A Review on the Current Treatment Paradigm in High-Risk Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Advances in Radiotherapy
4. Systemic Therapy for High-Risk Prostate Cancer
5. Importance of New Imaging Modalities and Molecular Imaging
6. Optimizing Local Therapy: Surgery as Part of a Multi-Modal Treatment
7. Personalization of Therapy
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cooperberg, M.R.; Cowan, J.; Broering, J.M.; Carroll, P.R. High-risk prostate cancer in the United States, 1990–2007. World J. Urol. 2008, 26, 211–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. J. Am. Med. Assoc. 1998, 280, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Morgan, S.C. Who dies from prostate cancer? An analysis of the surveillance, epidemiology and end results database. Clin. Oncol. 2019, 31, 630–636. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology—Prostate Cancer. 2020. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1459 (accessed on 6 August 2021).
- Mckay, R.R.; Feng, F.Y.; Wang, A.Y.; Wallis, C.J.D.; Moses, K.A. Recent advances in the management of high-risk localized prostate cancer: Local therapy, systemic therapy, and biomarkers to guide treatment decisions. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, e241–e252. [Google Scholar] [CrossRef] [PubMed]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Liu, Y.; Chen, M.; Guo, P.; Li, K. Efficacy and toxicity of external-beam radiation therapy for localised prostate cancer: A network meta-analysis. Br. J. Cancer 2014, 110, 2396–2404. [Google Scholar] [CrossRef] [Green Version]
- Morris, W.J.; Tyldesley, S.; Rodda, S.; Halperin, R.; Pai, H.; Mckenzie, M.; Duncan, G.; Morton, G.; Hamm, J.; Murray, N. Androgen suppression combined with elective nodal and dose escalated radiation therapy (the ASCENDE-RT trial): An analysis of survival endpoints for a randomized trial comparing a low-dose-rate brachytherapy boost to a dose-escalated external beam boost. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 275–285. [Google Scholar] [CrossRef]
- Denham, J.W.; Joseph, D.; Lamb, D.S.; Spry, N.A.; Duchesne, G.; Matthews, J.; Atkinson, C.; Tai, K.; Christie, D.; Kenny, L.; et al. Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): 10-year results from a randomised, phase 3. Lancet Oncol. 2018, 20, 267–281. [Google Scholar] [CrossRef]
- Pollack, A.; Zagars, G.K.; Starkschall, G.S.; Antolak, J.A.; Lee, J.J.; Huang, E.; von Eschenbach, A.C.; Kuban, D.A.; Rosen, I. Prostate cancer radiation dose response: Results of the M. D. Anderson phase III randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 1097–1105. [Google Scholar] [CrossRef]
- Dearnaley, D.P.; Sydes, M.R.; Graham, J.D.; Aird, E.G.; Bottomley, D.; Cowan, R.A.; Huddart, R.A.; Jose, C.C.; Matthews, J.H.L.; Millar, J.; et al. Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: First results from the MRC RT01 randomised controlled trial. Lancet Oncol. 2007, 8, 475–487. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Fuks, Z.; Hunt, M.; Lee, H.J.; Lombardi, D.; Ling, C.C.; Reuter, V.E.; Venkatraman, E.S.; Leibel, S.A. High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcomes of localized prostate cancer. J. Urol. 2001, 166, 876–881. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Kollmeier, M.; Cox, B.; Fidaleo, A.; Sperling, D.; Pei, X.; Carver, B.; Coleman, J.; Lovelock, M.; Hunt, M. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Kok, D.; Gill, S.; Bressel, M.; Byrne, K.; Kron, T.; Fox, C.; Duchesne, G.; Tai, K.H.; Foroudi, F. Late toxicity and biochemical control in 554 prostate cancer patients treated with and without dose escalated image guided radiotherapy. Radiother. Oncol. 2013, 107, 140–146. [Google Scholar] [CrossRef] [PubMed]
- de Crevoisier, R.; Bayar, M.A.; Pommier, P.; Muracciole, X.; Pêne, F.; Dudouet, P.; Latorzeff, I.; Beckendorf, V.; Bachaud, J.M.; Laplanche, A.; et al. Daily versus weekly prostate cancer image guided radiation therapy: Phase 3 multicenter randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1420–1429. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Reuter, V.E.; Fuks, Z.; Scardino, P.; Shippy, A. Influence of local tumor control on distant metastases and cancer related mortality after external beam radiotherapy for prostate cancer. J. Urol. 2008, 179, 1368–1373. [Google Scholar] [CrossRef] [Green Version]
- Rodda, S.; Tyldesley, S.; Morris, W.J.; Keyes, M.; Halperin, R.; Pai, H.; Mckenzie, M.; Duncan, G.; Morton, G.; Hamm, J.; et al. ASCENDE-RT: An analysis of treatment-related morbidity for a randomized trial comparing a low-dose-rate brachytherapy boost with a dose-escalated external beam boost for high- and intermediate-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Tyldesley, S.; Pai, H.H.; McKenzie, M.R.; Halperin, R.M.; Duncan, G.G.; Morton, G.; Keyes, M.; Hamm, J.; Morris, W.J. An updated analysis of survival endpoints for ASCENDE-RT, a randomized trial comparing a low-dose-rate brachytherapy boost to a dose-escalated external beam boost for high- and intermediate-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, S62. [Google Scholar] [CrossRef]
- Joseph, D.; Denham, J.W.; Steigler, A.; Lamb, D.S.; Spry, N.A.; Stanley, J.; Urol, F.; Shannon, T.; Urol, F.; Duchesne, G.; et al. Radiation dose escalation or longer androgen suppression to prevent distant progression in men with locally advanced prostate cancer: 10-year data from the TROG 03.04 RADAR trial. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 693–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bittner, N.; Merrick, G.S.; Butler, W.M.; Galbreath, R.W.; Lief, J.; Adamovich, E.; Wallner, K.E. Long-term outcome for very high-risk prostate cancer treated primarily with a triple modality approach to include permanent interstitial brachytherapy. Brachytherapy 2012, 11, 250–255. [Google Scholar] [CrossRef]
- Kerkmeijer, L.G.W.; Groen, V.H.; Pos, F.J.; Haustermans, K.; Monninkhof, E.M.; Smeenk, R.J.; Kunze-Busch, M.; De Boer, J.C.J.; Van Der Voort Van Zijp, J.; van Vulpen, M.; et al. Focal boost to the intraprostatic tumor in external beam radiotherapy for patients with localized prostate cancer: Results from the FLAME randomized phase III trial. J. Clin. Oncol. 2021, 39, 787–796. [Google Scholar] [CrossRef]
- Menard, C.; Delouya, G.; Wong, P.; Beauchemin, M.C.; Barkati, M.; Taussky, D.; Duplan, D., Jr.; Igidbashian, L.; Mok, G.; Clavel, S.; et al. Randomized controlled trial of PSMA PET/CT guided intensification of radiotherapy for prostate cancer: Detection rates and impact on radiotherapeutic management. Radiat. Oncol. Biol. 2020, 108, S18. [Google Scholar] [CrossRef]
- Murray, J.R.; Tree, A.C.; Alexander, E.J.; Sohaib, A.; Hazell, S.; Thomas, K.; Gunapala, R.; Parker, C.C.; Huddart, R.A.; Gao, A.; et al. Standard and hypofractionated dose escalation to intraprostatic tumor nodules in localized prostate cancer: Efficacy and toxicity in the DELINEATE trial. Radiat. Oncol. Biol. 2020, 106, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Kishan, A.U.; Dang, A.; Katz, A.J.; Mantz, C.A.; Collins, S.P.; Aghdam, N.; Chu, F.; Kaplan, I.D.; Appelbaum, L.; Fuller, D.B.; et al. Long-term outcomes of stereotactic body radiotherapy for low-risk and intermediate-risk prostate cancer. JAMA Netw Open. 2019, 2, e188006. [Google Scholar] [CrossRef] [Green Version]
- Jackson, W.C.; Silva, J.; Hartman, H.E.; Dess, R.T.; Kishan, A.U.; Beeler, W.H.; Gharzai, L.A.; Jaworski, E.M.; Mehra, R.; Hearn, J.W.D.; et al. Stereotactic body radiation therapy for localized prostate cancer: A systematic review and meta-analysis of over 6000 patients treated on prospective studies. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 778–789. [Google Scholar] [CrossRef] [Green Version]
- Milecki, P.I.; Antczak, A.; Milecki, T.; Gluszak, P.; Piotrowski, T.G.; Rucinska, A.; Malicki, J. Ultra-hypofractionated versus conventionally fractionated radiation therapy boost for patients with high-risk, localized prostate cancer: A 5-year results from randomized HYPO-PROST trial. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, S62–S63. [Google Scholar] [CrossRef]
- Widmark, A.; Gunnlaugsson, A.; Beckman, L.; Thellenberg-Karlsson, C.; Hoyer, M.; Lagerlund, M.; Kindblom, J.; Ginman, C.; Johansson, B.; Björnlinger, K.; et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet 2019, 394, 385–395. [Google Scholar] [CrossRef]
- Pommier, P.; Chabaud, S.; Lagrange, J.L.; Richaud, P.; Le Prise, E.; Wagner, J.P.; Azria, D.; Beckendorf, V.; Suchaud, J.P.; Bernier, V.; et al. Is there a role for pelvic irradiation in localized prostate adenocarcinoma? Update of the long-term survival results of the GETUG-01 randomized study. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Roach, M.; Moughan, J.; Lawton, C.A.F.; Dicker, A.P.; Zeitzer, K.L.; Gore, E.M.; Kwok, Y.; Seider, M.J.; Hsu, I.C.; Hartford, A.C.; et al. Sequence of hormonal therapy and radiotherapy field size in unfavourable, localised prostate cancer (NRG/RTOG 9413): Long-term results of a randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1504–1515. [Google Scholar] [CrossRef]
- Pollack, A.; Karrison, T.G.; Balogh, A.G.; Low, D.; Bruner, D.W.; Wefel, J.S.; Gomella, L.G.; Vigneault, E.; Michalski, J.M.; Angyalfi, S.; et al. Short term androgen deprivation therapy without or with pelvic lymph node treatment added to prostate bed only salvage radiotherapy: The NRG oncology/RTOG 0534 SPPORT trial. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1605. [Google Scholar] [CrossRef]
- Murthy, V.; Maitre, P.; Kannan, S.; Panigrahi, G.; Krishnatry, R.; Bakshi, G.; Prakash, G.; Pal, M.; Menon, S.; Phurailatpam, R.; et al. Prostate-only versus whole-pelvic radiation therapy in high-risk and very high-risk prostate cancer (POP-RT): Outcomes from phase III randomized controlled trial. J. Clin. Oncol. 2021, 39, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Bolla, M.; de Reijke, T.M.; Van Tienhoven, G.; Oddens, J.; Poortmans, P.M.P.; Gez, E.; Kil, P.; Akdas, A.; Soete, G.; Kariakine, O.; et al. Duration of androgen suppression in the treatment of prostate cancer. N. Engl. J. Med. 2009, 360, 2516–2527. [Google Scholar] [CrossRef]
- Lawton, C.A.F.; Lin, X.; Hanks, G.E.; Lepor, H.; Grignon, D.J.; Brereton, H.D.; Bedi, M.; Rosenthal, S.A.; Zeitzer, K.L.; Venkatesan, V.M.; et al. Duration of androgen deprivation in locally advanced prostate cancer: Long-term update of NRG oncology RTOG 9202. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 296–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabid, A.; Carrier, N.; Martin, A.G.; Bahary, J.P.; Lemaire, C.; Vass, S.; Bahoric, B.; Archambault, R.; Vincent, F.; Bettahar, R.; et al. Duration of androgen deprivation therapy in high-risk prostate cancer: A randomized phase III trial. Eur. Urol. 2018, 74, 432–441. [Google Scholar] [CrossRef]
- Crook, J.M.; O’Callaghan, C.J.; Duncan, G.; Dearnaley, D.P.; Higano, C.S.; Horwitz, E.M.; Frymire, E.; Malone, S.; Chin, J.; Nabid, A.; et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N. Engl. J. Med. 2012, 367, 895–903. [Google Scholar] [CrossRef] [Green Version]
- Malone, S.; Roy, S.; Eapen, L.; Choan, E.; MacRae, R.; Perry, G.; Bowen, J.; Samant, R.; Morgan, S.; Craig, J.; et al. Sequencing of androgen-deprivation therapy with external-beam radiotherapy in localized prostate cancer: A phase III randomized controlled trial. J. Clin. Oncol. 2020, 38, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Spratt, D.E.; Malone, S.; Roy, S.; Grimes, S.; Eapen, L.; Morgan, S.C.; Malone, J.; Craig, J.; Dess, R.T.; Jackson, W.C.; et al. Prostate radiotherapy with adjuvant androgen deprivation therapy (ADT) improves metastasis-free survival compared to neoadjuvant ADT: An individual patient meta-analysis. J. Clin. Oncol. 2021, 39, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Grimes, S.; Morgan, S.C.; Eapen, L.; Malone, J.; Craig, J.; Spratt, D.E.; Malone, S. Patient-reported outcomes from a phase 3 randomized controlled trial exploring optimal sequencing of short-term androgen deprivation therapy with prostate radiation therapy in localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1101–1113. [Google Scholar] [CrossRef]
- Jackson, W.C.; Hartman, H.E.; Dess, R.T.; Birer, S.R.; Soni, P.D.; Hearn, J.W.D.; Reichert, Z.R.; Kishan, A.U.; Mahal, B.A.; Zumsteg, Z.S.; et al. Addition of androgen-deprivation therapy or brachytherapy boost to external beam radiotherapy for localized prostate cancer: A network meta-analysis of randomized trials. J. Clin. Oncol. 2020, 38, 3024–3031. [Google Scholar] [CrossRef]
- Zapatero, A.; Guerrero, A.; Maldonado, X.; Alvarez, A.; Gonzalez, C.; Segundo, S.; Angeles, M.; Rodríguez, C.; Macias, V.; Olive, A.P.; et al. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): A randomised, controlled, phase 3 trial. Lancet Oncol. 2015, 16, 320–327. [Google Scholar] [CrossRef]
- Bolla, M.; Maingon, P.; Carrie, C.; Villa, S.; Kitsios, P.; Poortmans, P.M.P.; Sundar, S.; van der Steen-Banasik, E.M.; Armstrong, J.; Bosset, J.; et al. Short androgen suppression and radiation dose escalation for intermediate- and high-risk localized prostate cancer: Results of EORTC trial 22991. J. Clin. Oncol. 2016, 34, 1748–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, N.W.; Ali, A.; Ingleby, F.C.; Hoyle, A.; Amos, C.L.; Attard, G.; Brawley, C.D.; Calvert, J.; Chowdhury, S.; Cook, A.; et al. Addition of docetaxel to hormonal therapy in low- and high-burden metastatic hormone sensitive prostate cancer: Long-term survival results from the STAMPEDE trial. Ann. Oncol. 2019, 30, 1992–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoyle, A.P.; Ali, A.; James, N.D.; Cook, A.; Parker, C.C.; de Bono, J.S.; Attard, G.; Chowdhury, S.; Cross, W.R.; Dearnaley, D.P.; et al. Abiraterone in “high-” and “low-risk” metastatic hormone-sensitive prostate cancer (figure presented). Eur. Urol. 2019, 76, 719–728. [Google Scholar] [CrossRef] [Green Version]
- Chi, K.N.; Chowdhury, S.; Bjartell, A.; Chung, B.H.; Pereira de Santana Gomes, A.J.; Given, R.; Juárez, A.; Merseburger, A.S.; Özgüroğlu, M.; Uemura, H.; et al. Apalutamide in Patients With Metastatic Castration-Sensitive Prostate Cancer: Final Survival Analysis of the Randomized, Double-Blind, Phase III TITAN Study. J. Clin. Oncol. 2021, 39, 2294–2303. [Google Scholar] [CrossRef]
- Sweeney, C.; Martin, A.J.; Zielinks, R.R.; Thomson, A.; Tan, T.H.; Sandhu, S.K.; Neil, R.M.; Pook, D.W.; Parnis, F.; North, S.A.; et al. Overall survival (OS) results of a phase III randomized trial of standard-of-care therapy with or without enzalutamide for metastatic hormone-sensitive prostate cancer (mHSPC): ENZAMET (ANZUP 1304), an ANZUP-led international cooperative group trial. J. Clin. Oncol. 2019, 37, LBA2. [Google Scholar] [CrossRef]
- Armstrong, A.J.; Szmulewitz, R.Z.; Petrylak, D.P.; Holzbeierlein, J.; Villers, A.; Azad, A.; Alcaraz, A.; Alekseev, B.; Iguchi, T.; Shore, N.D.; et al. Arches: A randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer. J. Clin. Oncol. 2019, 37, 2974–2986. [Google Scholar] [CrossRef]
- Kyriakopoulos, C.E.; Chen, Y.H.; Carducci, M.A.; Liu, G.; Jarrard, D.F.; Hahn, N.M.; Shevrin, D.H.; Dreicer, R.; Hussain, M.; Eisenberger, M.; et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: Long-term survival analysis of the randomized phase III E3805 chaarted trial. J. Clin. Oncol. 2018, 36, 1080–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fizazi, K.; Tran, N.P.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Özgüroğlu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; et al. Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): Final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol. 2019, 20, 686–700. [Google Scholar] [CrossRef]
- Fizazi, K.; Shore, N.; Tammela, T.L.; Ulys, A.; Vjaters, E.; Polyakov, S.; Jievaltas, M.; Luz, M.; Alekseev, B.; Kuss, I.; et al. Nonmetastatic, castration-resistant prostate cancer and survival with darolutamide. N. Engl. J. Med. 2020, 383, 1040–1049. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Fizazi, K.; Saad, F.; Shore, N.D.; De Giorgi, U.; Penson, D.F.; Ferreira, U.; Efstathiou, E.; Madziarska, K.; Kolinsky, M.P.; et al. Enzalutamide and survival in nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 2020, 382, 2197–2206. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Saad, F.; Chowdhury, S.; Oudard, S.; Hadaschik, B.A.; Graff, J.N.; Olmos, D.; Mainwaring, P.N.; Lee, J.Y.; Uemura, H.; et al. Apalutamide and overall survival in prostate cancer. Eur. Urol. 2021, 79, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, S.A.; Hu, C.; Sartor, O.; Gomella, L.G.; Amin, M.B.; Purdy, J.; Michalski, J.M.; Garzotto, M.G.; Pervez, N.; Balogh, A.G.; et al. Effect of chemotherapy with docetaxel with androgen suppression and radiotherapy for localized high-risk prostate cancer: The randomized phase III NRG oncology RTOG 0521 trial. J. Clin. Oncol. 2019, 37, 1159–1168. [Google Scholar] [CrossRef]
- Fizazi, K.; Carmel, A.; Joly, F.; Delva, R.; Gravis, G.; Rolland, F.; Priou, F.; Ferrero, J.; Houede, N.; Mourey, L.; et al. Updated results of GETUG-12, a phase III trial of docetaxel-based chemotherapy in high-risk localized prostate cancer, with a 12-year follow-up. Ann. Oncol. 2018, 29, VIII271. [Google Scholar] [CrossRef]
- James, N.D.; Sydes, M.R.; Clarke, N.W.; Mason, M.D.; Dearnaley, D.P.; Spears, M.R.; Ritchie, A.W.S.; Parker, C.C.; Russell, J.M.; Attard, G.; et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016, 387, 1163–1177. [Google Scholar] [CrossRef] [Green Version]
- Vale, C.L.; Burdett, S.; Rydzewska, L.H.M.; Albiges, L.; Clarke, N.W.; Fisher, D.; Fizazi, K.; Gravis, G.; James, N.D.; Mason, M.D.; et al. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: A systematic review and meta-analyses of aggregate data. Lancet Oncol. 2016, 17, 243–256. [Google Scholar] [CrossRef] [Green Version]
- James, N.D.; de Bono, J.S.; Spears, M.R.; Clarke, N.W.; Mason, M.D.; Dearnaley, D.P.; Ritchie, A.W.S.; Amos, C.L.; Gilson, C.; Jones, R.J.; et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 2017, 377, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Koontz, B.F.; Hoffman, K.E.; Halabi, S.; Healy, P.; Anand, M.; George, D.J.; Harrison, M.R.; Zhang, T.; Berry, W.R.; Corn, P.G.; et al. Combination of radiation therapy and short-term androgen blockade with abiraterone acetate plus prednisone for men with high- and intermediate-risk localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Sandler, H.M.; McKenzie, M.R.; Tombal, B.F.; Baskin-Bey, E.; Freedland, S.J.; Roach, M.; Widmark, A.; Bossi, A.; Dicker, A.; Wiegel, T.; et al. ATLAS: A randomized, double-blind, placebo-controlled, phase 3 trial of apalutamide (ARN-509) in patients with high-risk localized or locally advanced prostate cancer receiving primary radiation therapy. J. Clin. Oncol. 2016, 34, TPS5087. [Google Scholar] [CrossRef]
- Williams, S.; Davis, I.D.; Sweeney, C.; Stockler, M.R.; Martin, A.J.; Hague, W.; Coskinas, X.; Yip, S.; Tu, E.; Lawrence, N.J.; et al. Randomised phase III trial of enzalutamide in androgen deprivation therapy (ADT) with radiation therapy for clinically localised, high-risk or node-positive prostate cancer: ENZARAD (ANZUP 1303). J. Clin. Oncol. 2017, 35, TPS5096. [Google Scholar] [CrossRef]
- Niazi, T.; Williams, S.; Davis, I.D.; Stockler, M.R.; Martin, A.J.; Hague, W.; Bracken, K.; Gorzeman, M.; Roncolato, F.; Yip, S.; et al. DASL-HiCAP (ANZUP1801): The impact of darolutamide on standard therapy for localized very high-risk cancer of the prostate—A randomized phase III double-blind, placebo-controlled trial of adding darolutamide to androgen deprivation therapy and definitive. J. Clin. Oncol. 2020, 38, TPS385. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Piulats, J.M.; Gross-goupil, M.; Goh, J.; Ojamaa, K.; Holmes, C.J.; Vaishampayhan, U.; Berger, R.; Sezer, A.; Alanko, T.; et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: Multicohort, open-label phase II KEYNOTE-199 study. J. Clin. Oncol. 2019, 38, 17–25. [Google Scholar] [CrossRef]
- de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef]
- Asim, M.; Tarish, F.; Zecchini, H.I.; Sanjiv, K.; Gelali, E.; Massie, C.E.; Baridi, A.; Warren, A.Y.; Zhao, W.; Ogris, C.; et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nat. Commun. 2017, 8, 374. [Google Scholar] [CrossRef] [Green Version]
- Castro, E.; Goh, C.; Leongamornlert, D.; Saunders, E.; Tymrakiewicz, M.; Dadaev, T.; Govindasami, K.; Guy, M.; Ellis, S.; Frost, D.; et al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur. Urol. 2015, 68, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Brandao, A.; Paulo, P.; Teixeira, M.R. Hereditary predisposition to prostate cancer: From genetics to clinical implications. Int. J. Mol. Sci. 2020, 21, 5036. [Google Scholar] [CrossRef] [PubMed]
- Moghanaki, D.; Turkbey, B.; Vapiwala, N.; Ehdaie, B.; Frank, S.J.; McLaughlin, P.W.; Harisinghani, M. Advances in prostate cancer magnetic and positron emission tomography-computed tomography for staging and radiotherapy treatment planning. Seminars 2017, 27, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.M.; Rais-Bahrami, S.; Turkbey, B.; George, A.K.; Rothwax, J.; Shakir, N.; Okoro, C.; Rashkolnikov, D.; Parnes, H.L.; Linehan, M.; et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 2015, 313, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Lindenberg, M.L.; Turkbey, B.; Mena, E.; Choyke, P.L. Imaging locally advanced, recurrent, and metastatic prostate cancer: A review. JAMA Oncol. 2017, 3, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Rosenkrantz, A.B.; Shanbhogue, A.K.; Wang, A.; Kong, M.X.; Babb, J.S.; Taneja, S.S. Length of capsular contact for diagnosing extraprostatic extension on prostate MRI: Assessment at an optimal threshold. J. Magn. Reson. Imaging 2016, 43, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef]
- Eiber, M.; Weirich, G.; Holzapfel, K.; Souvatzoglou, M.; Haller, B.; Rauscher, I.; Beer, A.J.; Wester, H.-J.; Gschwend, J.; Schwaiger, M.; et al. Simultaneous 68 Ga-PSMA HBED-CC PET / MRI improves the localization of primary prostate cancer. Eur. Urol. 2016, 70, 829–836. [Google Scholar] [CrossRef]
- Rowe, L.S.; Harmon, S.; Horn, A.; Shankavaram, U.; Roy, S.; Ning, H.; Lindenberg, L.; Mena, E.; Citrin, D.E.; Choyke, P.; et al. Pattern of failure in prostate cancer previously treated with radical prostatectomy and post-operative radiotherapy: A secondary analysis of two prospective studies using novel molecular imaging techniques. Radiat. Oncol. 2021, 16, 32. [Google Scholar] [CrossRef] [PubMed]
- Jani, A.B.; Schreibmann, E.; Goyal, S.; Halkar, R.; Hershatter, B.; Rossi, P.J.; Shelton, J.W.; Patel, P.R.; Xu, K.M.; Goodman, M.; et al. 18F-fluciclovine-PET/CT imaging versus conventional imaging alone to guide postprostatectomy salvage radiotherapy for prostate cancer (EMPIRE-1): A single centre, open-label, phase 2/3 randomised controlled trial. Lancet 2021, 397, 1895–1904. [Google Scholar] [CrossRef]
- Stewart, S.B.; Boorjian, S.A. Radical prostatectomy in high-risk and locally advanced prostate cancer: Mayo Clinic perspective. Urol. Oncol. 2015, 33, 235–244. [Google Scholar] [CrossRef]
- Bastian, P.J.; Boorjian, S.A.; Bossi, A.; Briganti, A.; Heidenreich, A.; Freedland, S.J.; Montorsi, F.; Roach, M.; Schro, F.; Stief, C.G.; et al. High-risk prostate cancer: From definition to contemporary management. Eur. Urol. 2012, 61, 1096–1106. [Google Scholar] [CrossRef]
- Bach, C.; Pisipati, S.; Daneshwar, D.; Wright, M.; Rowe, E.; Gillatt, D.; Persad, R.; Koupparis, A. The status of surgery in the management of high-risk prostate cancer. Nat. Rev. Urol. 2014, 11, 342–351. [Google Scholar] [CrossRef]
- van Poppel, H. Locally advanced and high risk prostate cancer: The best indication for initial radical prostatectomy? Asian J. Urol. 2014, 1, 40–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solberg, A.; Haugen, O.A.; Viset, T.; Bergh, A.; Tasdemir, I.; Ahlgren, G.; Widmark, A.; Angelsen, A. Residual prostate cancer in patients treated with endocrine therapy with or without radical radiotherapy: A side study of the SPCG-7 randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Boorjian, S.A.; Karnes, R.J.; Viterbo, R.; Rangel, L.J.; Bergstralh, E.J.; Horwitz, E.M.; Blute, M.L.; Buyyounouski, M.K. Long-term survival after radical prostatectomy versus external-beam radiotherapy for patients with high-risk prostate cancer. Cancer 2011, 117, 2883–2891. [Google Scholar] [CrossRef]
- Kishan, A.U.; Shaikh, T.; Wang, P.; Reiter, R.E.; Said, J.; Raghavan, G.; Nickols, N.G.; Aronson, W.J.; Sadeghi, A.; Kamrava, M.; et al. Clinical outcomes for patients with gleason score 9–10 prostate adenocarcinoma treated with radiotherapy or radical prostatectomy: A multi-institutional comparative analysis. Eur. Urol. 2017, 71, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Westover, K.; Chen, M.; Moul, J.; Robertson, C.; Polascik, T.; Dosoretz, D.; Katin, M.; Salenius, S.; D’Amico, A.V. Radical prostatectomy vs radiation therapy and androgen-suppression therapy in high-risk prostate cancer. Br. J. Urol. Int. 2012, 110, 1116–1121. [Google Scholar] [CrossRef]
- Johnstone, P.A.S.; Ward, K.C.; Goodman, M.; Assikis, V.; Petros, J.A. Radical Prostatectomy for clinical T4 prostate cancer. Cancer 2006, 106, 2603–2609. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.H.; Badrinath, K.; Chen, Z.; Schumacher, F.; Kutikov, A.; Smaldone, M.; Abouassaly, R.; Khanna, A.; Kim, S.P. Comparative effectiveness of local and systemic therapy for T4 prostate Cancer. Urology 2018, 120, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Eastham, J.; Heller, G.; Halabi, S.; Monk, P.; Clinton, S.K.; Zelig, R.; Szmulewitz, J.C.; Gleave, M.; Evans, C.P.; Hillman, D.W.; et al. CALGB 90203 (Alliance): Radical prostatectomy (RP) with or without neoadjuvant chemohormonal therapy (CHT) in men with clinically localized, high-risk prostate cancer (CLHRPC). J. Clin. Oncol. 2019, 37, 5079. [Google Scholar] [CrossRef]
- Lestingi, J.F.P.; Guglielmetti, G.B.; Trinh, Q.D.; Coelho, R.F.; Pontes, J.; Bastos, D.A.; Cordeiro, M.D.; Sarkis, A.S.; Faraj, S.F.; Mitre, A.I.; et al. Extended versus limited pelvic lymph node dissection during radical prostatectomy for intermediate- and high-risk prostate cancer: Early oncological outcomes from a randomized phase 3 trial. Eur. Urol. 2021, 79, 595–604. [Google Scholar] [CrossRef]
- Stranne, J.; Brasso, K.; Brennhovd, B.; Johansson, E.; Jäderling, F.; Kouri, M.; Lilleby, W.; Petersen, P.M.; Mirtti, T.; Pettersson, A.; et al. SPCG-15: A prospective randomized study comparing primary radical prostatectomy and primary radiotherapy plus androgen deprivation therapy for locally advanced prostate cancer. Scand. J. Urol. 2018, 52, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Montori, V.M.; Brito, J.P.; Murad, M.H. The optimal practice of evidence-based medicine incorporating patient preferences in practice guidelines. JAMA 2013, 310, 2503–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Weijden, T.; Légaré, F.; Boivin, A.; Burgers, J.S.; Van Veenendaal, H.; Stiggelbout, A.M.; Faber, M.; Elwyn, G. How to integrate individual patient values and preferences in clinical practice guidelines? Research protocol. Implement. Sci. 2010, 5, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Spratt, D.E.; Zhang, J.; Santiago-Jiménez, M.; Dess, R.T.; Davis, J.W.; Den, R.B.; Dicker, A.P.; Kane, C.J.; Pollack, A.; Stoyanova, R.; et al. Development and validation of a novel integrated clinical-genomic risk group classification for localized prostate cancer. J. Clin. Oncol. 2018, 36, 581–590. [Google Scholar] [CrossRef]
- Erho, N.; Crisan, A.; Vergara, I.A.; Mitra, A.P.; Ghadessi, M.; Buerki, C.; Bergstralh, E.J.; Kollmeyer, T.; Fink, S.; Haddad, Z.; et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE 2013, 8, e66855. [Google Scholar] [CrossRef] [Green Version]
- Jairath, N.K.; Dal Pra, A.; Vince, R.; Dess, R.T.; Jackson, W.C.; Tosoian, J.J.; McBride, S.M.; Zhao, S.G.; Berlin, A.; Mahal, B.A.; et al. A systematic review of the evidence for the decipher genomic classifier in prostate cancer. Eur. Urol. 2020, 79, 374–383. [Google Scholar] [CrossRef]
- Myriad Genetics, Inc. Prolaris Clinical Summary; Myriad Genetics, Inc.: Salt Lake City, UT, USA, 2014. [Google Scholar]
- Tward, J.D.; Schlomm, T.; Bardot, S.; Freedland, S.J.; Lenz, L.; Cohen, T.; Stone, S.; Bishoff, J. Ability of the combined cinical cell-cycle risk score to identify patients that benefit from multi versus single modality therapy in NCCN intermediate and high-risk prostate cancer. J. Clin. Oncol. 2020, 38, 346. [Google Scholar] [CrossRef]
- Klein, E.A.; Cooperberg, M.R.; Magi-galluzzi, C.; Simko, J.P.; Falzarano, S.M.; Maddala, T.; Chan, J.M.; Li, J.; Cowan, J.E.; Tsiatis, A.C.; et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur. Urol. 2014, 66, 550–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.W.; Zheng, Y.; Mckenney, J.K.; Brown, M.D.; Lu, R.; Crager, M.; Boyer, H.; Tretiakova, M.; Brooks, J.D.; Dash, A.; et al. Original reports abstract 17-gene genomic prostate score test results in the canary prostate active surveillance study (PASS) cohort. J. Clin. Oncol. 2020, 38, 1549–1558. [Google Scholar] [CrossRef]
- Mckiernan, J.; Donovan, M.J.; Neill, V.O.; Bentink, S.; Noerholm, M.; Belzer, S.; Skog, J.; Kattan, M.W.; Partin, A.; Andriole, G.; et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2016, 2, 882–889. [Google Scholar] [CrossRef] [Green Version]
- Mckiernan, J.; Donovan, M.J.; Margolis, E.; Partin, A.; Carter, B.; Brown, G.; Torkler, P.; Noerholm, M.; Skog, J.; Shore, N.; et al. Prostate cancer a prospective adaptive utility trial to validate performance of a novel urine exosome gene expression assay to predict high-grade prostate cancer in patients with prostate-specific antigen 2–10 ng/mL at initial biopsy. Eur. Urol. 2018, 74, 731–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blume-Jensen, P.; Berman, D.M.; Rimm, D.L.; Shipitsin, M.; Putzi, M.; Nifong, T.P.; Small, C.; Choudhury, S.; Capela, T.; Coupal, L.; et al. Development and clinical validation of an in situ biopsy-based multimarker assay for risk stratifi cation in prostate cancer. Clin. Cancer Res. 2015, 21, 2591–2600. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.L.; Sartor, A.O. Parallel Phase III Randomized Trials for High Risk Prostate Cancer Evaluating De-Intensification for Lower Genomic Risk and Intensification of Concurrent Therapy for Higher Genomic Risk with Radiation (Predict-RT*) *Prostate RNA Expression/Decipher to Individualize Concurrent Therapy with Radiation. Available online: https://www.nrgoncology.org/Clinical-Trials/Protocol/nrg-gu009-1?filter=nrg-gu009-1 (accessed on 4 August 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgess, L.; Roy, S.; Morgan, S.; Malone, S. A Review on the Current Treatment Paradigm in High-Risk Prostate Cancer. Cancers 2021, 13, 4257. https://doi.org/10.3390/cancers13174257
Burgess L, Roy S, Morgan S, Malone S. A Review on the Current Treatment Paradigm in High-Risk Prostate Cancer. Cancers. 2021; 13(17):4257. https://doi.org/10.3390/cancers13174257
Chicago/Turabian StyleBurgess, Laura, Soumyajit Roy, Scott Morgan, and Shawn Malone. 2021. "A Review on the Current Treatment Paradigm in High-Risk Prostate Cancer" Cancers 13, no. 17: 4257. https://doi.org/10.3390/cancers13174257
APA StyleBurgess, L., Roy, S., Morgan, S., & Malone, S. (2021). A Review on the Current Treatment Paradigm in High-Risk Prostate Cancer. Cancers, 13(17), 4257. https://doi.org/10.3390/cancers13174257