Expression of HDACs 1, 3 and 8 Is Upregulated in the Presence of Infiltrating Lymphocytes in Uveal Melanoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Chromosome Analysis
2.3. Tumour Gene Expression
2.4. Immunohistochemistry
2.5. Droplet Digital PCR (ddPCR)
2.6. Cell Lines and Cell Culture
2.7. Quantitative Real-Time Polymerase Chain Reaction (qPCR)
2.8. Statistics
3. Results
3.1. HDAC Expression Is Related to Clinical and Genetic Tumour Characteristics
3.2. HDACs and Relation with Infiltrating Leukocytes
3.3. HDAC Expression in UM Cell Lines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moschos, M.M.; Dettoraki, M.; Androudi, S.; Kalogeropoulos, D.; Lavaris, A.; Garmpis, N.; Damaskos, C.; Garmpi, A.; Tsatsos, M. The Role of Histone Deacetylase Inhibitors in Uveal Melanoma: Current Evidence. Anticancer Res. 2018, 38, 3817–3824. [Google Scholar] [CrossRef] [PubMed]
- De Ruijter, A.J.; Van Gennip, A.H.; Caron, H.N.; Kemp, S.; Van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J. 2003, 370, 737–749. [Google Scholar] [CrossRef]
- Fritzsche, F.R.; Weichert, W.; Röske, A.; Gekeler, V.; Beckers, T.; Stephan, C.; Jung, K.; Scholman, K.; Denkert, C.; Dietel, M.; et al. Class I histone deacetylases 1, 2 and 3 are highly expressed in renal cell cancer. BMC Cancer 2008, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Niegisch, G.; Knievel, J.; Koch, A.; Hader, C.; Fischer, U.; Albers, P.; Schulz, W. Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urol. Oncol. Semin. Orig. Investig. 2013, 31, 1770–1779. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Salz, T.; Zajac-Kaye, M.; Liao, D.; Huang, S.; Qiu, Y. Overexpression of histone deacetylases in cancer cells is controlled by interplay of transcription factors and epigenetic modulators. FASEB J. 2014, 28, 4265–4279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.-H.; Chiang, C.-P.; Hung, H.-C.; Lin, C.-Y.; Deng, Y.; Kuo, M.Y.-P. Histone deacetylase 2 expression predicts poorer prognosis in oral cancer patients. Oral Oncol. 2009, 45, 610–614. [Google Scholar] [CrossRef]
- Venugopal, B.; Baird, R.; Kristeleit, R.S.; Plummer, R.; Cowan, R.; Stewart, A.; Fourneau, N.; Hellemans, P.; A Elsayed, Y.; McClue, S.; et al. A Phase I Study of Quisinostat (JNJ-26481585), an Oral Hydroxamate Histone Deacetylase Inhibitor with Evidence of Target Modulation and Antitumor Activity, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2013, 19, 4262–4272. [Google Scholar] [CrossRef] [Green Version]
- Kivela, T.; Simpson, E.R.; Grossniklaus, H.E.; Jager, M.J.; Singh, A.D.; Caminal, J.M.; Pavlick, A.C.; Kujala, E.; Coupland, S.E.; Finger, P. Uveal melanoma. In AJCC Cancer Staging Manual; Springer: New York, NY, USA, 2017; pp. 805–817. [Google Scholar]
- Harbour, J.W.; Onken, M.D.; Roberson, E.D.O.; Duan, S.; Cao, L.; Worley, L.A.; Council, M.L.; Matatall, K.A.; Helms, C.; Bowcock, A.M. Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas. Science 2010, 330, 1410–1413. [Google Scholar] [CrossRef] [Green Version]
- Smit, K.N.; Van Poppelen, N.M.; Vaarwater, J.; Verdijk, R.; Van Marion, R.; Kalirai, H.; E Coupland, S.; Thornton, S.; Farquhar, N.; Dubbink, H.-J.; et al. Combined mutation and copy-number variation detection by targeted next-generation sequencing in uveal melanoma. Mod. Pathol. 2018, 31, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Souri, Z.; Jochemsen, A.G.; Versluis, M.; Wierenga, A.P.; Nemati, F.; Van Der Velden, P.A.; Kroes, W.G.; Verdijk, R.M.; Luyten, G.P.; Jager, M.J. HDAC Inhibition Increases HLA Class I Expression in Uveal Melanoma. Cancers 2020, 12, 3690. [Google Scholar] [CrossRef]
- Durie, F.H.; Campbell, A.M.; Lee, W.R.; Damato, B.E. Analysis of lymphocytic infiltration in uveal melanoma. Investig. Ophthalmol. Vis. Sci. 1990, 31, 2106–2110. [Google Scholar]
- de Waard-Siebinga, I.; Hilders, C.G.J.M.; Hansen, B.E.; van Delft, J.L.; Jager, M.J. HLA expression and tumor-infiltrating immune cells in uveal melanoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 1996, 234, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Blom, D.J.; Luyten, G.P.; Mooy, C.; Kerkvliet, S.; Zwinderman, A.H.; Jager, M.J. Human leukocyte antigen class I expression. Marker of poor prognosis in uveal melanoma. Investig. Ophthalmol. Vis. Sci. 1997, 38, 1865–1872. [Google Scholar]
- Ericsson, C.; Seregard, S.; Bartolazzi, A.; Levitskaya, E.; Ferrone, S.; Kiessling, R.; Larsson, O. Association of HLA class I and class II antigen expression and mortality in uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2153–2156. [Google Scholar]
- Souri, Z.; Wierenga, A.P.; Mulder, A.; Jochemsen, A.G.; Jager, M.J. HLA Expression in Uveal Melanoma: An Indicator of Malignancy and a Modifiable Immunological Target. Cancers 2019, 11, 1132. [Google Scholar] [CrossRef] [Green Version]
- Maat, W.; Ly, L.V.; Jordanova, E.S.; De Wolff-Rouendaal, D.; Schalij-Delfos, N.E.; Jager, M.J. Monosomy of Chromosome 3 and an Inflammatory Phenotype Occur Together in Uveal Melanoma. Investig. Opthalmol. Vis. Sci. 2008, 49, 505–510. [Google Scholar] [CrossRef]
- Bronkhorst, I.H.G.; Vu, T.H.K.; Jordanova, E.S.; Luyten, G.P.M.; Burg, S.H.V.D.; Jager, M.J. Different Subsets of Tumor-Infiltrating Lymphocytes Correlate with Macrophage Influx and Monosomy 3 in Uveal Melanoma. Investig. Opthalmol. Vis. Sci. 2012, 53, 5370–5378. [Google Scholar] [CrossRef] [Green Version]
- Robertson, A.G.; Shih, J.; Yau, C.; Gibb, E.A.; Oba, J.; Mungall, K.L.; Hess, J.M.; Uzunangelov, V.; Walter, V.; Danilova, L.; et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell 2017, 32, 204.e15–220.e15. [Google Scholar] [CrossRef] [Green Version]
- Gezgin, G.; Dogrusöz, M.; Van Essen, T.H.; Kroes, W.G.M.; Luyten, G.P.M.; Van Der Velden, P.A.; Walter, V.; Verdijk, R.M.; van Hall, T.; Van Der Burg, S.H.; et al. Genetic evolution of uveal melanoma guides the development of an inflammatory microenvironment. Cancer Immunol. Immunother. 2017, 66, 903–912. [Google Scholar] [CrossRef] [Green Version]
- Versluis, M.; de Lange, M.J.; van Pelt, S.I.; Ruivenkamp, C.A.; Kroes, W.G.; Cao, J.; Jager, M.J.; Luyten, G.P.M.; van der Velden, P.A. Digital PCR validates 8q dosage as prognostic tool in uveal melanoma. PLoS ONE 2015, 10, e0116371. [Google Scholar] [CrossRef] [Green Version]
- Koopmans, A.E.; Verdijk, R.M.; Brouwer, R.W.W.; van den Bosch, T.P.P.; van den Berg, M.M.P.; Vaarwater, J.; Kockx, C.E.M.; Paridaens, D.; Naus, N.C.; Nellist, M.; et al. Clinical significance of immunohistochemistry for detection of BAP1 mutations in uveal melanoma. Mod. Pathol. 2014, 27, 1321–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoutman, W.H.; Nell, R.; Versluis, M.; Van Steenderen, D.; Lalai, R.N.; Out-Luiting, J.J.; De Lange, M.J.; Vermeer, M.; Langerak, A.W.; Van Der Velden, P.A. Accurate Quantification of T Cells by Measuring Loss of Germline T-Cell Receptor Loci with Generic Single Duplex Droplet Digital PCR Assays. J. Mol. Diagn. 2017, 19, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lange, M.J.; Nell, R.; Lalai, R.N.; Versluis, M.; Jordanova, E.S.; Luyten, G.P.; Jager, M.J.; Van Der Burg, S.H.; Zoutman, W.H.; van Hall, T.; et al. Digital PCR-Based T-cell Quantification–Assisted Deconvolution of the Microenvironment Reveals that Activated Macrophages Drive Tumor Inflammation in Uveal Melanoma. Mol. Cancer Res. 2018, 16, 1902–1911. [Google Scholar] [CrossRef] [Green Version]
- Luyten, G.P.; Naus, N.C.; Mooy, C.M.; Hagemeijer, A.; Kan-Mitchell, J.; Van Drunen, E.; Vuzevski, V.; De Jong, P.T.V.M.; Luider, T.M. Establishment and characterization of primary and metastatic uveal melano-ma cell lines. Int. J. Cancer 1996, 66, 380–387. [Google Scholar] [CrossRef]
- Chen, P.W.; Murray, T.G.; Uno, T.; Salgaller, M.L.; Reddy, R.; Ksander, B.R. Expression of MAGE genes in ocular melanoma during progression from primary to metastatic disease. Clin. Exp. Metastasis 1997, 15, 509–518. [Google Scholar] [CrossRef]
- Amirouchene-Angelozzi, N.; Némati, F.; Gentien, D.; Nicolas, A.; Dumont, A.; Carita, G.; Camonis, J.; Desjardins, L.; Cassoux, N.; Piperno-Neumann, S.; et al. Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target. Mol. Oncol. 2014, 8, 1508–1520. [Google Scholar] [CrossRef] [PubMed]
- Bronkhorst, I.H.G.; Jehs, T.M.L.; Dijkgraaf, E.M.; Luyten, G.P.M.; van der Velden, P.A.; van der Burg, S.H.; Jager, M.J. Effect of Hypoxic Stress on Migration and Characteristics of Monocytes in Uveal Melanoma. JAMA Ophthalmol. 2014, 132, 614–621. [Google Scholar] [CrossRef] [Green Version]
- Landreville, S.; Agapova, O.A.; Matatall, K.A.; Kneass, Z.T.; Onken, M.; Lee, R.S.; Bowcock, A.; Harbour, J.W. Histone Deacetylase Inhibitors Induce Growth Arrest and Differentiation in Uveal Melanoma. Clin. Cancer Res. 2012, 18, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, S.; Potla, R.; Larner, A.C. Histone Deacetylase Activity Is Required to Recruit RNA Polymerase II to the Promoters of Selected Interferon-stimulated Early Response Genes. J. Biol. Chem. 2004, 279, 40362–40367. [Google Scholar] [CrossRef] [Green Version]
- Nusinzon, I.; Horvath, C.M. Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc. Natl. Acad. Sci. USA 2003, 100, 14742–14747. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-L.; Su, X.-M.; Ren, Y.; Zhao, X.; Kong, L.-F.; Kang, J. HDAC8 inhibitor attenuates airway responses to antigen stimulus through synchronously suppressing galectin-3 expression and reducing macrophage-2 polarization. Respir. Res. 2020, 21, 62. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, S.; Steggerda, S.; Sirisawad, M.; Schreeder, M.; Doiron, L.; Buggy, J.J. The Histone Deacetylase-8 (HDAC8) Selective Inhibitor PCI-34051 Decreases Interleukin-1 Beta Secretion in Vitro and Reduces Inflammation in Vivo. Blood 2008, 112, 2581. [Google Scholar] [CrossRef]
- Woan, K.V.; Sahakian, E.; Sotomayor, E.M.; Seto, E.; Villagra, A. Modulation of antigen-presenting cells by HDAC inhibitors: Implications in autoimmunity and cancer. Immunol. Cell Biol. 2011, 90, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Charron, C.E.; Chou, P.-C.; Coutts, D.J.C.; Kumar, V.; To, M.; Akashi, K.; Pinhu, L.; Griffiths, M.; Adcock, I.; Barnes, P.J.; et al. Hypoxia-inducible Factor 1α Induces Corticosteroid-insensitive Inflammation via Reduction of Histone Deacetylase-2 Transcription. J. Biol. Chem. 2009, 284, 36047–36054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouwer, N.J.; Wierenga, A.P.A.; Gezgin, G.; Marinkovic, M.; Luyten, G.P.M.; Kroes, W.G.M.; Versluis, M.; Van Der Velden, P.A.; Verdijk, R.M.; Jager, M.J. Ischemia Is Related to Tumour Genetics in Uveal Melanoma. Cancers 2019, 11, 1004. [Google Scholar] [CrossRef] [Green Version]
- Herlihy, N.; Dogrusöz, M.; van Essen, T.H.; Harbour, J.W.; van der Velden, P.A.; van Eggermond, M.C.J.A.; Haasnoot, G.W.; Elsen, P.J.V.D.; Jager, M.J. Skewed Expression of the Genes Encoding Epigenetic Modifiers in High-Risk Uveal Melanoma. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1447–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, P.L.; Chao, Y.L.; Tsai, Y.-H.; Ghosh, S.K.; Porrello, A.; Van Swearingen, A.; Harrison, E.B.; Cooley, B.C.; Parker, J.S.; Carey, L.A.; et al. Histone deacetylase 11 inhibition promotes breast cancer metastasis from lymph nodes. Nat. Commun. 2019, 10, 4192. [Google Scholar] [CrossRef] [Green Version]
- Deng, R.; Zhang, P.; Liu, W.; Zeng, X.; Ma, X.; Shi, L.; Wang, T.; Yin, Y.; Chang, W.; Zhang, P.; et al. HDAC is indispensable for IFN-γ-induced B7-H1 expression in gastric cancer. Clin. Epigenetics 2018, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
Primers | Forward | Reverse |
---|---|---|
HDAC1 | 5′-CATCGCTGTGAATTGGGCTG | 5′-CCCTCTGGTGATACTTTAGCAGT |
HDAC2 | 5′-CATGGCGTACAGTCAAGGAG | 5′-ATAATTTCCAATATCACCGTCGTAG |
HDAC3 | 5′-AGTTCTGCTCGCGTTACACA | 5′-CCGAGGGTGGTACCTCAAAC |
HDAC4 | 5′-TGGGAGTTTGGAGCTCGTTG | 5′-AGTCCATCTGGATGGCTTTGGG |
HDAC5 | 5′-TGGTCTACGACACGTTCATGCT | 5′-TCAGGGTGCACGTGTGTGTT |
HDAC6 | 5′-GGAGAATCAGATCGCAACCGC | 5′-ACTGGGGGTTCTGCCTACTT |
HDAC7 | 5′-GACAAGAGCAAGCGAAGTGC | 5′-GAGGTGTGGGGACACTGTAG |
HDAC8 | 5′-CCAAGAGGGCGATGATGATC | 5′-GTGGCTGGGCAGTCATAACC |
HDAC9 | 5′-GAGGACGAGAAAGGGCAGTG | 5′-GTACCAGAGCTTGGGATGGC |
HDAC11 | 5′-TGTCTACAACCGCCACATCT | 5′-GGTGCCTGCATTGTATACC |
RPS11 | 5′-AAGCAGCCGACCATCTTTCA | 5′-CGGGAGCTTCTCCTTGCC |
CAPNS1 | 5′-ATGGTTTTGGCATTGACACATG | 5′-GCTTGCCTGTGGTGTCGC |
Characteristics | HDAC1 | HDAC2 | HDAC3 | HDAC4 | HDAC6 | HDAC7 | HDAC8 | HDAC11 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | H | P | L | H | P | L | H | P | L | H | P | L | H | P | L | H | P | L | H | P | L | H | P | |
Age (Years) at Enucleation (n = 64) | ||||||||||||||||||||||||
≤60 | 17 (26) | 14 (22) | 13 (20) | 18 (28) | 18 (28) | 13 (20) | 19 (30) | 12 (19) | 14 (22) | 17 (26) | 15 (23) | 16 (25) | 17 (26) | 14 (22) | 12 (19) | 19 (30) | ||||||||
>60 | 15 (23) | 18 (28) | 0.45 | 17 (26) | 16 (25) | 0.44 | 13 (20) | 20 (31) | 0.13 | 13 (20) | 20 (31) | 0.08 | 18 (28) | 15 (23) | 0.45 | 18 (28) | 15 (23) | 0.62 | 17 (26) | 16 (25) | 0.8 | 19 (30) | 14 (22) | 0.13 |
Gender (n = 64) | ||||||||||||||||||||||||
Male | 15 (23) | 18 (28) | 18 (28) | 15 (23) | 18 (28) | 15 (23) | 16 (25) | 17 (26) | 17 (26) | 16 (25) | 15 (23) | 18 (28) | 17 (26) | 16 (25) | 15 (23) | 18 (28) | ||||||||
Female | 17 (26) | 14 (22) | 0.45 | 12 (19) | 19 (30) | 0.2 | 13 (20) | 18 (28) | 0.31 | 16 (25) | 15 (23) | 0.8 | 15 (23) | 16 (25) | 0.8 | 18 (28) | 13 (20) | 0.31 | 17 (26) | 14 (22) | 0.8 | 16 (25) | 15 (23) | 0.62 |
Cell Type (n = 64) | ||||||||||||||||||||||||
Spindle | 17 (27) | 5 (8) | 9 (14) | 13 (20) | 14 (22) | 8 (12) | 13 (20) | 9 (14) | 9 (14) | 13 (20) | 12 (19) | 10 (16) | 17 (27) | 5 (8) | 9 (14) | 13 (20) | ||||||||
Mixed/epithelioid | 15 (23) | 27 (42) | 0.002 | 21 (33) | 21 (33) | 0.49 | 17 (27) | 25 (39) | 0.08 | 19 (30) | 23 (36) | 0.3 | 23 (36) | 19 (30) | 0.3 | 21 (33) | 21 (33) | 0.73 | 17 (27) | 25 (39) | 0.005 | 22 (34) | 20 (31) | 0.38 |
cTNM Stage (n = 62) | ||||||||||||||||||||||||
cTNM Stage I-IIB | 19 (31) | 18 (29) | 17 (27) | 20 (32) | 16 (26) | 21 (34) | 23 (37) | 14 (23) | 20 (32) | 17 (27) | 22 (35) | 15 (24) | 20 (32) | 17 (27) | 16 (26) | 21 (34) | ||||||||
cTNM Stage IIIA-IIIC | 11 (18) | 14 (22) | 0.57 | 13 (21) | 12 (19) | 0.64 | 13 (21) | 12 (19) | 0.5 | 9 (14) | 16 (26) | 0.04 | 11 (18) | 14 (23) | 0.44 | 9 (14) | 16 (26) | 0.07 | 13 (21) | 12 (19) | 0.87 | 13 (21) | 12 (19) | 0.5 |
Chromosome 3 Status (n = 64) | ||||||||||||||||||||||||
Disomy 3 | 18 (28) | 6 (9) | 13 (20) | 11 (17) | 15 (23) | 9 (14) | 17 (26) | 7 (11) | 10 (16) | 14 (22) | 16 (25) | 8 (12) | 21 (33) | 3 (5) | 4 (6) | 20 (31) | ||||||||
Monosomy 3 | 14 (22) | 26 (41) | 0.002 | 17 (27) | 23 (36) | 0.36 | 16 (25) | 24 (37) | 0.08 | 15 (23) | 25 (40) | 0.01 | 22 (34) | 18 (28) | 0.3 | 17 (26) | 23 (36) | 0.06 | 13 (20) | 27 (42) | <0.001 | 27 (42) | 13 (20) | <0.001 |
BAP1 IHC staining (n = 55) | ||||||||||||||||||||||||
BAP1-positive | 16 (29) | 9 (16) | 11 (20) | 14 (25) | 15 (27) | 10 (18) | 18 (33) | 7 (13) | 14 (25) | 11 (20) | 18 (33) | 7 (13) | 0.06 | 20 (36) | 5 (9) | 7 (13) | 18 (33) | |||||||
BAP1-negative | 12 (22) | 18 (33) | 0.08 | 13 (24) | 17 (31) | 0.96 | 11 (20) | 19 (34) | 0.08 | 10 (18) | 20 (36) | 0.004 | 16 (29) | 14 (25) | 0.84 | 14 (25) | 16 (29) | 10 (18) | 20 (36) | 0.001 | 20 (36) | 10 (18) | 0.004 |
CD3E | CD8A | CD68 | ||||
---|---|---|---|---|---|---|
R | P | R | P | R | P | |
HDAC1 | 0.340 | 0.006 | 0.407 | 0.001 | 0.082 | 0.52 |
HDAC2 | −0.197 | 0.12 | −0.153 | 0.23 | −0.430 | <0.001 |
HDAC3 | 0.256 | 0.04 | 0.315 | 0.01 | 0.129 | 0.31 |
HDAC4 | 0.074 | 0.56 | 0.217 | 0.08 | 0.029 | 0.82 |
HDAC6 | −0.109 | 0.39 | −0.228 | 0.07 | 0.017 | 0.89 |
HDAC7 | 0.329 | 0.01 | 0.395 | 0.001 | 0.260 | 0.04 |
HDAC8 | 0.350 | 0.005 | 0.429 | <0.001 | 0.241 | 0.05 |
HDAC9 | −0.136 | 0.28 | −0.168 | 0.18 | −0.034 | 0.79 |
HDAC11 | −0.259 | 0.04 | −0.254 | 0.04 | −0.415 | 0.001 |
CD3E | CD8A | CD68 | ||||
---|---|---|---|---|---|---|
R | P | R | P | R | P | |
HDAC1 | 0.409 | <0.001 | 0.446 | <0.001 | −0.124 | 0.27 |
HDAC2 | −0.329 | 0.003 | −0.143 | 0.20 | −0.445 | <0.001 |
HDAC3 | 0.323 | 0.003 | 0.373 | 0.001 | 0.201 | 0.07 |
HDAC4 | 0.076 | 0.50 | 0.229 | 0.04 | 0.076 | 0.50 |
HDAC6 | −0.211 | 0.06 | −0.270 | 0.01 | 0.074 | 0.51 |
HDAC7 | 0.003 | 0.98 | −0.089 | 0.43 | 0.060 | 0.59 |
HDAC8 | 0.364 | 0.001 | 0.478 | <0.001 | −0.202 | 0.07 |
HDAC9 | −0.098 | 0.39 | 0.020 | 0.86 | −0.396 | <0.001 |
HDAC11 | −0.339 | 0.002 | −0.452 | <0.001 | −0.169 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souri, Z.; Jochemsen, A.G.; Wierenga, A.P.A.; Kroes, W.G.M.; Verdijk, R.M.; van der Velden, P.A.; Luyten, G.P.M.; Jager, M.J. Expression of HDACs 1, 3 and 8 Is Upregulated in the Presence of Infiltrating Lymphocytes in Uveal Melanoma. Cancers 2021, 13, 4146. https://doi.org/10.3390/cancers13164146
Souri Z, Jochemsen AG, Wierenga APA, Kroes WGM, Verdijk RM, van der Velden PA, Luyten GPM, Jager MJ. Expression of HDACs 1, 3 and 8 Is Upregulated in the Presence of Infiltrating Lymphocytes in Uveal Melanoma. Cancers. 2021; 13(16):4146. https://doi.org/10.3390/cancers13164146
Chicago/Turabian StyleSouri, Zahra, Aart G. Jochemsen, Annemijn P. A. Wierenga, Wilma G. M. Kroes, Rob M. Verdijk, Pieter A. van der Velden, Gregorius P. M. Luyten, and Martine J. Jager. 2021. "Expression of HDACs 1, 3 and 8 Is Upregulated in the Presence of Infiltrating Lymphocytes in Uveal Melanoma" Cancers 13, no. 16: 4146. https://doi.org/10.3390/cancers13164146
APA StyleSouri, Z., Jochemsen, A. G., Wierenga, A. P. A., Kroes, W. G. M., Verdijk, R. M., van der Velden, P. A., Luyten, G. P. M., & Jager, M. J. (2021). Expression of HDACs 1, 3 and 8 Is Upregulated in the Presence of Infiltrating Lymphocytes in Uveal Melanoma. Cancers, 13(16), 4146. https://doi.org/10.3390/cancers13164146