Altona Prognostic Index: A New Prognostic Index for ER-Positive and Her2-Negative Breast Cancer of No Special Type
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Management
2.3. Cohort Definition
2.4. Nottingham Prognostic Index
2.5. Statistical Methods
3. Results
3.1. Total Cohort–6654 Patients
3.2. Filtered Cohort–3744 Patients
3.3. Subtype NST (WHO 8500/3)
3.4. All Special Types (=Not WHO 8500/3)
3.5. Subtype Invasive Lobular (=WHO 8520/3)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistisches Bundesamt. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/_Grafik/_Interaktiv/haeufigste-todesursachen-weiblich.html (accessed on 6 November 2020).
- Robert Koch Institut. Zentrum für Krebsregisterdaten. Available online: https://www.rki.de/DE/Content/Gesundheitsmonitoring/Krebsregisterdaten/krebs_node.html (accessed on 5 January 2021).
- IARC/WHO. Available online: https://gco.iarc.fr/today/online-analysis-table?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&include_nmsc=1&include_nmsc_other=10 (accessed on 14 February 2021).
- Payne, S.J.L.; Bowen, R.L.; Jones, J.L.; Wells, C.A. Predictive markers in breast cancer—The present. Histopathology 2008, 52, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Lønning, P.E. Tailored targeted therapy for all: A realistic and worthwhile objective? Breast Cancer Res. 2009, 11, S7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corradini, S.; Reitz, D.; Pazos, M.; Schönecker, S.; Braun, M.; Harbeck, N.; Matuschek, C.; Bölke, E.; Ganswindt, U.; Alongi, F.; et al. Mastectomy or Breast-Conserving Therapy for Early Breast Cancer in Real-Life Clinical Practice: Outcome Comparison of 7565 Cases. Cancers 2019, 11, 160. [Google Scholar] [CrossRef] [Green Version]
- Harbeck, N.; Gnant, M. Breast Cancer. Lancet 2017, 389, 1134–1150. [Google Scholar] [CrossRef]
- Shien, T.; Iwata, H. Adjuvant and neoadjuvant therapy for breast cancer. Jpn. J. Clin. Oncol. 2020, 50, 225–229. [Google Scholar] [CrossRef]
- Low, S.-K.; Zembutsu, H.; Nakamura, Y. Breast cancer: The translation of big genomic data to cancer precision medicine. Cancer Sci. 2018, 109, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phung, M.T.; Tin, S.; Elwood, J.M. Prognostic models for breast cancer: A systematic review. BMC Cancer 2019, 19, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, Y.; Evans, J.; Brook, D.; Kenkre, J.; Jarvis, P.; Gower-Thomas, K. The Nottingham Prognostic Index: Five- and ten-year data for all-cause Survival within a Screened Population. Ann. R. Coll. Surg. Engl. 2015, 97, 137–139. [Google Scholar] [CrossRef] [Green Version]
- Galea, M.H.; Blamey, R.W.; Elston, C.E.; Ellis, I.O. The Nottingham prognostic index in primary breast cancer. Breast Cancer Res. Treat. 1992, 22, 207–219. [Google Scholar] [CrossRef]
- Sundquist, M.; Thorstenson, S.; Brudin, L.; Nordenskjöld, B. Applying the Nottingham Prognostic Index to a Swedish breast cancer population. South East Swedish Breast Cancer Study Group. Breast Cancer Res. Treat. 1999, 53, 1–8. [Google Scholar] [CrossRef]
- Soerjomataram, I.; Louwman, M.W.J.; Ribot, J.G.; Roukema, J.A.; Coebergh, J.W.W. An Overview of prognostic factors for long-term survivors of breast cancer. Breast Cancer Res. Treat. 2008, 107, 309–330. [Google Scholar] [CrossRef] [Green Version]
- Rakh, E.A.; Reis-Filho, J.S.; Baehner, F.; Dabbs, D.J.; Decker, T.; Eusebi, V.; Fox, S.B.; Ichihara, S.; Jacquemier, J.; Lakhani, S.R.; et al. Breast cancer prognostic classification in the molecular era: The role of histological grade. Breast Cancer Res. 2010, 12, 207. [Google Scholar] [CrossRef] [Green Version]
- Van der Hage, J.A.; Mieog, J.S.D.; van de Velde, C.J.H.; Putter, H.; Bartelink, H.; van de Vijver, M.J. Impact of established prognostic factors and molecular subtype in very young breast cancer patients: Pooled analysis of four EORTC randomized controlled trials. Breast Cancer Res. 2011, 13, R68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Belle, V.; Van Calster, B.; Brouckaert, O.; Bempt, I.V.; Pintens, S.; Harvey, V.; Murray, P.; Naume, B.; Wiedswang, G.; Paridaens, R.; et al. Qualitative assessment of the progesterone receptor and HER2 Improves the Nottingham Prognostic Index up to 5 years after breast cancer diagnosis. J. Clin. Oncol. 2010, 28, 4129–4134. [Google Scholar] [CrossRef] [PubMed]
- Balslev, I.; Axelsson, C.K.; Zedeler, K.; Rasmussen, B.B.; Castensen, B.; Mouridsen, H.T. The Nottingham Prognostic Index applied to 9149 patients from the studies of the Danish Breast Cancer Cooperative Group (DBCG). Breast Cancer Res. Treat. 1994, 32, 281–290. [Google Scholar] [CrossRef]
- Gray, E.; Donten, A.; Payne, K.; Hall, P.S. Survival estimates stratified by the Nottingham Prognostic Index for early breast cancer: A systematic review and meta-analysis of observational studies. Syst. Rev. 2018, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Haybittle, J.L.; Blamey, R.W.; Elston, C.W.; Johnson, J.; Doyle, P.J.; Campbell, F.C.; Nicholson, R.I.; Griffiths, K. A Prognostic Index in Primary Breast Cancer. Br. J. Cancer 1982, 45, 361. [Google Scholar] [CrossRef] [Green Version]
- Green, A.R.; Soria, D.; Stephen, J.; Powe, D.G.; Nolan, C.; Kunkler, I.; Thomas, J.; Kerr, G.R.; Jack, W.; Cameron, D.; et al. Nottingham Prognostic Index Plus: Validation of a clinical decision making tool in breast cancer in an independent series. J. Pathol. Clin. Res. 2016, 2, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Weigelt, B.; Geyer, F.C.; Reis-Filho, J.S. Histological types of breast cancer: How special are they? Mol. Oncol. 2010, 4, 192–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigelt, B.; Reis-Filho, J.S.; Swanton, C. Genomic analyses to select patients for adjuvant chemotherapy: Trials and tribulations. Ann. Oncol. 2012, 23 (Suppl. 10), x211–x218. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Bao, W.; Zhang, X.; Kang, Y.; Haffty, B.; Zhang, L. Short-term and long-term clinical outcomes of uncommon types of Invasive breast cancer. Histopathology 2017, 71, 874–886. [Google Scholar] [CrossRef]
- Buus, R.; Sestak, I.; Kronenwett, R.; Denkert, C.; Dubsky, P.; Krappmann, K.; Scheer, M.; Petry, C.; Cuzick, J.; Dowsett, M. Comparison of EndoPredict and EPclin with Oncotype DX recurrence score for prediction of risk of distant recurrence after endocrine therapy. J. Natl. Cancer Inst. 2016, 108, djw149. [Google Scholar] [CrossRef]
- Martin, M.; Brase, J.C.; Calvo, L.; Krappmann, K.; Ruiz-Borrego, M.; Fisch, K.; Ruiz, A.; Weber, K.E.; Munarriz, B.; Petry, C.; et al. Clinical validation of the EndoPredict test in node-positive, chemotherapy-treated ER +/HER2- breast cancer patients: Results from the GEICAM 9906 trial. Breast Cancer Res. 2014, 16, R38. [Google Scholar] [CrossRef] [Green Version]
- Dubsky, P.; Filipits, M.; Jakesz, R.; Rudas, M.; Singer, C.F.; Greil, R.; Dietze, O.; Luisser, I.; Klug, E.; Sedivy, R.; et al. EndoPredict improves the prognostic classification derived from common clinical guidelines in ER-positive, HER2-negative early breast cancer. Ann. Oncol. 2013, 24, 640–647. [Google Scholar] [CrossRef]
- Stover, D.G.; Coloff, J.L.; Barry, W.T.; Brugge, J.S.; Winer, E.P.; Selfors, L.M. The role of proliferation in determining response to neoadjuvant chemotherapy in breast cancer: A gene expression-based meta-analysis. Clin. Cancer Res. 2016, 22, 6039–6050. [Google Scholar] [CrossRef] [Green Version]
- Filipits, M.; Rudas, M.; Jakesz, R.; Dubsky, P.; Fitzal, F.; Singer, C.F.; Dietze, O.; Greil, R.; Jelen, A.; Sevelda, P.; et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin. Cancer Res. 2011, 17, 6012–6020. [Google Scholar] [CrossRef] [Green Version]
- Sestak, I.; Martín, M.; Dubsky, P.; Kronenwett, R.; Rojo, F.; Cuzick, J.; Filipits, M.; Ruiz, A.; Gradishar, W.; Soliman, H.; et al. Prediction of chemotherapy benefit by EndoPredict in patients with breast cancer who received adjuvant endocrine therapy plus chemotherapy or endocrine therapy alone. Breast Cancer Res. Treat. 2019, 176, 377–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO-Classification of Tumours Editorial Board. Breast Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2019; Volume 2. [Google Scholar]
- Lakhani, S.R. (Ed.) WHO Classification of Tumours of the Breast, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2012. [Google Scholar]
- Tavassoli, F.A.; Devilee, P. (Eds.) WHO Classification of Tumours, Pathology and Genetics Tumours of the Breast and Female Genital Organs, 3rd ed.; IARC Press: Lyon, France, 2003; Volume 4. [Google Scholar]
- World Health Organization. World Health Organization Histological Typing of Breast Tumours, 2nd ed.; World Health Organization: Geneva, Switzerland, 1981. [Google Scholar]
- International Union Against Cancer (UICC). TNM Classification of Malignant Tumours, 8th ed.; Brierley, J.D., Gospodarowicz, M.K., Wittekind, C., Eds.; Wiley: New York, NY, USA, 2017. [Google Scholar]
- International Union Against Cancer (UICC). TNM Classification of Malignant Tumours, 7th ed.; Sobin, L.H., Gospodarowicz, M.K., Wittekind, C., Eds.; Wiley: New York, NY, USA, 2009. [Google Scholar]
- International Union Against Cancer (UICC). TNM Classification of Malignant Tumours, 6th ed.; Sobin, L.H., Ed.; Wiley: New York, NY, USA, 2002. [Google Scholar]
- International Union Against Cancer (UICC). TNM Classification of Malignant Tumours, 5th ed.; Wiley-Liss: New York, NY, USA, 1997. [Google Scholar]
- International Union Against Cancer (UICC). TNM Classification of Malignant Tumours, 4th ed.; Hermanek, P., Sobin, L.H., Eds.; Springer: New York, NY, USA, 1987. [Google Scholar]
- Remmele, W.; Stegner, H.E. Vorschlag zur einheitlichen Definition eines Immunreaktiven Scores (IRS) für den Östrogenrezeptornachweis (ER-ICA) im Mammacarcinomgewebe. Pathologe 1987, 8, 138–140. [Google Scholar]
- Wolff, A.C.; Hammond, M.E.H.; Hicks, D.G.; Dowsett, M.; McShane, L.M.; Allison, K.H.; Allred, D.C.; Bartlett, J.M.S.; Bilous, M.; Fitzgibbons, P.; et al. Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update. Arch. Pathol. Lab. Med. 2014, 138, 241–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, D. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B 1972, 34, 187–220. [Google Scholar] [CrossRef]
- Therneau, T.M. A Package for Survival Analysis in R. Available online: https://CRAN.R-project.org/package=survival (accessed on 13 October 2020).
- Hothorn, T.; Hornik, K.; Zeileis, A. Unbiased Recursive Partitioning: A Conditional Inference Framework. J. Comput. Graph. Stat. 2006, 15, 651–674. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Survival probabilities (the Kaplan-Meier method). BMJ 1998, 317, 1572. [Google Scholar] [CrossRef] [Green Version]
- Heagerty, P.J.; Lumley, T.L.; Pepe, M.S. Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker. Biometrics 2000, 56, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Schröder, M.S.; Culhane, A.C.; Quackenbush, J.; Haibe-Kains, B. Survcomp: An R/Bioconductor package for performance assessment and comparison of survival models. Bioinformatics 2011, 27, 3206–3208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, A.R.; Soria, D.; Powe, D.G.; Nolan, C.C. Nottingham prognostic index plus (NPI+) predicts risk of distant metastases in primary breast cancer. Breast Cancer Res. Treat. 2016, 157, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Winzer, K.J.; Buchholz, A.; Schumacher, M.; Sauerbrei, W. Improving the Prognostic Ability through Better Use of Standard Clinical Data—The Nottingham Prognostic Index as an Example. PLoS ONE 2016, 11, e0149977. [Google Scholar] [CrossRef]
- Elwood, J.M.; Tawfiq, E.; TinTin, S.; Marshall, R.J.; Phung, T.M.; Campbell, I.; Harvey, V.; Lawrenson, R. Development and validation of a new predictive model for breast cancer survival in New Zealand and comparison to the Nottinham prognostic index. BMC Cancer 2018, 18, 897. [Google Scholar] [CrossRef]
- Wittekind, C. TNM-Klassifikation Maligner Tumoren, 8th ed.; WILEY-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2017; pp. 195–205. [Google Scholar]
- Fleurier, C.; De Wit, A.; Pilloy, J.; Boivin, L.; Jourdan, M.-L.; Arbion, F.; Body, G.; Ouldamer, L. Outcome of patients with breast cancer in the oldest old (≥80 years). Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 244, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Freedman, R.A.; Partridge, A.H. Emerging data and current challenges for young, old, obese, or male patients with breast cancer. Clin. Cancer Res. 2017, 23, 2647–2654. [Google Scholar] [CrossRef] [Green Version]
- Bertolo, A.; Rosso, C.; Voutsadakis, I.A. Breast cancer in patients 80 years-old and older. Eur. J. Breast Health 2020, 16, 208–212. [Google Scholar] [CrossRef]
- Varghese, F.; Wong, J. Breast cancer in the elderly. Surg. Clin. 2018, 98, 819–833. [Google Scholar] [CrossRef] [PubMed]
- Lickley, H.L. Primary breast cancer in the elderly. Can. J. Surg. 1997, 40, 341–351. [Google Scholar] [PubMed]
- McCart Reed, A.E.; Kutasovic, J.R.; Lakhani, S.R. Invasive lobular carcinoma of the breast: Morphology, biomarkers and ‘omics. Breast Canc. Res. 2015, 17, 12. [Google Scholar] [CrossRef] [PubMed]
WHO Classifications | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Overall | M 8500/3 | M 8520/3 | M 8480/3 | M 8211/3 | M 8507/3 | M 8401/3 | M 8575/3 | M 8500/3, M 8520/3 | M 8500/3, M 8480/3 | Other | |
(N = 6654) | (N = 5394) | (N = 876) | (N = 84) | (N = 81) | (N = 40) | (N = 33) | (N = 30) | (N = 19) | (N = 14) | (N = 83) | |
Histological grade | |||||||||||
Grade 1 | 1264 (19.0%) | 1115 (20.7%) | 17 (1.9%) | 36 (42.8%) | 81 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (15.8%) | 1 (7.1%) | 11 (13.3%) |
Grade 2 | 3581 (53.8%) | 2615 (48.5%) | 783 (89.4%) | 46 (54.8%) | 0 (0%) | 31 (77.5%) | 24 (72.7%) | 5 (16.7%) | 15 (78.9%) | 12 (85.8%) | 50 (60.2%) |
Grade 3 | 1809 (27.2%) | 1664 (30.8%) | 76 (8.7%) | 2 (2.4%) | 0 (0%) | 9 (22.5%) | 9 (27.3%) | 25 (83.3%) | 1 (5.3%) | 1 (7.1%) | 22 (26.5%) |
Estrogen receptor (ER) | |||||||||||
negative | 1088 (16.4%) | 984 (18.2%) | 16 (1.8%) | 1 (1.2%) | 0 (0%) | 2 (5.0%) | 31 (93.9%) | 29 (96.7%) | 1 (5.3%) | 0 (0%) | 24 (28.9%) |
positive | 5566 (83.6%) | 4410 (81.8%) | 860 (98.2%) | 83 (98.8%) | 81 (100%) | 38 (95.0%) | 2 (6.1%) | 1 (3.3%) | 18 (94.7%) | 14 (100%) | 59 (71.1%) |
T | |||||||||||
pT1a | 266 (4.0%) | 226 (4.2%) | 23 (2.6%) | 1 (1.2%) | 15 (18.5%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (1.2%) |
pT1b | 1343 (20.1%) | 1111 (20.6%) | 151 (17.2%) | 8 (9.5%) | 43 (53.1%) | 13 (32.5%) | 2 (6.1%) | 3 (10.0%) | 4 (21.1%) | 0 (0%) | 8 (9.6%) |
pT1c | 2727 (41.0%) | 2234 (41.4%) | 329 (37.6%) | 47 (56.0%) | 20 (24.7%) | 17 (42.5%) | 21 (63.6%) | 4 (13.3%) | 10 (52.6%) | 7 (50.0%) | 38 (45.8%) |
pT2 | 2061 (31.0%) | 1658 (30.7%) | 300 (34.2%) | 27 (32.1%) | 3 (3.7%) | 6 (15.0%) | 8 (24.2%) | 17 (56.7%) | 5 (26.3%) | 5 (35.7%) | 32 (38.6%) |
pT3 | 253 (3.8%) | 161 (3.0%) | 73 (8.4%) | 1 (1.2%) | 0 (0%) | 4 (10.0%) | 2 (6.1%) | 6 (20.0%) | 0 (0%) | 2 (14.3%) | 4 (4.8%) |
pT4 | 4 (0.1%) | 4 (0.1%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Tumor size (cm) | |||||||||||
Mean (SD) | 1.9 (1.4) | 1.9 (1.3) | 2.4 (1.8) | 1.9 (0.9) | 0.9 (0.5) | 2.1 (2.1) | 2.0 (1.0) | 3.0 (1.7) | 1.9 (1.1) | 2.9 (1.7) | 2.29 (1.38) |
Median [Min, Max] | 1.6 [0.1, 15.0] | 1.5 [0.1, 15.0] | 1.8 [0.1, 12.0] | 1.8 [0.4, 5.5] | 0.8 [0.2, 3.4] | 1.5 [0.6, 12.0] | 1.7 [0.8, 6.0] | 2.8 [1.0, 9.0] | 1.5 [0.7, 4.5] | 2.1 [1.5, 7.0] | 1.90 [0.300, 8.00] |
N | |||||||||||
pN0 | 4454 (66.9%) | 3584 (66.4%) | 593 (67.7%) | 67 (79.7%) | 65 (80.2%) | 25 (62.5%) | 24 (72.7%) | 22 (73.3%) | 14 (73.7%) | 7 (50.0%) | 53 (63.9%) |
pN1a | 1113 (16.7%) | 942 (17.5%) | 125 (14.3%) | 8 (9.5%) | 2 (2.5%) | 7 (17.5%) | 3 (9.1%) | 3 (10.0%) | 3 (15.7%) | 3 (21.5%) | 17 (20.5%) |
pN1mi | 197 (3.0%) | 167 (3.1%) | 22 (2.5%) | 0 (0%) | 1 (1.2%) | 2 (5.0%) | 2 (6.1%) | 0 (0%) | 0 (0%) | 2 (14.3%) | 1 (1.2%) |
pN2a | 430 (6.5%) | 350 (6.5%) | 62 (7.1%) | 5 (6.0%) | 0 (0%) | 2 (5.0%) | 1 (3.0%) | 4 (13.4%) | 1 (5.3%) | 1 (7.1%) | 4 (4.8%) |
pN3a | 258 (3.9%) | 197 (3.7%) | 52 (5.9%) | 0 (0%) | 1 (1.2%) | 3 (7.5%) | 2 (6.1%) | 0 (0%) | 0 (0%) | 1 (7.1%) | 2 (2.4%) |
pNX | 59 (0.9%) | 44 (0.8%) | 8 (0.9%) | 1 (1.2%) | 2 (2.5%) | 1 (2.5%) | 0 (0%) | 1 (3.3%) | 1 (5.3%) | 0 (0%) | 1 (1.2%) |
Missing | 143 (2.1%) | 110 (2.0%) | 14 (1.6%) | 3 (3.6%) | 10 (12.4%) | 0 (0%) | 1 (3.0%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (6.0%) |
Age at diagnosis | |||||||||||
Mean (SD) | 60.6 (11.9) | 60.0 (12.0) | 62.8 (10.8) | 65.1 (12.8) | 61.5 (9.02) | 66.7 (8.23) | 63.1 (11.0) | 65.5 (15.7) | 61.2 (13.0) | 60.6 (12.2) | 65.1 (12.6) |
Median [Min, Max] | 61 [25, 95] | 61 [25, 95] | 63 [33, 94] | 65 [37, 95] | 61 [41, 83] | 67 [39, 83] | 61 [37, 86] | 65 [36, 92] | 60 [40, 89] | 62 [42, 77] | 66 [38, 95] |
Human epidermal growth factor receptor 2 (HER2) | |||||||||||
unknown | 212 (3.2%) | 195 (3.6%) | 7 (0.7%) | 3 (3.5%) | 0 (0%) | 1 (2.5%) | 4 (12.1%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (2.4%) |
negative | 5495 (82.6%) | 4353 (80.7%) | 802 (91.6%) | 75 (89.3%) | 76 (93.8%) | 32 (80.0%) | 23 (69.7%) | 28 (93.3%) | 19 (100%) | 12 (85.8%) | 75 (90.4%) |
positive | 587 (8.8%) | 545 (10.1%) | 19 (2.2%) | 3 (3.6%) | 1 (1.2%) | 7 (17.5%) | 6 (18.2%) | 2 (6.7%) | 0 (0%) | 1 (7.1%) | 3 (3.6%) |
Missing | 360 (5.4%) | 301 (5.6%) | 48 (5.5%) | 3 (3.6%) | 4 (5.0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (7.1%) | 3 (3.6%) |
Nottingham Prognostic Index | |||||||||||
Mean (SD) | 3.90 (1.21) | 3.91 (1.24) | 3.98 (1.03) | 3.23 (0.88) | 2.39 (0.51) | 4.11 (1.22) | 4.03 (0.83) | 4.80 (1.02) | 3.53 (0.95) | 4.23 (0.986) | 4.04 (1.05) |
Median [Min, Max] | 3.50 [2.02, 9.00] | 3.52 [2.02, 9.00] | 3.46 [2.10, 7.90] | 3.25 [2.08, 6.40] | 2.20 [2.04, 4.50] | 3.44 [3.12, 8.40] | 4.20 [3.16, 6.26] | 4.56 [3.20, 7.04] | 3.30 [2.14, 5.90] | 4.47 [2.34, 5.40] | 4.12 [2.18, 6.60] |
Overall | M 8500/3 | M 8520/3 | M 8211/3 | M 8480/3 | M 8507/3 | M 8500/3. M 8520/3 | Other | |
---|---|---|---|---|---|---|---|---|
(N = 3744) | (N = 2964) | (N = 601) | (N = 62) | (N = 47) | (N = 16) | (N = 13) | (N = 41) | |
Histological grade | ||||||||
Grade 1 | 964 (25.8%) | 865 (29.2%) | 13 (2.2%) | 62 (100%) | 16 (34.1%) | 0 (0%) | 2 (15.4%) | 6 (14.6%) |
Grade 2 | 2262 (60.4%) | 1628 (54.9%) | 550 (91.5%) | 0 (0%) | 30 (63.8%) | 16 (100%) | 10 (76.9%) | 28 (68.3%) |
Grade 3 | 518 (13.8%) | 471 (15.9%) | 38 (6.3%) | 0 (0%) | 1 (2.1%) | 0 (0%) | 1 (7.7%) | 7 (17.1%) |
T | ||||||||
pT1a | 163 (4.4%) | 135 (4.6%) | 17 (2.8%) | 11 (17.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
pT1b | 926 (24.7%) | 752 (25.4%) | 121 (20.2%) | 31 (50%) | 5 (10.6%) | 8 (50%) | 3 (23.1%) | 6 (14.6%) |
pT1c | 1607 (42.9%) | 1304 (44%) | 223 (37.1%) | 18 (29%) | 29 (61.7%) | 4 (25%) | 7 (53.8%) | 22 (53.7%) |
pT2 | 955 (25.5%) | 724 (24.4%) | 199 (33.1%) | 2 (3.2%) | 13 (27.7%) | 3 (18.8%) | 3 (23.1%) | 11 (26.8%) |
pT3 | 92 (2.5%) | 48 (1.6%) | 41 (6.8%) | 0 (0%) | 0 (0%) | 1 (6.2%) | 0 (0%) | 2 (4.9%) |
pT4 | 1 (0%) | 1 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Tumor size (cm) | ||||||||
Mean (SD) | 1.8 (1.2) | 1.7 (1.1) | 2.2 (1.7) | 0.9 (0.5) | 1.8 (0.8) | 1.6 (1.5) | 1.6 (0. 8) | 2.05 (1.33) |
Median [Min, Max] | 1.5 [0.1, 15.0] | 1.4 [0.1, 15.0] | 1.7 [0.1, 10.0] | 0.9 [0.2, 3.4] | 1.8 [0.6, 4.2] | 1.2 [0.6, 7.0] | 1.5 [0.8, 3.2] | 1.6 [0.6, 7.0] |
N | ||||||||
pN0 | 2635 (70.4%) | 2079 (70.1%) | 423 (70.4%) | 51 (82.3%) | 37 (78.7%) | 10 (62.5%) | 10 (76.9%) | 25 (61%) |
pN1a | 610 (16.3%) | 500 (16.9%) | 86 (14.3%) | 1 (1.6%) | 7 (14.9%) | 3 (18.8%) | 2 (15.4%) | 11 (26.8%) |
pN1mi | 124 (3.3%) | 104 (3.5%) | 16 (2.7%) | 0 (0%) | 0 (0%) | 2 (12.5%) | 0 (0%) | 2 (4.9%) |
pN2a | 203 (5.4%) | 158 (5.3%) | 41 (6.8%) | 0 (0%) | 3 (6.4%) | 0 (0%) | 0 (0%) | 1 (2.4%) |
pN3a | 109 (2.9%) | 77 (2.6%) | 29 (4.8%) | 1 (1.6%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (4.9%) |
pNX | 13 (0.3%) | 7 (0.3%) | 2 (0.3%) | 2 (3.2%) | 0 (0%) | 1 (6.2%) | 1 (7.7%) | 0 (0%) |
Missing | 50 (1.4%) | 39 (1.3%) | 4 (0.7%) | 7 (11.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Age at diagnosis | ||||||||
Mean (SD) | 57.2 (9.0) | 56.8 (9.2) | 58.8 (8.1) | 58.3 (6.8) | 58.3 (8.4) | 61.2 (7.7) | 56.2 (8.2) | 58.8 (8.3) |
Median [Min, Max] | 59 [25, 70] | 58 [25, 70] | 60 [33, 70] | 59 [41, 70] | 60 [37, 70] | 65 [39, 69] | 57 [40, 68] | 60.0 [42, 70] |
Nottingham Prognostic Index | ||||||||
Mean (SD) | 3.61 (1.14) | 3.58 (1.16) | 3.89 (0.96) | 2.38 (0.53) | 3.32 (0.91) | 3.64 (0.56) | 3.39 (0.73) | 3.90 (1.00) |
Median [Min, Max] | 3.30 [2.02, 9.00] | 3.30 [2.02, 9.00] | 3.44 [2.10, 7.60] | 2.20 [2.04, 4.50] | 3.30 [2.12, 6.40] | 3.37 [3.12, 4.46] | 3.30 [2.22, 4.64] | 3.90 [2.18, 6.40] |
Total Cohort-6654 | Filtered Cohort-3744 | Subtype NST (WHO 8500/3) | All Special Types (Not WHO 8500/3) | Subtype Invasive Lobular (WHO 8520/3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
HR [CI] | p | HR [CI] | p | HR [CI] | p | HR [CI] | p | HR [CI] | p | |
Age at diagnosis | 1.03 [1.02–1.03] | <0.001 | 1.00 [0.99–1.02] | 0.441 | 1.01 [1.00–1.02] | 0.2 | 1.00 [0.98–1.03] | 0.749 | 0.99 [0.96–1.02] | 0.584 |
Tumor size (cm) | 1.15 [1.11–1.19] | <0.001 | 1.21 [1.13–1.30] | <0.001 | 1.22 [1.12–1.33] | <0.001 | 1.20 [1.06–1.37] | 0.004 | 1.15 [1.00–1.32] | 0.056 |
Histological grade (Ref = Grade1) | <0.001 | <0.001 | 0.002 | 0.376 | 0.069 | |||||
Grade 2 | 1.30 [1.05–1.59] | 0.014 | 1.52 [1.14–2.03] | 0.004 | 1.47 [1.07–2.03] | 0.018 | 1.08 [0.49–2.36] | 0.854 | 0.35 [0.08–1.46] | 0.149 |
Grade 3 | 1.96 [1.57–2.44] | <0.001 | 2.14 [1.50–3.05] | <0.001 | 2.04 [1.38–3.02] | <0.001 | 1.80 [0.67–4.86] | 0.244 | 0.25 [0.05–1.33] | 0.105 |
pN (Ref = pN0) | <0.001 | <0.001 | <0.001 | 0.076 | <0.001 | |||||
pN1a | 1.34 [1.13–1.58] | 0.001 | 1.27 [0.96–1.67] | 0.089 | 1.32 [0.96–1.80] | 0.083 | 1.22 [0.64–2.33] | 0.55 | 1.43 [0.70–2.94] | 0.326 |
pN1mi | 1.35 [0.90–2.02] | 0.145 | 1.64 [0.97–2.78] | 0.066 | 1.58 [0.87–2.85] | 0.130 | 2.57 [0.79–8.37] | 0.117 | 4.04 [1.23–13.28] | 0.022 |
pN2a | 2.07 [1.69–2.54] | <0.001 | 1.42 [0.97–2.08] | 0.074 | 1.88 [1.22–2.90] | 0.004 | 1.51 [0.69–3.30] | 0.304 | 1.49 [0.63–3.51] | 0.363 |
pN3a | 2.28 [1.80–2.88] | <0.001 | 2.67 [1.74–4.11] | <0.001 | 2.93 [1.77–4.86] | <0.001 | 2.81 [1.25–6.3] | 0.012 | 4.61 [2.11–10.07] | <0.001 |
pNX | 4.77 [3.24–7.02] | <0.001 | 16.27 [7.92–33.41] | <0.001 | 24.30 [8.94–65.90] | <0.001 | 9.92 [2.2–44.65] | 0.003 | 86.4 [15.38–485.31] | <0.001 |
missing | 2.54 [1.90–3.38] | <0.001 | 3.00 [1.77–5.08] | <0.001 | 3.06 [1.65–5.67] | <0.001 | 1.2 [0.16–9.17] | 0.857 | 2.14 × 10−7 [0–∞] | 0.996 |
Total Cohort-6654 | Filtered Cohort-3744 | Subtype NST (WHO 8500/3) | All Special Types (Not WHO 8500/3) | Subtype Invasive Lobular (WHO 8520/3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
iAUC | Conc | iAUC | Conc | iAUC | Conc | iAUC | Conc | iAUC | Conc | |
API | 0.710 | 0.708 | 0.671 | 0.672 | 0.689 | 0.699 | 0.601 | 0.566 | 0.415 | 0.413 |
Tree | 0.720 | 0.704 | 0.656 | 0.650 | 0.642 | 0.645 | 0.510 | 0.514 | 0.504 | 0.508 |
NPI | 0.639 | 0.668 | 0.646 | 0.652 | 0.664 | 0.674 | 0.587 | 0.563 | 0.545 | 0.542 |
Total Cohort-6654 | Filtered Cohort-3744 | Subtype NST (WHO 8500/3) | All Special Types (Not WHO 8500/3) | Subtype Invasive Lobular (WHO 8520/3) | |
---|---|---|---|---|---|
API vs. Tree | 0.529 | <0.001 | <0.001 | <0.001 | 1.000 |
API vs. NPI | <0.001 | <0.001 | <0.001 | 0.129 | 1.000 |
Tree vs. NPI | <0.001 | <0.001 | 1 | 1.000 | 0.789 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wegscheider, A.-S.; Ulm, B.; Friedrichs, K.; Lindner, C.; Niendorf, A. Altona Prognostic Index: A New Prognostic Index for ER-Positive and Her2-Negative Breast Cancer of No Special Type. Cancers 2021, 13, 3799. https://doi.org/10.3390/cancers13153799
Wegscheider A-S, Ulm B, Friedrichs K, Lindner C, Niendorf A. Altona Prognostic Index: A New Prognostic Index for ER-Positive and Her2-Negative Breast Cancer of No Special Type. Cancers. 2021; 13(15):3799. https://doi.org/10.3390/cancers13153799
Chicago/Turabian StyleWegscheider, Anne-Sophie, Bernhard Ulm, Kay Friedrichs, Christoph Lindner, and Axel Niendorf. 2021. "Altona Prognostic Index: A New Prognostic Index for ER-Positive and Her2-Negative Breast Cancer of No Special Type" Cancers 13, no. 15: 3799. https://doi.org/10.3390/cancers13153799
APA StyleWegscheider, A.-S., Ulm, B., Friedrichs, K., Lindner, C., & Niendorf, A. (2021). Altona Prognostic Index: A New Prognostic Index for ER-Positive and Her2-Negative Breast Cancer of No Special Type. Cancers, 13(15), 3799. https://doi.org/10.3390/cancers13153799