Development and Implementation of Proton Therapy for Hodgkin Lymphoma: Challenges and Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patient Selection for Proton Therapy: Current Approaches and Limitations
2.1. A Dosimetric-Based Approach
2.1.1. Theoretical Principle
2.1.2. Application in Clinical Practice
2.1.3. Advantages and Limitations
2.2. A NTCP-Model-Based Approach
2.2.1. Selection Based on Expected Toxicity Reduction
2.2.2. Limitations of NTCP Models
2.2.3. Towards a Life-Year-Lost Approach
2.3. A Cost-Effectiveness Approach
2.3.1. Current Evaluations
2.3.2. How to Democratize HL Proton Therapy?
2.3.3. Making HL Proton Therapy Financially Sustainable: A Challenge
3. Future Implementation of HL Proton Therapy: Challenges and Pitfalls
3.1. Changes in Hodgkin Lymphoma Treatment Paradigm
3.1.1. Limitation of Radiation Therapy Indications in HL: A General Trend
3.1.2. Development of New Effective Systemic Treatments
3.2. Organizational and Societal Challenges
3.2.1. Reimbursement Issues
3.2.2. Access to Proton Therapy Centers
3.2.3. Prioritization patients in a proton therapy center
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CT | Compute tomography |
DIBH | Deep inspiration breath-hold |
EAR | Excess absolute risk |
FB | Free-breathing |
HL | Hodgkin lymphoma |
IMPT | Intensity-modulated proton therapy |
IMRT | Intensity-modulated radiation therapy |
INRT | Involved-node radiation therapy |
ISRT | Involved-site radiation therapy |
MHD: | Mean heart dose |
NTCP | Normal tissue complication probability |
OAR | Organ-at-risk |
RBE | Relative biological effectiveness |
RR | Relative risk |
r/r | Relapse/refractory |
VMAT | Volumetric modulated arc therapy |
References
- Cuccaro, A.; Bartolomei, F.; Cupelli, E.; Galli, E.; Giachelia, M.; Hohaus, S. Prognostic Factors in Hodgkin Lymphoma. Mediterr. J. Hematol. Infect. Dis. 2014, 6, e2014053. [Google Scholar] [CrossRef]
- André, M.P.E.; Girinsky, T.; Federico, M.; Reman, O.; Fortpied, C.; Gotti, M.; Casasnovas, O.; Brice, P.; van der Maazen, R.; Re, A.; et al. Early Positron Emission Tomography Response-Adapted Treatment in Stage I and II Hodgkin Lymphoma: Final Results of the Randomized EORTC/LYSA/FIL H10 Trial. J. Clin. Oncol. 2017, 35, 1786–1794. [Google Scholar] [CrossRef]
- Holtzman, A.L.; Stahl, J.M.; Zhu, S.; Morris, C.G.; Hoppe, B.S.; Kirwan, J.E.; Mendenhall, N.P. Does the Incidence of Treatment-Related Toxicity Plateau after Radiation Therapy: The Long-Term Impact of Integral Dose in Hodgkin’s Lymphoma Survivors. Adv. Radiat. Oncol. 2019, 4, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Specht, L.; Yahalom, J.; Illidge, T.; Berthelsen, A.K.; Constine, L.S.; Eich, H.T.; Girinsky, T.; Hoppe, R.T.; Mauch, P.; Mikhaeel, N.G.; et al. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Besson, N.; Pernin, V.; Zefkili, S.; Kirova, Y.M. Evolution of Radiation Techniques in the Treatment of Mediastinal Lymphoma: From 3D Conformal Radiotherapy (3DCRT) to Intensity-Modulated RT (IMRT) Using Helical Tomotherapy (HT): A Single-Centre Experience and Review of the Literature. Br. J. Radiol. 2016, 89, 20150409. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, B.S.; Flampouri, S.; Zaiden, R.; Slayton, W.; Sandler, E.; Ozdemir, S.; Dang, N.H.; Lynch, J.W.; Li, Z.; Morris, C.G.; et al. Involved-Node Proton Therapy in Combined Modality Therapy for Hodgkin Lymphoma: Results of a Phase 2 Study. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, B.S.; Flampouri, S.; Su, Z.; Latif, N.; Dang, N.H.; Lynch, J.; Joyce, M.; Sandler, E.; Li, Z.; Mendenhall, N.P. Effective Dose Reduction to Cardiac StructuRes. Using Protons Compared with 3DCRT and IMRT in Mediastinal Hodgkin Lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Scorsetti, M.; Cozzi, L.; Navarria, P.; Fogliata, A.; Rossi, A.; Franceschini, D.; De Rose, F.; Franzese, C.; Carlo-Stella, C.; Santoro, A. Intensity Modulated Proton Therapy Compared to Volumetric Modulated Arc Therapy in the Irradiation of Young Female Patients with Hodgkin’s Lymphoma. Assessment of Risk of Toxicity and Secondary Cancer Induction. Radiat. Oncol. 2020, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- Filippi, A.R.; Ragona, R.; Piva, C.; Scafa, D.; Fiandra, C.; Fusella, M.; Giglioli, F.R.; Lohr, F.; Ricardi, U. Optimized Volumetric Modulated Arc Therapy versus 3D-CRT for Early Stage Mediastinal Hodgkin Lymphoma without Axillary Involvement: A Comparison of Second Cancers and Heart Disease Risk. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Filippi, A.R.; Vanoni, V.; Meduri, B.; Cozzi, L.; Scorsetti, M.; Ricardi, U.; Lohr, F. Intensity Modulated Radiation Therapy and Second Cancer Risk in Adults. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 17–20. [Google Scholar] [CrossRef]
- Lievens, Y.; Pijls-Johannesma, M. Health Economic Controversy and Cost-Effectiveness of Proton Therapy. Semin. Radiat. Oncol. 2013, 23, 134–141. [Google Scholar] [CrossRef]
- Kumar, A.; Casulo, C.; Advani, R.H.; Budde, E.; Barr, P.M.; Batlevi, C.L.; Caron, P.; Constine, L.S.; Dandapani, S.V.; Drill, E.; et al. Brentuximab Vedotin Combined with Chemotherapy in Patients with Newly Diagnosed Early-Stage, Unfavorable-Risk Hodgkin Lymphoma. J. Clin. Oncol. 2021, 2257–2265. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.A.; Grover, N.S.; Beaven, A.W.; Lulla, P.D.; Wu, M.-F.; Ivanova, A.; Wang, T.; Shea, T.C.; Rooney, C.M.; Dittus, C.; et al. Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. J. Clin. Oncol. 2020, 38, 3794–3804. [Google Scholar] [CrossRef] [PubMed]
- Dabaja, B.S.; Hoppe, B.S.; Plastaras, J.P.; Newhauser, W.; Rosolova, K.; Flampouri, S.; Mohan, R.; Mikhaeel, N.G.; Kirova, Y.; Specht, L.; et al. Proton Therapy for Adults with Mediastinal Lymphomas: The International Lymphoma Radiation Oncology Group Guidelines. Blood 2018, 132, 1635–1646. [Google Scholar] [CrossRef] [PubMed]
- Fiandra, C.; Filippi, A.R.; Catuzzo, P.; Botticella, A.; Ciammella, P.; Franco, P.; Borca, V.C.; Ragona, R.; Tofani, S.; Ricardi, U. Different IMRT Solutions vs. 3D-Conformal Radiotherapy in Early Stage Hodgkin’s Lymphoma: Dosimetric Comparison and Clinical Considerations. Radiat. Oncol. 2012, 7, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loap, P.; Goudjil, F.; Dendale, R.; Kirova, Y. Clinical and Technical Considerations for Mediastinal Hodgkin Lymphoma Protontherapy Based on a Single-Center Early Experience. Cancer/Radiother. 2021, 21, 3. [Google Scholar] [CrossRef]
- Ntentas, G.; Dedeckova, K.; Andrlik, M.; Aznar, M.C.; George, B.; Kubeš, J.; Darby, S.C.; Cutter, D.J. Clinical Intensity Modulated Proton Therapy for Hodgkin Lymphoma: Which Patients Benefit the Most? Pr. Radiat. Oncol. 2019, 9, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toltz, A.; Shin, N.; Mitrou, E.; Laude, C.; Freeman, C.R.; Seuntjens, J.; Parker, W.; Roberge, D. Late Radiation Toxicity in Hodgkin Lymphoma Patients: Proton Therapy’s Potential. J. Appl. Clin. Med. Phys. 2015, 16, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Rechner, L.A.; Maraldo, M.V.; Vogelius, I.R.; Zhu, X.R.; Dabaja, B.S.; Brodin, N.P.; Petersen, P.M.; Specht, L.; Aznar, M.C. Life Years Lost Attributable to Late Effects after Radiotherapy for Early Stage Hodgkin Lymphoma: The Impact of Proton Therapy and/or Deep Inspiration Breath Hold. Radiother. Oncol. 2017, 125, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Marteinsdottir, M.; Wang, C.-C.; McNamara, A.; Depauw, N.; Shin, J.; Paganetti, H. The Impact of Variable Relative Biological Effectiveness in Proton Therapy for Left-Sided Breast Cancer When Estimating Normal Tissue Complications in the Heart and Lung. Phys. Med. Biol. 2021, 66, 035023. [Google Scholar] [CrossRef]
- Langendijk, J.A.; Lambin, P.; De Ruysscher, D.; Widder, J.; Bos, M.; Verheij, M. Selection of Patients for Radiotherapy with Protons Aiming at Reduction of Side Effects: The Model-Based Approach. Radiother. Oncol. 2013, 107, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Tambas, M.; Steenbakkers, R.J.H.M.; van der Laan, H.P.; Wolters, A.M.; Kierkels, R.G.J.; Scandurra, D.; Korevaar, E.W.; Oldehinkel, E.; van Zon-Meijer, T.W.H.; Both, S.; et al. First Experience with Model-Based Selection of Head and Neck Cancer Patients for Proton Therapy. Radiother. Oncol. 2020, 151, 206–213. [Google Scholar] [CrossRef]
- Carbini, M.; Suárez-Fariñas, M.; Maki, R.G. A Method to Summarize Toxicity in Cancer Randomized Clinical Trials. Clin. Cancer Res. 2018, 24, 4968–4975. [Google Scholar] [CrossRef] [Green Version]
- Troeller, A.; Yan, D.; Marina, O.; Schulze, D.; Alber, M.; Parodi, K.; Belka, C.; Söhn, M. Comparison and Limitations of DVH-Based NTCP Models Derived from 3D-CRT and IMRT Data for Prediction of Gastrointestinal Toxicities in Prostate Cancer Patients by Using Propensity Score Matched Pair Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 435–443. [Google Scholar] [CrossRef]
- Chaouni, S.; Leduc, A.; Pouzoulet, F.; De Marzi, L.; Megnin-Chanet, F.; Stefan, D.; Habrand, J.-L.; Sichel, F.; Laurent, C. Biological Effects of Scattered Versus Scanned Proton Beams on Normal Tissues in Total Body Irradiated Mice: Survival, Genotoxicity, Oxidative Stress and Inflammation. Antioxidants 2020, 9, 1170. [Google Scholar] [CrossRef] [PubMed]
- Mee, T.; Kirkby, N.F.; Kirkby, K.J. Mathematical Modelling for Patient Selection in Proton Therapy. Clin. Oncol. 2018, 30, 299–306. [Google Scholar] [CrossRef] [Green Version]
- McNamara, A.L.; Hall, D.C.; Shusharina, N.; Liu, A.; Wei, X.; Ajdari, A.; Mohan, R.; Liao, Z.; Paganetti, H. Perspectives on the Model-Based Approach to Proton Therapy Trials: A Retrospective Study of a Lung Cancer Randomized Trial. Radiother. Oncol. 2020, 147, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Oinam, A.S.; Singh, L.; Shukla, A.; Ghoshal, S.; Kapoor, R.; Sharma, S.C. Dose Volume Histogram Analysis and Comparison of Different Radiobiological Models Using In-House Developed Software. J. Med. Phys. 2011, 36, 220–229. [Google Scholar] [CrossRef] [PubMed]
- König, L.; Haering, P.; Lang, C.; Splinter, M.; von Nettelbladt, B.; Weykamp, F.; Hoegen, P.; Lischalk, J.W.; Herfarth, K.; Debus, J.; et al. Secondary Malignancy Risk Following Proton vs. X-Ray Treatment of Mediastinal Malignant Lymphoma: A Comparative Modeling Study of Thoracic Organ-Specific Cancer Risk. Front. Oncol. 2020, 10, 989. [Google Scholar] [CrossRef]
- Vaishampayan, U. Advantages and Adversities of the Weighted Toxicity Score. Clin. Cancer Res. 2018, 24, 4918–4920. [Google Scholar] [CrossRef] [Green Version]
- Cheung, W.Y.; Neville, B.A.; Cameron, D.B.; Cook, E.F.; Earle, C.C. Comparisons of Patient and Physician Expectations for Cancer Survivorship Care. J. Clin. Oncol. 2009, 27, 2489–2495. [Google Scholar] [CrossRef]
- Brodin, N.P.; Kabarriti, R.; Pankuch, M.; Schechter, C.B.; Gondi, V.; Kalnicki, S.; Guha, C.; Garg, M.K.; Tomé, W.A. A Quantitative Clinical Decision-Support Strategy Identifying Which Patients with Oropharyngeal Head and Neck Cancer May Benefit the Most From Proton Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 540–552. [Google Scholar] [CrossRef]
- Vega, R.M.; Patel, S.; Bates, J.E.; Lynch, J.; Bansal, M.; Slayton, W.; Parsons, S.K.; Hoppe, B.S.; Mendenhall, N.P. Cost-effectiveness of proton therapy for young adults with mediastinal lymphoma: Analysis of an institutional cohort. Klin. Padiatr. 2020, 232, 103. [Google Scholar] [CrossRef]
- Vega, R.M.; Patel, S.; Holtzman, A.L.; Lockney, N.A.; Lynch, J.W.; Slayton, W.; Liang, X.; Quan, W.; Hoppe, B.S.; Mendenhall, N.P. Identifying Mean Heart Dose Thresholds for Proton Therapy Acceptability in Mediastinal Unfavorable Early-Stage Hodgkin Disease. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, e401–e402. [Google Scholar] [CrossRef]
- Bortfeld, T.R.; de Viana, M.F.; Yan, S. The Societal Impact of Ion Beam Therapy. Z. Med. Phys. 2021, 31, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Sun, J.; Wang, W.; Stuart, B.; Kong, L.; Gao, J.; You, D.; Wu, X. Performance of a 6D Treatment Chair for Patient Positioning in an Upright Posture for Fixed Ion Beam Lines. Front. Oncol. 2020, 10, 122. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.R.; Parsons, J.L. FLASH Radiotherapy: Current Knowledge and Future Insights Using Proton-Beam Therapy. Int. J. Mol. Sci. 2020, 21, 6492. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.C.; Gunther, J.R.; Milgrom, S.; Fuller, C.D.; Williamson, T.; Liu, A.; Wu, R.; Zhu, X.R.; Dabaja, B.S.; Pinnix, C.C. Effect of Deep Inspiration Breath Hold on Normal Tissue Sparing with Intensity Modulated Radiation Therapy Versus Proton Therapy for Mediastinal Lymphoma. Adv. Radiat. Oncol. 2020, 5, 1255–1266. [Google Scholar] [CrossRef] [PubMed]
- Everett, A.S.; Hoppe, B.S.; Louis, D.; McDonald, A.M.; Morris, C.G.; Mendenhall, N.P.; Li, Z.; Flampouri, S. Comparison of Techniques for Involved-Site Radiation Therapy in Patients with Lower Mediastinal Lymphoma. Pract. Radiat. Oncol. 2019, 9, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Mastella, E.; Molinelli, S.; Pella, A.; Vai, A.; Maestri, D.; Vitolo, V.; Baroni, G.; Valvo, F.; Ciocca, M. 4D Strategies for Lung Tumors Treated with Hypofractionated Scanning Proton Beam Therapy: Dosimetric Impact and Robustness to Interplay Effects. Radiother. Oncol. 2020, 146, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Mastella, E.; Mirandola, A.; Russo, S.; Vai, A.; Magro, G.; Molinelli, S.; Barcellini, A.; Vitolo, V.; Orlandi, E.; Ciocca, M. High-Dose Hypofractionated Pencil Beam Scanning Carbon Ion Radiotherapy for Lung Tumors: Dosimetric Impact of Different Spot Sizes and Robustness to Interfractional Uncertainties. Phys. Med. Eur. J. Med. Phys. 2021, 85, 79–86. [Google Scholar] [CrossRef]
- Ciocca, M.; Mirandola, A.; Molinelli, S.; Russo, S.; Mastella, E.; Vai, A.; Mairani, A.; Magro, G.; Pella, A.; Donetti, M.; et al. Commissioning of the 4-D Treatment Delivery System for Organ Motion Management in Synchrotron-Based Scanning Ion Beams. Phys. Med. Eur. J. Med. Phys. 2016, 32, 1667–1671. [Google Scholar] [CrossRef]
- Engert, A.; Plütschow, A.; Eich, H.T.; Lohri, A.; Dörken, B.; Borchmann, P.; Berger, B.; Greil, R.; Willborn, K.C.; Wilhelm, M.; et al. Reduced Treatment Intensity in Patients with Early-Stage Hodgkin’s Lymphoma. N. Engl. J. Med. 2010, 363, 640–652. [Google Scholar] [CrossRef] [Green Version]
- Radford, J.; Illidge, T.; Counsell, N.; Hancock, B.; Pettengell, R.; Johnson, P.; Wimperis, J.; Culligan, D.; Popova, B.; Smith, P.; et al. Results of a Trial of PET-Directed Therapy for Early-Stage Hodgkin’s Lymphoma. N. Engl. J. Med. 2015, 372, 1598–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borchmann, P.; Plütschow, A.; Kobe, C.; Greil, R.; Meissner, J.; Topp, M.S.; Ostermann, H.; Dierlamm, J.; Mohm, J.; Thiemer, J.; et al. PET-Guided Omission of Radiotherapy in Early-Stage Unfavourable Hodgkin Lymphoma (GHSG HD17): A Multicentre, Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2021, 22, 223–234. [Google Scholar] [CrossRef]
- Gallamini, A.; Rossi, A.; Patti, C.; Picardi, M.; Romano, A.; Cantonetti, M.; Oppi, S.; Viviani, S.; Bolis, S.; Trentin, L.; et al. Consolidation Radiotherapy Could Be Safely Omitted in Advanced Hodgkin Lymphoma with Large Nodal Mass in Complete Metabolic Response After ABVD: Final Analysis of the Randomized GITIL/FIL HD0607 Trial. J. Clin. Oncol. 2020, 38, 3905–3913. [Google Scholar] [CrossRef]
- Engert, A.; Haverkamp, H.; Kobe, C.; Markova, J.; Renner, C.; Ho, A.; Zijlstra, J.; Král, Z.; Fuchs, M.; Hallek, M.; et al. Reduced-Intensity Chemotherapy and PET-Guided Radiotherapy in Patients with Advanced Stage Hodgkin’s Lymphoma (HD15 Trial): A Randomised, Open-Label, Phase 3 Non-Inferiority Trial. Lancet 2012, 379, 1791–1799. [Google Scholar] [CrossRef]
- Kumar, A.; Casulo, C.; Yahalom, J.; Schöder, H.; Barr, P.M.; Caron, P.; Chiu, A.; Constine, L.S.; Drullinsky, P.; Friedberg, J.W.; et al. Brentuximab Vedotin and AVD Followed by Involved-Site Radiotherapy in Early Stage, Unfavorable Risk Hodgkin Lymphoma. Blood 2016, 128, 1458–1464. [Google Scholar] [CrossRef]
- Metzger, M.L.; Link, M.P.; Billett, A.L.; Flerlage, J.; Lucas, J.T.; Mandrell, B.N.; Ehrhardt, M.J.; Bhakta, N.; Yock, T.I.; Friedmann, A.M.; et al. Excellent Outcome for Pediatric Patients with High-Risk Hodgkin Lymphoma Treated with Brentuximab Vedotin and Risk-Adapted Residual Node Radiation. J. Clin. Oncol. 2021, 2276–2283. [Google Scholar] [CrossRef] [PubMed]
- Armand, P.; Engert, A.; Younes, A.; Fanale, M.; Santoro, A.; Zinzani, P.L.; Timmerman, J.M.; Collins, G.P.; Ramchandren, R.; Cohen, J.B.; et al. Nivolumab for Relapsed/Refractory Classic Hodgkin Lymphoma After Failure of Autologous Hematopoietic Cell Transplantation: Extended Follow-Up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zinzani, P.L.; Lee, H.J.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Pembrolizumab in Relapsed or Refractory Hodgkin Lymphoma: 2-Year Follow-up of KEYNOTE-087. Blood 2019, 134, 1144–1153. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Su, H.; Song, Y.; Jiang, W.; Sun, X.; Qian, W.; Zhang, W.; Gao, Y.; Jin, Z.; Zhou, J.; et al. Safety and Activity of Sintilimab in Patients with Relapsed or Refractory Classical Hodgkin Lymphoma (ORIENT-1): A Multicentre, Single-Arm, Phase 2 Trial. Lancet Haematol. 2019, 6, e12–e19. [Google Scholar] [CrossRef]
- Song, Y.; Gao, Q.; Zhang, H.; Fan, L.; Zhou, J.; Zou, D.; Li, W.; Yang, H.; Liu, T.; Wang, Q.; et al. Tislelizumab (BGB-A317) for Relapsed/Refractory Classical Hodgkin Lymphoma: Preliminary Efficacy and Safety Results from a Phase 2 Study. Blood 2018, 132, 682. [Google Scholar] [CrossRef]
- Hamadani, M.; Collins, G.P.; Caimi, P.F.; Samaniego, F.; Spira, A.; Davies, A.; Radford, J.; Menne, T.; Karnad, A.; Zain, J.M.; et al. Camidanlumab Tesirine in Patients with Relapsed or Refractory Lymphoma: A Phase 1, Open-Label, Multicentre, Dose-Escalation, Dose-Expansion Study. Lancet Haematol. 2021, 8, e433–e445. [Google Scholar] [CrossRef]
- Bartlett, N.L.; Herrera, A.F.; Domingo-Domenech, E.; Mehta, A.; Forero-Torres, A.; Garcia-Sanz, R.; Armand, P.; Devata, S.; Izquierdo, A.R.; Lossos, I.S.; et al. A Phase 1b Study of AFM13 in Combination with Pembrolizumab in Patients with Relapsed or Refractory Hodgkin Lymphoma. Blood 2020, 136, 2401–2409. [Google Scholar] [CrossRef] [PubMed]
- Minsat, M.; Ferrari, C.; Viguier, J.; Samb, A.; Le bihan-benjamin, C.; Bousquet, P.-J.; Scemama, O.; Besnard, S.; Morois, S.; Pauporté, I. La Protonthérapie, Indications et Capacité de Traitement; Appui à La Décision: Boulogne-Billancourt, France, 2016. [Google Scholar]
- Kerstiens, J.; Johnstone, P.A.S. Proton Therapy Expansion under Current United States Reimbursement Models. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Belard, A.; Dolney, D.; Zelig, T.; McDonough, J.; O’Connell, J. Improving Proton Therapy Accessibility through Seamless Electronic Integration of Remote Treatment Planning Sites. TeleMed. J. E Health 2011, 17, 370–375. [Google Scholar] [CrossRef]
- Grau, C.; Durante, M.; Georg, D.; Langendijk, J.A.; Weber, D.C. Particle Therapy in Europe. Mol. Oncol. 2020, 14, 1492–1499. [Google Scholar] [CrossRef] [Green Version]
- Weber, D.C.; Langendijk, J.A.; Grau, C.; Thariat, J. Proton Therapy and the European Particle Therapy Network: The Past, Present and Future. Cancer Radiother. 2020, 24, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Loap, P.; Beddok, A.; Cao, K.I.; Goudjil, F.; Fourquet, A.; Dendale, R.; Kirova, Y. Clinical Practice of Breast Cancer Protontherapy: A Single-Centre Experience from Selection to Treatment. Cancer Radiother. 2021, 25, 358–365. [Google Scholar] [CrossRef] [PubMed]
Criteria | Remark |
---|---|
Significant MHD reduction (vs. DIBH-VMAT) | >30% and >1 Gy |
Significant mean breast dose reduction (vs. DIBH-VMAT) | >30% and >1 Gy, on one breast at least |
Significant mean lung dose reduction (vs. DIBH-VMAT) | >50%, evaluated on all lungs simultaneously |
History of mediastinal radiotherapy | |
Genetic predisposition to breast cancer | |
Baseline cardiac disease | LVEF reduction/coronaropathy |
Baseline lung disease | DLCO decrease |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loap, P.; De Marzi, L.; Mirandola, A.; Dendale, R.; Iannalfi, A.; Vitolo, V.; Barcellini, A.; Filippi, A.R.; Jereczek-Fossa, B.A.; Kirova, Y.; et al. Development and Implementation of Proton Therapy for Hodgkin Lymphoma: Challenges and Perspectives. Cancers 2021, 13, 3744. https://doi.org/10.3390/cancers13153744
Loap P, De Marzi L, Mirandola A, Dendale R, Iannalfi A, Vitolo V, Barcellini A, Filippi AR, Jereczek-Fossa BA, Kirova Y, et al. Development and Implementation of Proton Therapy for Hodgkin Lymphoma: Challenges and Perspectives. Cancers. 2021; 13(15):3744. https://doi.org/10.3390/cancers13153744
Chicago/Turabian StyleLoap, Pierre, Ludovic De Marzi, Alfredo Mirandola, Remi Dendale, Alberto Iannalfi, Viviana Vitolo, Amelia Barcellini, Andrea Riccardo Filippi, Barbara Alicja Jereczek-Fossa, Youlia Kirova, and et al. 2021. "Development and Implementation of Proton Therapy for Hodgkin Lymphoma: Challenges and Perspectives" Cancers 13, no. 15: 3744. https://doi.org/10.3390/cancers13153744
APA StyleLoap, P., De Marzi, L., Mirandola, A., Dendale, R., Iannalfi, A., Vitolo, V., Barcellini, A., Filippi, A. R., Jereczek-Fossa, B. A., Kirova, Y., & Orlandi, E. (2021). Development and Implementation of Proton Therapy for Hodgkin Lymphoma: Challenges and Perspectives. Cancers, 13(15), 3744. https://doi.org/10.3390/cancers13153744