton, W.D.; Teefey, S.A.; Reading, C.C.; Langer, J.E.; Beland, M.D.; Szabunio, M.M.; Desser, T.S. Comparison of performance characteristics of American college of radiology TI-RADS, Korean society of thyroid radiology TIRADS, and American thyroid association guidelines. Am. J. Roentgenol. 2018, 210, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Kim, D.W.; In, H.S.; Park, J.S.; Kim, S.H.; Eom, J.W.; Kim, B.; Lee, E.J.; Rho, M.H. Differentation between benign and malignant solid thyroid nodules using an US classification system. Korean J. Radiol. 2011, 12, 559–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.C.H.; Fried, K.O.; Scognamiglio, T. Can cytology and the Thyroid Imaging, Reporting, and Data System (TI-RADS) identify noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) before surgery. J. Am. Soc. Cytopathol. 2020, 9, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.C.; Fried, K.O.; Scognamiglio, T. Sonographic and cytologic differences of NIFTP from infiltrative or invasive encapsulated follicular variant of papillary thyroid carcinoma. A Review of 179 Cases. Diagn. Cytopath. 2017, 45, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Wu, M. A correlation study between thyroid imaging report and data systems and the Bethesda system for reporting thyroid cytology with surgical follow-up—An ultrasound-trained cytopathologist’s experience. Diagn. Cytopathol. 2020. [Google Scholar] [CrossRef]
- Weller, A.; Sharif, B.; Qarib, M.H.; St Leger, D.; De Silva, H.S.; Lingam, R.K. British thyroid association 2014 classification ultrasound scoring of thyroid nodules in predicting maliganncy: Diagnostic performance and inter-observer agreement. Ultrasound 2020, 28, 4–13. [Google Scholar] [CrossRef]
- Cross, P.; Chandra, A.; Giles, T.; Johnson, S.; Kocjan, G.; Poller, D.; Stephenson, T. Guidance on the Reporting of Thyroid Cytologyspecimens; Royal College of Pathologists: London, UK, 2009; Available online: http://wwwrcpathorg/Resources/RCPath/ (accessed on 1 January 2016).
- Brophy, C.; Mehanna, R.; McCarthy, J.; Tuthill, A.; Murphy, M.S.; Sheahan, P. Outcome of subclassification of indeterminate (Thy 3) thyroid cytology into Thy 3a and Thy 3f. Eur. Thyroid. J. 2015, 4, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Maia, F.F.; Matos, P.S.; Pavin, E.J.; Zantut-Wittmann, D.E. Thyroid imaging reporting and data system score combined with the new italian classification for thyroid cytology improves the clinical management of indeterminate nodles. Int. J. Endocrinol. 2017. [Google Scholar] [CrossRef]
- Chng, C.L.; Kurzawinski, T.R.; Beale, T. Value of sonographic features in predicting malignancy in thyroid nodules diagnosed as follicular neoplasm on cytology. Clin. Endocrinol. 2015, 83, 711–716. [Google Scholar] [CrossRef]
- Moon, W.J.; Baek, J.H.; Jung, S.L.; Kim, D.W.; Kim, E.K.; Kim, J.Y.; Kwak, J.Y.; Lee, J.H.; Lee, J.H.; Lee, Y.H.; et al. Ultrasonography and the ultrasound-based management of thyroid nodules: Consensus statement and recommendations. Korean J. Radiol. 2011, 12, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosario, P.W.; da Silva, A.L.; Nunes, M.B.; Borges, M.A.R. Risk of Malignancy in Thyroid Nodules Using the American College of Radiology Thyroid Imaging Reporting and Data System in the NIFTP Era. Horm. Metab. Res. 2018, 50, 735–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singaporewalla, R.M.; Hwee, J.; Lang, T.U.; Desai, V. Clinico-pathological Correlation of Thyroid Nodule Ultrasound and Cytology Using the TIRADS and Bethesda Classifications. World J. Surg. 2017, 41, 1807–1811. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Li, Z.; Li, N.; Qian, J.; Fan, F.; Zhong, H.; Feng, J.; Xu, H.; Li, Z. Thyroid imaging reporting and data system combined with Bethesda classification in qualitative thyroid nodule diagnosis. Medicine 2019, 98, 50. [Google Scholar] [CrossRef] [PubMed]
ACR-TIRADS | Korean System | UK BTA System |
---|---|---|
TR 1 0 points Benign | K-TIRADS 1: no nodule | U1: No nodule |
TR 2 2 points no suspicious | K-TIRADS 2: Benign | U2: Benign hyperechoic or isoechoic with a halo cystic change with ring-down artifact (colloid)
|
TR 3 3 points Mildly suspicious | K-TIRADS 3: Low partially cystic/isohyperechoic with no suspicious features | U3: Indeterminate solid homogenous markedly hyperechoic nodule with halo (follicular lesions)
|
TR 4 TR4a = 4 TR4b = 5 TR4c = 6 from 4 to 6 points Moderately suspicious | K-TIRADS 4: Intermediate as for K-TIRADS 3 but with any suspicious features or as for K-TIRADS 5 without suspicious features | U4: Suspicious solid hypoechoic (compared with thyroid)
|
TR 5 > 7 points Highly suspicious | K-TIRADS 5: High solid hypoechoic nodule with any suspicious feature | U5 Malignant solid hypoechoic with a lobulated or irregular outline and microcalcification
|
Criteria | Definitions |
---|---|
Composition | Cystic = 0 Spongiform = 0 Mixed solid and cystic = 1 Solid = 2 |
Echogenecity | Anechoic = 0 Hyperechoic or isoechoic = 1 Hypoechoic = 2 Very hypoechoic = 3 |
Shape | Wider-than-tall = 0 Taller-than-wide = 3 |
Margins | Smooth = 0 Ill-defined = 0 Lobulated or irregular = 2 Extrathyroid extension = 3 |
Echogenic foci | None or large comet-tail artifacts = 0 Macrocalcifications = 1 Peripheral calcifications = 2 Punctate echogenic foci = 3 |
Series | N° Cases | Sensitivity | Specificity | PPV | NPV | Diagnostic Accuracy | ROM (Ranged According to the Cytologic Categories) |
---|---|---|---|---|---|---|---|
Shayganfar [25] | 239 | 91.7% | 52.8% | / | / | / | 0−25% |
Barbosa [26] | 140 | 95.3% | 84.6% | 87% | 94% | 90.2% | 20−92.9% |
Zhang [27] | 319 | 86.7% | 91.4% | 75.6% | 95.3% | 96% | 0−90.5% |
Maia [28] | 242 | 80% | 84% | 71% | 90% | 66.7% | 8.7%−77% |
Rocha [29] | 143 | 80.4% | 94% | 52.4% | 95% | / | 0−72% |
Chaigeau [30] | 602 | 95%% | / | 77.6% | 55% | / | 20−100% |
Rahal [32] | 1000 | / | / | / | / | / | 16−92% |
Grani [33] | 502 | 83.3% | 56.2% | 12.8% | 97.8% | / | 2−20% |
Wu [39] | 346 | 96% | 53% | 76% | 89% | 79% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, E.D.; Pantanowitz, L.; Raffaelli, M.; Fadda, G. Overview of the Ultrasound Classification Systems in the Field of Thyroid Cytology. Cancers 2021, 13, 3133. https://doi.org/10.3390/cancers13133133
Rossi ED, Pantanowitz L, Raffaelli M, Fadda G. Overview of the Ultrasound Classification Systems in the Field of Thyroid Cytology. Cancers. 2021; 13(13):3133. https://doi.org/10.3390/cancers13133133
Chicago/Turabian StyleRossi, Esther Diana, Liron Pantanowitz, Marco Raffaelli, and Guido Fadda. 2021. "Overview of the Ultrasound Classification Systems in the Field of Thyroid Cytology" Cancers 13, no. 13: 3133. https://doi.org/10.3390/cancers13133133
APA StyleRossi, E. D., Pantanowitz, L., Raffaelli, M., & Fadda, G. (2021). Overview of the Ultrasound Classification Systems in the Field of Thyroid Cytology. Cancers, 13(13), 3133. https://doi.org/10.3390/cancers13133133