A Clinical Update on the Prognostic Effect of microRNA Biomarkers for Survival Outcome in Nasopharyngeal Carcinoma: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Rationale
2.1. The Significance of miRNA
2.2. How Will the Research Deal with the Problem?
2.3. What Effect Will It Have?
3. Methods
3.1. Search Strategy
3.2. Selection Criteria
3.2.1. Inclusion Criteria
- (1)
- Research was published from 2018 through 2020.
- (2)
- Platforms for miRNA profiling that have been reported in several studies.
- (3)
- Studies that explored the prognosis of miRNA in NPC patients
- (4)
- Research into the resistance to a particular type of treatment.
- (5)
- The study used clinical patient data.
- (6)
- Studies in which OS, PFS, DFS, distant metastasis-free survival (DMFS), or recurrence-free survival (RFS) were elucidated by Hazard Ratio (HR) and 95 percent confidence intervals (95 percent CI) can be calculated numerically or using Kaplan-Meier curves.
- (7)
- PRISMA standards for systematic review and meta-analysis were followed in these studies.
3.2.2. Exclusion Criteria
- (1)
- Manuscripts written in a language other than English.
- (2)
- Lack of patient survival data.
- (3)
- Studies using duplicated data.
- (4)
- Studies that included non-human data
- (5)
- Unpublished materials, where conference proceedings, incomprehensible data, or theses are all examples of unpublished materials.
- (6)
- Fact sheets, cohort studies, intervention studies, reviews, case-control studies, laboratory investigations, letters to editors, and non-human studies are some of the types of research that are available and uneligible for inclusion.
3.3. Data Extraction and Management
4. Results
4.1. Study Selection
4.2. Study Characteristics
4.3. Comprehensive Meta-Analysis
4.4. Does the Expression of miRNAs Influence the Survival of NPC Patients?
4.5. How Much Does the Extent of the Estimated Effect Size of Npc Patients Vary across the Included Studies?
4.6. Is There a Difference in the Extent of the Effect Based on the Subgroup of NPC Patients Who Survive?
4.7. Publication Bias and SensitivityAnalysis – Funnel Plot
4.6.1. Orwin’s Fail-Safe N Tests
4.6.2. Begg and Mazumdar Rank Correlation Test
4.6.3. Egger’s Test of the Intercept
4.6.4. Trim and Fill at Duval and Tweedie’s
5. Discussion
5.1. Strengths
5.2. Limitations
6. Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, L.; Sun, L.; Zhao, Z.; Chao, Y.; Sun, Z.; Li, H.; Luo, B. Sequence variation of Epstein-Barr virus (EBV) BCRF1 in lymphomas in non-endemic areas of nasopharyngeal carcinoma. Arch. Virol. 2015, 160, 441–445. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.-R.; Zheng, R.-S.; Zhang, S.-W.; Liang, Z.-H.; Li, Z.-M.; Chen, W.-Q. Nasopharyngeal carcinoma incidence and mortality in China, 2013. Chin. J. Cancer 2017, 36, 90. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin 2021, 71, 209–249. [Google Scholar]
- Huang, Z.-L.; Liu, S.; Wang, G.-N.; Zheng, S.-H.; Ding, S.-R.; Tao, Y.-I.; Chen, C.; Liu, S.-R.; Yang, X.; Chang, H. The prognostic significance of PD-L1 and PD-1 expression in patients with nasopharyngeal carcinoma: A systematic review and meta-analysis. Cancer Cell Int. 2019, 19, 141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zong, J.; Lin, S.; Verhoeven, R.J.; Tong, S.; Chen, Y.; Ji, M.; Cheng, W.; Tsao, S.W.; Lung, M. Circulating E pstein–B arr virus micro RNA s mi R-BART7 and mi R-BART13 as biomarkers for nasopharyngeal carcinoma diagnosis and treatment. Int. J. Cancer 2015, 136, E301–E312. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Cui, R.X.; Sun, Y.; Guo, R.; Mao, Y.P.; Tang, L.L.; Jiang, W.; Liu, X.; Cheng, Y.K.; He, Q.M. A four-miRNA signature identified from genome-wide serum miRNA profiling predicts survival in patients with nasopharyngeal carcinoma. Int. J. Cancer 2014, 134, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Claret, F.X.; Wu, W. MicroRNAs as therapeutic targets in nasopharyngeal carcinoma. Front. Oncol. 2019, 9, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, K.J.; Rabinowitz, G.S.; Yario, T.A.; Luna, J.M.; Darnell, R.B.; Steitz, J.A. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J. 2012, 31, 2207–2221. [Google Scholar] [CrossRef]
- Barth, S.; Meister, G.; Grässer, F.A. EBV-encoded miRNAs. Biochim. Biophys. Acta (BBA) Gene Regul. Mechan. 2011, 1809, 631–640. [Google Scholar] [CrossRef]
- Pashaei, E.; Pashaei, E.; Ahmady, M.; Ozen, M.; Aydin, N. Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy. PLoS ONE 2017, 12, e0179543. [Google Scholar] [CrossRef] [Green Version]
- Gasparini, P.; Cascione, L.; Landi, L.; Carasi, S.; Lovat, F.; Tibaldi, C.; Alì, G.; D’Incecco, A.; Minuti, G.; Chella, A. microRNA classifiers are powerful diagnostic/prognostic tools in ALK-, EGFR-, and KRAS-driven lung cancers. Proc. Natl. Acad. Sci. USA 2015, 112, 14924–14929. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Ma, W.; Zeng, Q.; Tan, J.; Cao, K.; Luo, L. Identification of miRNA-Based Signature as a Novel Potential Prognostic Biomarker in Patients with Breast Cancer. Dis. Markers 2019, 2019, 3815952. [Google Scholar] [CrossRef] [PubMed]
- Neagu, M.; Constantin, C.; Cretoiu, S.M.; Zurac, S. miRNAs in the Diagnosis and Prognosis of Skin Cancer. Front. Cell Dev. Biol. 2020, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Nowicka, Z.; Stawiski, K.; Tomasik, B.; Fendler, W. Extracellular miRNAs as Biomarkers of Head and Neck Cancer Progression and Metastasis. Int. J. Mol. Sci. 2019, 20, 4799. [Google Scholar] [CrossRef] [Green Version]
- Kumarasamy, C.; Madhav, M.R.; Sabarimurugan, S.; Krishnan, S.; Baxi, S.; Gupta, A.; Gothandam, K.; Jayaraj, R. Prognostic value of miRNAs in head and neck cancers: A comprehensive systematic and meta-analysis. Cells 2019, 8, 772. [Google Scholar] [CrossRef] [Green Version]
- Falzone, L.; Lupo, G.; La Rosa, G.R.M.; Crimi, S.; Anfuso, C.D.; Salemi, R.; Rapisarda, E.; Libra, M.; Candido, S. Identification of novel microRNAs and their diagnostic and prognostic significance in oral cancer. Cancers 2019, 11, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Tian, L.; Ren, H.; Chen, X.; Wang, Y.; Ge, J.; Wu, S.; Sun, Y.; Liu, M.; Xiao, H. MicroRNA-101 is a potential prognostic indicator of laryngeal squamous cell carcinoma and modulates CDK8. J. Transl. Med. 2015, 13, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, J.J.; Schwartz, C.L.; Higman, M.; Chen, L.; Buxton, A.; Kanakry, J.A.; Kahwash, S.B.; Hutchison, R.E.; Friedman, D.L.; Ambinder, R.F. Epstein-Barr virus DNA in serum as an early prognostic marker in children and adolescents with Hodgkin lymphoma. Blood Adv. 2017, 1, 681–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, P.Y.-K.; Ha, W.-Y.; Lau, C.-C.; Cheung, F.M.-F.; Lee, A.W.-M.; Ng, W.-T.; Ngan, R.K.-C.; Yau, C.-C.; Kwong, D.L.-W.; Lung, H.-L. MicroRNA profiling study reveals miR-150 in association with metastasis in nasopharyngeal carcinoma. Sci. Rep. 2017, 7, 1–11. [Google Scholar]
- Xu, X.; Lu, J.; Wang, F.; Liu, X.; Peng, X.; Yu, B.; Zhao, F.; Li, X. Dynamic changes in plasma MicroRNAs have potential predictive values in monitoring recurrence and metastasis of nasopharyngeal carcinoma. BioMed Res. Int. 2018, 2018, 7329195. [Google Scholar] [CrossRef]
- Spence, T.; Bruce, J.; Yip, K.W.; Liu, F.-F. MicroRNAs in nasopharyngeal carcinoma. Chin. Clin. Oncol. 2016, 5, 17. [Google Scholar] [CrossRef]
- Tulalamba, W.; Janvilisri, T. Nasopharyngeal carcinoma signaling pathway: An update on molecular biomarkers. Int. J. Cell Biol. 2012, 2012, 594681. [Google Scholar] [CrossRef] [Green Version]
- Lubov, J.; Maschietto, M.; Ibrahim, I.; Mlynarek, A.; Hier, M.; Kowalski, L.P.; Alaoui-Jamali, M.A.; da Silva, S.D. Meta-analysis of microRNAs expression in head and neck cancer: Uncovering association with outcome and mechanisms. Oncotarget 2017, 8, 55511–55524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Zhao, L.; Liang, W.; Mao, Z. Identification of microRNAs as diagnostic biomarkers in screening of head and neck cancer: A meta-analysis. Genet. Mol. Res. 2015, 14, 16562–16576. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, L.; Luo, M.; Hu, G.; Mei, Q.; Liu, D.; Long, G.; Hu, G. Pretreatment hematologic markers as prognostic factors in patients with nasopharyngeal carcinoma: Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio. Head Neck 2016, 38, E1332–E1340. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, W.; Zhang, Y.; Xu, L.; Wang, Q. Diagnostic value of circulating microRNAs for nasopharyngeal cancer: A systematic review and meta-analysis. J. Cancer Res. Ther. 2014, 10, 173. [Google Scholar] [CrossRef] [PubMed]
- Ooft, M.L.; Braunius, W.W.; Heus, P.; Stegeman, I.; Van Diest, P.J.; Grolman, W.; Zuur, C.I.; Willems, S.M. Prognostic significance of the EGFR pathway in nasopharyngeal carcinoma: A systematic review and meta-analysis. Biomark. Med. 2015, 9, 997–1010. [Google Scholar] [CrossRef]
- Sabarimurugan, S.; Kumarasamy, C.; Baxi, S.; Devi, A.; Jayaraj, R. Systematic review and meta-analysis of prognostic microRNA biomarkers for survival outcome in nasopharyngeal carcinoma. PLoS ONE 2019, 14, e0209760. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Grp, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement (Reprinted from Annals of Internal Medicine). Phys. Ther. 2009, 89, 873–880. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yin, Y.W.; Zhou, H.; Cao, Y.D. miR-639 is associated with advanced cancer stages and promotes proliferation and migration of nasopharyngeal carcinoma. Oncol. Lett. 2018, 16, 6903–6909. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Du, M.; Zhang, W.; Bai, H.; Yin, L.; Chen, W.; He, X.; Chen, Q. MicroRNA-432 suppresses invasion and migration via E2F3 in nasopharyngeal carcinoma. OncoTargets Ther. 2019, 12, 11271–11280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.; Lv, W.; Wang, S.; He, Q. miR-495 enhances the efficacy of radiotherapy by targeting GRP78 to regulate EMT in nasopharyngeal carcinoma cells. Oncol. Rep. 2018, 40, 1223–1232. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Guo, Q.; Lin, K.; Chen, H.; Chen, Y.; Xu, Y.; Lin, C.; Su, Y.; Chen, Y.; Chen, M. Circulating Epstein-Barr virus microRNAs BART7-3p and BART13-3p as novel biomarkers in nasopharyngeal carcinoma. Cancer Sci. 2020, 111, 1711. [Google Scholar] [CrossRef]
- Lu, J.; Liu, Q.-H.; Wang, F.; Tan, J.-J.; Deng, Y.-Q.; Peng, X.-H.; Liu, X.; Zhang, B.; Xu, X.; Li, X.-P. Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma. J. Exp. Clin. Cancer Res. 2018, 37, 147. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Liao, X.; Yang, Q.; Liu, Y.; Peng, Y.; Zhong, H.; Yang, J.; Zhang, H.; Yu, Z.; Zuo, Y. MicroRNA-494-3p promotes cell growth, migration, and invasion of nasopharyngeal carcinoma by targeting Sox7. Technol. Cancer Res. Treat. 2018, 17, 1533033818809993. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Fong, A.H.; Liu, N.; Cho, W.C. Molecular subtyping of nasopharyngeal carcinoma (NPC) and a microRNA-based prognostic model for distant metastasis. J. Biomed. Sci. 2018, 25, 16. [Google Scholar] [CrossRef] [Green Version]
- Lian, Y.; Xiong, F.; Yang, L.; Bo, H.; Gong, Z.; Wang, Y.; Wei, F.; Tang, Y.; Li, X.; Liao, Q. Long noncoding RNA AFAP1-AS1 acts as a competing endogenous RNA of miR-423-5p to facilitate nasopharyngeal carcinoma metastasis through regulating the Rho/Rac pathway. J. Exp. Clin. Cancer Res. 2018, 37, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Tan, Z.; Jiang, Y.; Chen, Y.; Chen, Y.; Ling, K. Correlation between the expression of miR150 and FOXO4 and the local recurrence and metastasis of nasopharyngeal carcinoma after intensive radiotherapy. J. BUON 2018, 23, 1671–1678. [Google Scholar]
- Liu, Y.; Zhao, R.; Wei, Y.; Li, M.; Wang, H.; Niu, W.; Zhou, Y.; Qiu, Y.; Fan, S.; Zhan, Y. BRD7 expression and c-Myc activation forms a double-negative feedback loop that controls the cell proliferation and tumor growth of nasopharyngeal carcinoma by targeting oncogenic miR-141. J. Exp. Clin. Cancer Res. 2018, 37, 1–14. [Google Scholar] [CrossRef]
- Tan, G.W.; Sivanesan, V.M.; Abdul Rahman, F.I.; Hassan, F.; Hasbullah, H.H.; Ng, C.C.; Khoo, A.S.B.; Tan, L.P. A novel and non-invasive approach utilising nasal washings for the detection of nasopharyngeal carcinoma. Int. J. Cancer 2019, 145, 2260–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, X.; Zhou, W.; Ye, H.; Li, D.; Chang, A.; Wu, Y.; Zhou, Q. Screening of key miRNAs and evaluation of their diagnostic and prognostic values in nasopharyngeal carcinoma. Oncol. Lett. 2019, 17, 5803–5810. [Google Scholar] [CrossRef] [PubMed]
- Qiang, H.; Zhan, X.; Wang, W.; Cheng, Z.; Ma, S.; Jiang, C. A Study on the Correlations of the miR-31 Expression with the Pathogenesis and Prognosis of Head and Neck Squamous Cell Carcinoma. Cancer Biother. Radiopharm. 2019, 34, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Q.; Guo, L. MicroRNA-122 acts as tumor suppressor by targeting TRIM29 and blocking the activity of PI3K/AKT signaling in nasopharyngeal carcinoma in vitro. Mol. Med. Rep. 2018, 17, 8244–8252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yue, W.; Xie, Y.; Liu, L.; Li, S.; Dang, W.; Xin, S.; Yang, L.; Zhai, X.; Cao, P. The four-microRNA signature identified by bioinformatics analysis predicts the prognosis of nasopharyngeal carcinoma patients. Oncol. Rep. 2019, 42, 1767–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Zheng, K.; Yan, C.; Pan, X.; Liu, Y.; Liu, J.; Wang, F.; Guo, W.; He, X.; Li, J. Genome-wide study of salivary microRNAs as potential noninvasive biomarkers for detection of nasopharyngeal carcinoma. BMC Cancer 2019, 19, 843. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Zhao, Y. microRNA-342-3p targets FOXQ1 to suppress the aggressive phenotype of nasopharyngeal carcinoma cells. BMC Cancer 2019, 19, 104. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Tan, D.; Xiao, J.; Li, Q.; Zhang, X.; Luo, Z. miR-150 contributes to the radioresistance in nasopharyngeal carcinoma cells by targeting glycogen synthase kinase-3β. J. Cancer Res. Ther. 2018, 14, 111. [Google Scholar] [CrossRef]
- Wan, F.-Z.; Chen, K.-H.; Sun, Y.-C.; Chen, X.-C.; Liang, R.-B.; Chen, L.; Zhu, X.-D. Exosomes overexpressing miR-34c inhibit malignant behavior and reverse the radioresistance of nasopharyngeal carcinoma. J. Transl. Med. 2020, 18, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Huang, J.; Wang, G.; Jin, F.; Zheng, J.; Xiao, H.; Lei, L.; Luo, J.; Chen, C. Serum miRNAs, a potential prognosis marker of loco-regionally advanced nasopharyngeal carcinoma patients treated with CCRT. BMC Cancer 2020, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Hou, S.; Zhu, X.; Liu, S. MicroRNA-192 promotes the development of nasopharyngeal carcinoma through targeting RB1 and activating PI3K/AKT pathway. World J. Surg. Oncol. 2020, 18, 29. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, X.; Wu, L.; Zhang, S.; Wang, T.; Liu, P.; Zhu, W.; Zhu, J. Identification of a 7-microRNA signature in plasma as promising biomarker for nasopharyngeal carcinoma detection. Cancer Med. 2020, 9, 1230–1241. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Wang, J.; Ying, H. Circulating miR-214-3p predicts nasopharyngeal carcinoma recurrence or metastasis. Clin. Chim. Acta 2020, 503, 54–60. [Google Scholar] [CrossRef]
- Yang, J.; Wu, S.-P.; Wang, W.-J.; Jin, Z.-R.; Miao, X.-B.; Wu, Y.; Gou, D.-M.; Liu, Q.-Z.; Yao, K.-T. A novel miR-200c/c-myc negative regulatory feedback loop is essential to the EMT process, CSC biology and drug sensitivity in nasopharyngeal cancer. Exp. Cell Res. 2020, 391, 111817. [Google Scholar] [CrossRef]
- Deng, X.; Liu, Z.; Liu, X.; Fu, Q.; Deng, T.; Lu, J.; Liu, Y.; Liang, Z.; Jiang, Q.; Cheng, C. miR-296-3p negatively regulated by nicotine stimulates cytoplasmic translocation of c-Myc via MK2 to suppress chemotherapy resistance. Mol. Ther. 2018, 26, 1066–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OuYang, P.; Zhang, L.; Lan, X.; Xie, C.; Zhang, W.; Wang, Q.; Su, Z.; Tang, J.; Xie, F. The significant survival advantage of female sex in nasopharyngeal carcinoma: A propensity-matched analysis. Br. J. Cancer 2015, 112, 1554–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, S.-H.; Yu, I.T.-S.; Tse, L.-A.; Mang OW-k Yue, L. Sex difference in the incidence of nasopharyngeal carcinoma in Hong Kong 1983–2008: Suggestion of a potential protective role of oestrogen. Eur. J. Cancer 2013, 49, 150–155. [Google Scholar] [CrossRef]
- Kao, W.-C.; Chen, J.-S.; Yen, C.-J. Advanced nasopharyngeal carcinoma in children. J. Cancer Res. Pract. 2016, 3, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.J.; Tang, Y.Y.; Liu, H.M.; Tan, G.X.; Wang, X.; Zhang, H.; Yang, F.; Yang, S. Impact of age on survival of locoregional nasopharyngeal carcinoma: An analysis of the Surveillance, Epidemiology, and End Results program database, 2004–2013. Clin. Otolaryngol. 2018, 43, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.-L.; Wang, X.-H.; Sun, B.-F.; Zhang, X.-D.; Zhu, X.-H.; Yu, Z.-J.; Luo, H. Expression, regulation and mechanism of action of the miR-17-92 cluster in tumor cells. Int. J. Mol. Med. 2017, 40, 1624–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Pu, Y.; Qian, L.; Zang, C.; Tao, Z.; Gao, J. MiR-20a-5p promotes radio-resistance by targeting NPAS2 in nasopharyngeal cancer cells. Oncotarget 2017, 8, 105873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhao, J. let-7d suppresses proliferation and invasion and promotes apoptosis of meningioma by targeting AEG-1. OncoTargets Ther. 2017, 10, 4895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
1 | “Nasopharyngeal cancinoma” [Topic] AND “miRNA” [Topic] |
2 | “NPC” [Topic] AND “Chemoresistance” [Topic] |
3 | “Prognosis” [Topic] AND “Chemo resistance” [Topic] |
4 | “miRNA” [Topic] AND “Biomarkers” [Topic] |
5 | “miRNA” [Topic] AND “NPC” [Topic] AND “Prognosis” [Topic] |
6 | “Prognosis” [Topic] OR “Survival outcome in NPC” [Topic] |
7 | “Upregulation” [Topic] OR “Downregulation in NPC” [Topic] |
8 | “Follow up studies.” [Topic] OR “miRNA” [Topic] |
9 | “Systematic review” [Topic]“Meta-analysis study” [Topic] AND “NPC” [Topic] |
Study | Population | Study Period | Gender | Sample Size | Source of Sample | Platform | Follow-up Period | miRNA Studied | WHO Histological Type | Lymph Node Metastasis/Distant Metastasis | T Stage | Endpoints | HR Value | miRNA Dysregulation |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L Ju et al., 2018 [35] | China | 2007 and 2015 | M-83/F-27 | 110 | Tissue | qRT-PCR | 5 Year | miR-9 | NA | N0-N3 | T1, T2, T3 & T4 | OS | KM Curve alone | Upregulated |
He H et al., 2018 [36] | China | March 2013 and November 2014 | NA | 42 | Tissue | qRT-PCR | NA | miR-494-3p | NA | NA | NA | NA | NA | Upregulated |
Zhao L et al., 2018 [37] | China-312/Canada-246 | January 2003 and February 2006 | NA | 558 | Tissue | qRT-PCR | 62.1 Months | miR-29b, miR-29a, and miR-26a | NKUC, NKDC, KSCC | N0-N3 | T1, T2, T3 & T4 | OS, DFS, DMFS | KM Curve alone | Downregulated |
Lian Y et al., 2018 [38] | China | NA | NA | 45 | Tissue | qRT-PCR/ Microarray analysis | NA | miR-423-5p | NA | NA | NA | OS, RFS | KM Curve alone | Downregulated |
Liu B et al., 2018 [39] | China | May 2011 to May 2013 | M-37/F-57 | 94 | Serum | qRT-PCR | 36 Months | miR-150 | NKUC, NKDC, KSCC | Studied but not mentioned exact stage | T1, T2, T3 & T4 | OS | KM Curve alone | Upregulated |
Wang YH et al., 2018 [31] | China | March 2013 to July 2015 | M-94/F-45 | 139 | Tissue | qRT-PCR | NA | miR-639 | NKUC, NKDC | NA | NA | DFS | KM Curve alone | NA |
Liu Y et al., 2018 [40] | China | NA | M-32/F-9 | 41 | Tissue | qRT-PCR | NA | miR-141 | NKUC, NKDC | NA | NA | NA | NA | Upregulated |
Wang T et al., 2019 [32] | China | NA | M-47/F-19 | 66 | Tissue | qRT-PCR | NA | miR-432 | NA | N0-N3 | T1, T2, T3 & T4 | NA | NA | NA |
Tan GW et al., 2019 [41] | Chinese-68/Malay-44/Others-7 | NA | M-88/F-31 | 119 | Tissue | qRT-PCR | NA | miR-21, miR-26a, miR-29c, miR-93, miR-205, miR-375 and miR-421 | NA | N0-N3 | T1, T2, T3 & T4 | NA | NA | miR-21, miR-93, miR-205, and miR-421—Upregulated, miR-26a, miR-29c, and miR-375—Downregulated |
Zhuo X et al., 2019 [42] | China | NA | M-11/F-51 | 62 | Tissue | Microarray analysis | NA | miR-18a, miR-135b, miR-204, and miR-497 | NA | Studied but not mentioned the exact stage | NA | OS | KM Curve alone | miR-18 and miR-135b—downregulated, miR-204 and miR-497—Upregulated |
Qiang H et al., 2019 [43] | China | January 2013 to December 2015 | M-32/F-24 | 56 | Tissue | qRT-PCR | NA | miR-31 | KSCC | NA | NA | OS | KM Curve alone | Upregulated |
Yang Y et al., 2018 [44] | China | June 2014 and August 2015 | M-17/F-13 | 30 | Tissue | qRT-PCR | NA | miR-122 | NA | NA | NA | OS | KM Curve alone | Downregulated |
Zhang S et al., 2019 [45] | China | NA | M-126/F-30 | 156 | Tissue | Microarray analysis | NA | miR-142-3p, miR-150, miR-29b, and miR-29c | NKUC, NKDC, KSCC | N0-N3 | T1, T2, T3 & T4 | OS, DFS, DMFS, RFS | KM Curve alone | Downregulated |
Wu L et al., 2019 [46] | China | March 2015 and November 2016 | M-41/F-22 | 63 | Saliva | Microarray analysis/ qRT-PCR | NA | miR-937-5p, miR-650, miR-3612, miR-4478, miR-4259, miR-3714, miR-4730, miR-1203, miR-30b-3p, miR-1321, miR-1202, and miR-575 | NKDC | N0-N3 | T1, T2, T3 & T4 | NA | NA | Downregulated |
Cui Z and Zhao Y, 2019 [47] | China | 2002 and 2008 | M-51/F-28 | 79 | Tissue | RT-PCR | NA | miR-342-3p | NA | Studied but not mentioned exact stage | NA | OS | KM Curve alone | Downregulated |
Huang Y et al., 2018 [48] | China | NA | M-41/F-21 | 62 | Tissue | qRT-PCR | NA | miR-150 | NKUC | NA | NA | OS | KM Curve alone | Upregulated |
Feng X et al., 2018 [33] | China | August 2012 and July 2014 | M-52/F-40 | 92 | Tissue | qRT-PCR | NA | miR-495 | KSCC | NA | NA | NA | NA | NA |
Wan FZ et al., 2020 [49] | China | January 2013 to December 2015 | M-58/F-12 | 72 | Tissue | qRT-PCR | NA | miR-34c | NKUC, NKDC | N0-N3 | T1, T2, T3 & T4 | OS | KM Curve alone | Downregulated |
Zhang Z et al., 2020 [50] | China | NA | M-39/F-9 | 48 | Serum | qRT-PCR | Till May 2019 | miR-29a, miR-26b, miR-29b, miR-143 and miR-125b | NKUC, NKDC | N0-N3 | T1, T2, T3 & T4 | PFS, OS | KM Curve alone | Downregulated |
Huang Q et al., 2020 [51] | China | January 2016 to July 2019. | M-45/F-31 | 76 | Tissue | qRT-PCR | NA | miR-192 | NKUC, NKDC | N0-N3 | T1, T2, T3 & T4 | OS | KM Curve alone | Upregulated |
Zhang H et al., 2020 [52] | China | 2014 to 2016 | M-270/F-181 | 389 | Plasma | qRT-PCR | NA | miR-140-3p, miR-144-3p, miR-17-5p, miR-20a-5p, miR-20b-5p, and miR-205-5p | PDSC | Studied but not mentioned exact stage | T1, T2, T3 & T4 | OS | KM Curve alone | miR-144-3p, miR-17-5p, miR-20a-5p, and miR-205-5p—Upregulated and miR-140-3p—Downregulated |
Wang J et al., 2020 [53] | China | June 2013 and December 2016 | M-102/F-48 | 150 | Plasma | Microarray analysis/ qRT-PCR | Till December 2017 | miR-214-3p | NA | NA | NA | RFS | KM Curve alone | Upregulated |
Yang J et al. 2020 [54] | China | NA | M-78/F-71 | 149 | Tissue | qRT-PCR | NA | miR-200c | NA | NA | NA | OS | KM Curve alone | Downregulated |
Deng X et al. 2020 [55] | China | NA | M-75/F-35 | 110 | Tissue | qRT-PCR | NA | miR-296-3p | NA | N0-N3 | T1, T2, T3 & T4 | OS | KM Curve alone | Downregulated |
Lu T et al. 2020 [34] | China | July 2012 to March 2015 | M-68/F-139 | 207 | Tissue | qRT-PCR | NA | miR-BART13-3p and miR-BART7-3p | KSCC, NKUC, NKDC | N0-N3 | T1, T2, T3 & T4 | DMFS | KM Curve alone | NA |
Heterogeneity Testing and Hypothesis Testing | |||||||||||||||||
Classic Fail-Safe N | Orwin Fail-Safe N | Begg and Mazumdar Test | Dual and Tweedie (Random Effects) | ||||||||||||||
Groups | Clinical Outcomes | Z Value | p-Value | HR in Observed | Tau | Z Value | p-Value | Observed | Q Value | Adjusted | Q Value | ||||||
2018–2020 | miRNAs in NPC | OS and PFS | 6.34 | 0 | 1.08 | 0.07 | 0.45 | 0.65 | 1.589 | 130.34 | 1.08 | 193.44 | |||||
Combined Data (2013–2020) | miRNAs in NPC | OS and PFS | 6.38 | 0 | 1.02 | 0.01 | 0.15 | 0.88 | 1.194 | 325.70 | 0.99 | 488.07 | |||||
Publication Bias | |||||||||||||||||
Fixed | Mixed/Random | Hypothesis Test | |||||||||||||||
Groups | Heterogeneity | HR | 95% CI | HR | 95% CI | Fixed Effects Model | Random Effects Model | ||||||||||
Q | P | I2 | Low | High | Low | High | Z | P | Studies | Z | P | Studies | |||||
2018–2020 | miRNAs in NPC | 130.34 | 0 | 84.66 | 1.08 | 1 | 1.16 | 1.59 | 1.25 | 2.02 | 2.01 | 0.04 | 21 | 3.82 | 0 | 21 | |
Combined Data (2013–2020) | miRNAs in NPC | 325.70 | 0 | 86.49 | 1.02 | 0.97 | 1.07 | 1.43 | 1.19 | 1.70 | 0.67 | 0.50 | 45 | 3.93 | 0 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaw, P.; Senthilnathan, R.; Krishnan, S.; Suresh, D.; Shetty, S.; Muthukaliannan, G.K.; Mani, R.R.; Sivanandy, P.; Chandramoorthy, H.C.K.; Gupta, M.M.; et al. A Clinical Update on the Prognostic Effect of microRNA Biomarkers for Survival Outcome in Nasopharyngeal Carcinoma: A Systematic Review and Meta-Analysis. Cancers 2021, 13, 4369. https://doi.org/10.3390/cancers13174369
Shaw P, Senthilnathan R, Krishnan S, Suresh D, Shetty S, Muthukaliannan GK, Mani RR, Sivanandy P, Chandramoorthy HCK, Gupta MM, et al. A Clinical Update on the Prognostic Effect of microRNA Biomarkers for Survival Outcome in Nasopharyngeal Carcinoma: A Systematic Review and Meta-Analysis. Cancers. 2021; 13(17):4369. https://doi.org/10.3390/cancers13174369
Chicago/Turabian StyleShaw, Peter, Raghul Senthilnathan, Sunil Krishnan, Deepa Suresh, Sameep Shetty, Gothandam Kodiveri Muthukaliannan, Ravishankar Ram Mani, Palanisamy Sivanandy, Harish Chinna Konda Chandramoorthy, Madan Mohan Gupta, and et al. 2021. "A Clinical Update on the Prognostic Effect of microRNA Biomarkers for Survival Outcome in Nasopharyngeal Carcinoma: A Systematic Review and Meta-Analysis" Cancers 13, no. 17: 4369. https://doi.org/10.3390/cancers13174369
APA StyleShaw, P., Senthilnathan, R., Krishnan, S., Suresh, D., Shetty, S., Muthukaliannan, G. K., Mani, R. R., Sivanandy, P., Chandramoorthy, H. C. K., Gupta, M. M., Baxi, S., & Jayaraj, R. (2021). A Clinical Update on the Prognostic Effect of microRNA Biomarkers for Survival Outcome in Nasopharyngeal Carcinoma: A Systematic Review and Meta-Analysis. Cancers, 13(17), 4369. https://doi.org/10.3390/cancers13174369