Improving Biologics’ Effectiveness in Clinical Oncology: From the Combination of Two Monoclonal Antibodies to Oligoclonal Antibody Mixtures
Abstract
:Simple Summary
Abstract
1. Introduction
2. Homo-Combinations and Hetero-Combinations of Antibodies in Preclinical Studies
2.1. Tumor Co-Targeting in Oncology
2.2. Co-Targeting of Immune Checkpoint Molecules (ICM): Awakening the Immune System
2.3. Pre-Clinical Studies to Understand the Mechanisms of Tumor-Targeting Antibodies in Combination with Immune Checkpoint Blockade
3. The Initial Clinical Proof of Concept about Antibody Combinations
4. Antibody Combination in Phase II and Phase III Clinical Trials: A 2021 Update in Oncology
5. Optimization of the Formulation and Delivery of Antibody Combinations
5.1. Sequential Administration
5.2. Single Co-Formulation
5.3. Single-Cell Line Manufacturing
5.4. Single Batch Manufacturing
6. Challenges and Regulation of Antibody Combinations
7. Conclusions: Towards a Therapeutic Polyclonal Immune Response?
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedman, L.M.; Rinon, A.; Schechter, B.; Lyass, L.; Lavi, S.; Bacus, S.S.; Sela, M.; Yarden, Y. Synergistic Down-Regulation of Receptor Tyrosine Kinases by Combinations of MAbs: Implications for Cancer Immunotherapy. Proc. Natl. Acad. Sci. USA 2005, 102, 1915–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, R.M.; Narita, Y.; Furnari, F.B.; Gan, H.K.; Murone, C.; Ahlkvist, M.; Luwor, R.B.; Burgess, A.W.; Stockert, E.; Jungbluth, A.A.; et al. Treatment of Human Tumor Xenografts with Monoclonal Antibody 806 in Combination with a Prototypical Epidermal Growth Factor Receptor-Specific Antibody Generates Enhanced Antitumor Activity. Clin. Cancer Res. 2005, 11, 6390–6399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spangler, J.B.; Neil, J.R.; Abramovitch, S.; Yarden, Y.; White, F.M.; Lauffenburger, D.A.; Wittrup, K.D. Combination Antibody Treatment Down-Regulates Epidermal Growth Factor Receptor by Inhibiting Endosomal Recycling. Proc. Natl. Acad. Sci. USA 2010, 107, 13252–13257. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, D.A.; Gaborit, N.; Maron, R.; Cohen-Dvashi, H.; Porat, Z.; Pareja, F.; Lavi, S.; Lindzen, M.; Ben-Chetrit, N.; Sela, M.; et al. Inhibition of Triple-Negative Breast Cancer Models by Combinations of Antibodies to EGFR. Proc. Natl. Acad. Sci. USA 2013, 110, 1815–1820. [Google Scholar] [CrossRef] [Green Version]
- Kol, A.; Terwisscha van Scheltinga, A.; Pool, M.; Gerdes, C.; de Vries, E.; de Jong, S. ADCC Responses and Blocking of EGFR-Mediated Signaling and Cell Growth by Combining the Anti-EGFR Antibodies Imgatuzumab and Cetuximab in NSCLC Cells. Oncotarget 2017, 8, 45432–45446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Kasus, T.; Schechter, B.; Lavi, S.; Yarden, Y.; Sela, M. Persistent Elimination of ErbB-2/HER2-Overexpressing Tumors Using Combinations of Monoclonal Antibodies: Relevance of Receptor Endocytosis. Proc. Natl. Acad. Sci. USA 2009, 106, 3294–3299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drebin, J.A.; Link, V.C.; Greene, M.I. Monoclonal Antibodies Reactive with Distinct Domains of the Neu Oncogene-Encoded P185 Molecule Exert Synergistic Anti-Tumor Effects in Vivo. Oncogene 1988, 2, 273–277. [Google Scholar]
- Kasprzyk, P.G.; Song, S.U.; Di Fiore, P.P.; King, C.R. Therapy of an Animal Model of Human Gastric Cancer Using a Combination of Anti-ErbB-2 Monoclonal Antibodies. Cancer Res. 1992, 52, 2771–2776. [Google Scholar]
- Spiridon, C.I.; Ghetie, M.-A.; Uhr, J.; Marches, R.; Li, J.-L.; Shen, G.-L.; Vitetta, E.S. Targeting Multiple Her-2 Epitopes with Monoclonal Antibodies Results in Improved Antigrowth Activity of a Human Breast Cancer Cell Line in Vitro and in Vivo. Clin. Cancer Res. 2002, 8, 1720–1730. [Google Scholar]
- Poulsen, T.T.; Grandal, M.M.; Skartved, N.J.Ø.; Hald, R.; Alifrangis, L.; Koefoed, K.; Lindsted, T.; Fröhlich, C.; Pollmann, S.E.; Eriksen, K.W.; et al. Sym015: A Highly Efficacious Antibody Mixture against MET-Amplified Tumors. Clin. Cancer Res. 2017, 23, 5923–5935. [Google Scholar] [CrossRef] [Green Version]
- Grandal, M.M.; Havrylov, S.; Poulsen, T.T.; Koefoed, K.; Dahlman, A.; Galler, G.R.; Conrotto, P.; Collins, S.; Eriksen, K.W.; Kaufman, D.; et al. Simultaneous Targeting of Two Distinct Epitopes on MET Effectively Inhibits MET- and HGF-Driven Tumor Growth by Multiple Mechanisms. Mol. Cancer Ther. 2017, 16, 2780–2791. [Google Scholar] [CrossRef] [Green Version]
- Iida, M.; Brand, T.M.; Starr, M.M.; Huppert, E.J.; Luthar, N.; Bahrar, H.; Coan, J.P.; Pearson, H.E.; Salgia, R.; Wheeler, D.L. Overcoming Acquired Resistance to Cetuximab by Dual Targeting HER Family Receptors with Antibody-Based Therapy. Mol. Cancer 2014, 13, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollmann, S.E.; Calvert, V.S.; Rao, S.; Boca, S.M.; Madhavan, S.; Horak, I.D.; Kjaer, A.; Petricoin, E.F.; Kragh, M.; Poulsen, T.T. Acquired Resistance to a MET Antibody In Vivo Can Be Overcome by the MET Antibody Mixture Sym015. Mol. Cancer Ther. 2018, 17, 1259–1270. [Google Scholar] [CrossRef] [Green Version]
- Arena, S.; Siravegna, G.; Mussolin, B.; Kearns, J.D.; Wolf, B.B.; Misale, S.; Lazzari, L.; Bertotti, A.; Trusolino, L.; Adjei, A.A.; et al. MM-151 Overcomes Acquired Resistance to Cetuximab and Panitumumab in Colorectal Cancers Harboring EGFR Extracellular Domain Mutations. Sci. Transl. Med. 2016, 8, 324ra14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahavi, D.; Weiner, L. Monoclonal Antibodies in Cancer Therapy. Antibodies 2020, 9, 34. [Google Scholar] [CrossRef]
- Larbouret, C.; Robert, B.; Navarro-Teulon, I.; Thèzenas, S.; Ladjemi, M.-Z.; Morisseau, S.; Campigna, E.; Bibeau, F.; Mach, J.-P.; Pèlegrin, A.; et al. In Vivo Therapeutic Synergism of Anti-Epidermal Growth Factor Receptor and Anti-HER2 Monoclonal Antibodies against Pancreatic Carcinomas. Clin. Cancer Res. 2007, 13, 3356–3362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larbouret, C.; Robert, B.; Bascoul-Mollevi, C.; Penault-Llorca, F.; Ho-Pun-Cheung, A.; Morisseau, S.; Navarro-Teulon, I.; Mach, J.-P.; Pèlegrin, A.; Azria, D. Combined Cetuximab and Trastuzumab Are Superior to Gemcitabine in the Treatment of Human Pancreatic Carcinoma Xenografts. Ann. Oncol. 2010, 21, 98–103. [Google Scholar] [CrossRef]
- Larbouret, C.; Gaborit, N.; Chardès, T.; Coelho, M.; Campigna, E.; Bascoul-Mollevi, C.; Mach, J.-P.; Azria, D.; Robert, B.; Pèlegrin, A. In Pancreatic Carcinoma, Dual EGFR/HER2 Targeting with Cetuximab/Trastuzumab Is More Effective than Treatment with Trastuzumab/Erlotinib or Lapatinib Alone: Implication of Receptors’ down-Regulation and Dimers’ Disruption. Neoplasia 2012, 14, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.; Chardès, T.; Gaborit, N.; Mollevi, C.; Leconet, W.; Robert, B.; Radosevic-Robin, N.; Penault-Llorca, F.; Gongora, C.; Colombo, P.-E.; et al. HER3 as Biomarker and Therapeutic Target in Pancreatic Cancer: New Insights in Pertuzumab Therapy in Preclinical Models. Oncotarget 2014, 5, 7138–7148. [Google Scholar] [CrossRef] [Green Version]
- Maron, R.; Schechter, B.; Mancini, M.; Mahlknecht, G.; Yarden, Y.; Sela, M. Inhibition of Pancreatic Carcinoma by Homo- and Heterocombinations of Antibodies against EGF-Receptor and Its Kin HER2/ErbB-2. Proc. Natl. Acad. Sci. USA 2013, 110, 15389–15394. [Google Scholar] [CrossRef] [Green Version]
- Romaniello, D.; Mazzeo, L.; Mancini, M.; Marrocco, I.; Noronha, A.; Kreitman, M.; Srivastava, S.; Ghosh, S.; Lindzen, M.; Salame, T.M.; et al. A Combination of Approved Antibodies Overcomes Resistance of Lung Cancer to Osimertinib by Blocking Bypass Pathways. Clin. Cancer Res. 2018, 24, 5610–5621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrocco, I.; Romaniello, D.; Vaknin, I.; Drago-Garcia, D.; Oren, R.; Uribe, M.L.; Belugali Nataraj, N.; Ghosh, S.; Eilam, R.; Salame, T.-M.; et al. Upfront Admixing Antibodies and EGFR Inhibitors Preempts Sequential Treatments in Lung Cancer Models. EMBO Mol. Med. 2021, 13, e13144. [Google Scholar] [CrossRef] [PubMed]
- Assenat, E.; Azria, D.; Mollevi, C.; Guimbaud, R.; Tubiana-Mathieu, N.; Smith, D.; Delord, J.-P.; Samalin, E.; Portales, F.; Larbouret, C.; et al. Dual Targeting of HER1/EGFR and HER2 with Cetuximab and Trastuzumab in Patients with Metastatic Pancreatic Cancer after Gemcitabine Failure: Results of the “THERAPY”Phase 1-2 Trial. Oncotarget 2015, 6, 12796–12808. [Google Scholar] [CrossRef] [Green Version]
- Romaniello, D.; Marrocco, I.; Belugali Nataraj, N.; Ferrer, I.; Drago-Garcia, D.; Vaknin, I.; Oren, R.; Lindzen, M.; Ghosh, S.; Kreitman, M.; et al. Targeting HER3, a Catalytically Defective Receptor Tyrosine Kinase, Prevents Resistance of Lung Cancer to a Third-Generation EGFR Kinase Inhibitor. Cancers 2020, 12, 2394. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Eng, C.; Nowara, E.; Swieboda-Sadlej, A.; Tebbutt, N.C.; Mitchell, E.; Davidenko, I.; Stephenson, J.; Elez, E.; Prenen, H.; et al. Randomized Phase Ib/II Trial of Rilotumumab or Ganitumab with Panitumumab versus Panitumumab Alone in Patients with Wild-Type KRAS Metastatic Colorectal Cancer. Clin. Cancer Res. 2014, 20, 4240–4250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecht, J.R.; Mitchell, E.; Chidiac, T.; Scroggin, C.; Hagenstad, C.; Spigel, D.; Marshall, J.; Cohn, A.; McCollum, D.; Stella, P.; et al. A Randomized Phase IIIB Trial of Chemotherapy, Bevacizumab, and Panitumumab Compared with Chemotherapy and Bevacizumab Alone for Metastatic Colorectal Cancer. J. Clin. Oncol. 2009, 27, 672–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianni, L.; Romieu, G.H.; Lichinitser, M.; Serrano, S.V.; Mansutti, M.; Pivot, X.; Mariani, P.; Andre, F.; Chan, A.; Lipatov, O.; et al. AVEREL: A Randomized Phase III Trial Evaluating Bevacizumab in Combination with Docetaxel and Trastuzumab as First-Line Therapy for HER2-Positive Locally Recurrent/Metastatic Breast Cancer. J. Clin. Oncol. 2013, 31, 1719–1725. [Google Scholar] [CrossRef]
- Mancini, M.; Gal, H.; Gaborit, N.; Mazzeo, L.; Romaniello, D.; Salame, T.M.; Lindzen, M.; Mahlknecht, G.; Enuka, Y.; Burton, D.G.; et al. An Oligoclonal Antibody Durably Overcomes Resistance of Lung Cancer to Third-Generation EGFR Inhibitors. EMBO Mol. Med. 2018, 10, 294–308. [Google Scholar] [CrossRef]
- Mancini, M.; Gaborit, N.; Lindzen, M.; Salame, T.M.; Dall’Ora, M.; Sevilla-Sharon, M.; Abdul-Hai, A.; Downward, J.; Yarden, Y. Combining Three Antibodies Nullifies Feedback-Mediated Resistance to Erlotinib in Lung Cancer. Sci. Signal. 2015, 8, ra53. [Google Scholar] [CrossRef]
- Jacobsen, H.J.; Poulsen, T.T.; Dahlman, A.; Kjær, I.; Koefoed, K.; Sen, J.W.; Weilguny, D.; Bjerregaard, B.; Andersen, C.R.; Horak, I.D.; et al. Pan-HER, an Antibody Mixture Simultaneously Targeting EGFR, HER2, and HER3, Effectively Overcomes Tumor Heterogeneity and Plasticity. Clin. Cancer Res. 2015, 21, 4110–4122. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, L.J.; Hutchinson, K.E.; Rexer, B.N.; Estrada, M.V.; Gonzalez Ericsson, P.I.; Sanders, M.E.; Dugger, T.C.; Formisano, L.; Guerrero-Zotano, A.; Red-Brewer, M.; et al. An ERBB1-3 Neutralizing Antibody Mixture With High Activity Against Drug-Resistant HER2+ Breast Cancers With ERBB Ligand Overexpression. J. Natl. Cancer Inst. 2017, 109, 65. [Google Scholar] [CrossRef] [Green Version]
- Rabia, E.; Garambois, V.; Hubert, J.; Bruciamacchie, M.; Pirot, N.; Delpech, H.; Broyon, M.; Theillet, C.; Colombo, P.-E.; Vie, N.; et al. Anti-Tumoral Activity of the Pan-HER (Sym013) Antibody Mixture in Gemcitabine-Resistant Pancreatic Cancer Models. MAbs 2021, 13, 1914883. [Google Scholar] [CrossRef] [PubMed]
- Strauss, S.J.; Morschhauser, F.; Rech, J.; Repp, R.; Solal-Celigny, P.; Zinzani, P.L.; Engert, A.; Coiffier, B.; Hoelzer, D.F.; Wegener, W.A.; et al. Multicenter Phase II Trial of Immunotherapy with the Humanized Anti-CD22 Antibody, Epratuzumab, in Combination with Rituximab, in Refractory or Recurrent Non-Hodgkin’s Lymphoma. J. Clin. Oncol. 2006, 24, 3880–3886. [Google Scholar] [CrossRef]
- Curran, M.A.; Montalvo, W.; Yagita, H.; Allison, J.P. PD-1 and CTLA-4 Combination Blockade Expands Infiltrating T Cells and Reduces Regulatory T and Myeloid Cells within B16 Melanoma Tumors. Proc. Natl. Acad. Sci. USA 2010, 107, 4275–4280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Lee, L.-F.; Fisher, T.S.; Jessen, B.; Elliott, M.; Evering, W.; Logronio, K.; Tu, G.H.; Tsaparikos, K.; Li, X.; et al. Combination of 4-1BB Agonist and PD-1 Antagonist Promotes Antitumor Effector/Memory CD8 T Cells in a Poorly Immunogenic Tumor Model. Cancer Immunol. Res. 2015, 3, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Cheng, D.; Xia, Z.; Luan, M.; Wu, L.; Wang, G.; Zhang, S. Combined TIM-3 Blockade and CD137 Activation Affords the Long-Term Protection in a Murine Model of Ovarian Cancer. J. Transl. Med. 2013, 11, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaganty, B.K.R.; Qiu, S.; Gest, A.; Lu, Y.; Ivan, C.; Calin, G.A.; Weiner, L.M.; Fan, Z. Trastuzumab Upregulates PD-L1 as a Potential Mechanism of Trastuzumab Resistance through Engagement of Immune Effector Cells and Stimulation of IFNγ Secretion. Cancer Lett. 2018, 430, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Iwata, T.N.; Ishii, C.; Ishida, S.; Ogitani, Y.; Wada, T.; Agatsuma, T. A HER2-Targeting Antibody-Drug Conjugate, Trastuzumab Deruxtecan (DS-8201a), Enhances Antitumor Immunity in a Mouse Model. Mol. Cancer Ther. 2018, 17, 1494–1503. [Google Scholar] [CrossRef] [Green Version]
- Junttila, T.T.; Li, J.; Johnston, J.; Hristopoulos, M.; Clark, R.; Ellerman, D.; Wang, B.-E.; Li, Y.; Mathieu, M.; Li, G.; et al. Antitumor Efficacy of a Bispecific Antibody That Targets HER2 and Activates T Cells. Cancer Res. 2014, 74, 5561–5571. [Google Scholar] [CrossRef] [Green Version]
- They, L.; Michaud, H.-A.; Becquart, O.; Lafont, V.; Guillot, B.; Boissière-Michot, F.; Jarlier, M.; Mollevi, C.; Eliaou, J.-F.; Bonnefoy, N.; et al. PD-1 Blockade at the Time of Tumor Escape Potentiates the Immune-Mediated Antitumor Effects of a Melanoma-Targeting Monoclonal Antibody. Oncoimmunology 2017, 6, e1353857. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Guo, J.; Liao, J.; Luan, Y.; Liu, Z.; Sun, Z.; Liu, X.; Liang, Y.; Peng, H.; Fu, Y.-X. CTLA-4 Limits Anti-CD20-Mediated Tumor Regression. Clin. Cancer Res. 2017, 23, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, X.; Mortenson, E.D.; Radkevich-Brown, O.; Wang, Y.; Fu, Y.-X. Cetuximab-Mediated Tumor Regression Depends on Innate and Adaptive Immune Responses. Mol. Ther. 2013, 21, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Mortenson, E.D.; Park, S.; Jiang, Z.; Wang, S.; Fu, Y.-X. Effective Anti-Neu-Initiated Antitumor Responses Require the Complex Role of CD4+ T Cells. Clin. Cancer Res. 2013, 19, 1476–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaud, H.-A.; Eliaou, J.-F.; Lafont, V.; Bonnefoy, N.; Gros, L. Tumor Antigen-Targeting Monoclonal Antibody-Based Immunotherapy: Orchestrating Combined Strategies for the Development of Long-Term Antitumor Immunity. Oncoimmunology 2014, 3, e955684. [Google Scholar] [CrossRef] [Green Version]
- DiLillo, D.J.; Ravetch, J.V. Differential Fc-Receptor Engagement Drives an Anti-Tumor Vaccinal Effect. Cell 2015, 161, 1035–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Lorenzo, R.; Erjavec, S.O.; Christiano, A.M.; Clynes, R. Improved Therapeutic Efficacy of Unmodified Anti-Tumor Antibodies by Immune Checkpoint Blockade and Kinase Targeted Therapy in Mouse Models of Melanoma. Oncotarget 2021, 12, 66–80. [Google Scholar] [CrossRef]
- Yasuda, S.; Sho, M.; Yamato, I.; Yoshiji, H.; Wakatsuki, K.; Nishiwada, S.; Yagita, H.; Nakajima, Y. Simultaneous Blockade of Programmed Death 1 and Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Induces Synergistic Anti-Tumour Effect in Vivo. Clin. Exp. Immunol. 2013, 172, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Allen, E.; Jabouille, A.; Rivera, L.B.; Lodewijckx, I.; Missiaen, R.; Steri, V.; Feyen, K.; Tawney, J.; Hanahan, D.; Michael, I.P.; et al. Combined Antiangiogenic and Anti-PD-L1 Therapy Stimulates Tumor Immunity through HEV Formation. Sci. Transl. Med. 2017, 9, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, R.M.; Trivedi, S.; Concha-Benavente, F.; Gibson, S.P.; Reeder, C.; Ferrone, S.; Ferris, R.L. CD137 Stimulation Enhances Cetuximab-Induced Natural Killer: Dendritic Cell Priming of Antitumor T-Cell Immunity in Patients with Head and Neck Cancer. Clin. Cancer Res. 2017, 23, 707–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meder, L.; Schuldt, P.; Thelen, M.; Schmitt, A.; Dietlein, F.; Klein, S.; Borchmann, S.; Wennhold, K.; Vlasic, I.; Oberbeck, S.; et al. Combined VEGF and PD-L1 Blockade Displays Synergistic Treatment Effects in an Autochthonous Mouse Model of Small Cell Lung Cancer. Cancer Res. 2018, 78, 4270–4281. [Google Scholar] [CrossRef] [Green Version]
- Stagg, J.; Loi, S.; Divisekera, U.; Ngiow, S.F.; Duret, H.; Yagita, H.; Teng, M.W.; Smyth, M.J. Anti-ErbB-2 MAb Therapy Requires Type I and II Interferons and Synergizes with Anti-PD-1 or Anti-CD137 MAb Therapy. Proc. Natl. Acad. Sci. USA 2011, 108, 7142–7147. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, L.; Zhao, F.; Tseng, S.; Narayanan, C.; Shura, L.; Willingham, S.; Howard, M.; Prohaska, S.; Volkmer, J.; et al. Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential. PLoS ONE 2015, 10, e0137345. [Google Scholar] [CrossRef] [Green Version]
- Krampitz, G.W.; George, B.M.; Willingham, S.B.; Volkmer, J.-P.; Weiskopf, K.; Jahchan, N.; Newman, A.M.; Sahoo, D.; Zemek, A.J.; Yanovsky, R.L.; et al. Identification of Tumorigenic Cells and Therapeutic Targets in Pancreatic Neuroendocrine Tumors. Proc. Natl. Acad. Sci. USA 2016, 113, 4464–4469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delou, J.M.A.; Souza, A.S.O.; Souza, L.C.M.; Borges, H.L. Highlights in Resistance Mechanism Pathways for Combination Therapy. Cells 2019, 8, E1013. [Google Scholar] [CrossRef] [Green Version]
- Baselga, J.; Cortés, J.; Kim, S.-B.; Im, S.-A.; Hegg, R.; Im, Y.-H.; Roman, L.; Pedrini, J.L.; Pienkowski, T.; Knott, A.; et al. Pertuzumab plus Trastuzumab plus Docetaxel for Metastatic Breast Cancer. N. Engl. J. Med. 2012, 366, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Gianni, L.; Pienkowski, T.; Im, Y.-H.; Roman, L.; Tseng, L.-M.; Liu, M.-C.; Lluch, A.; Staroslawska, E.; de la Haba-Rodriguez, J.; Im, S.-A.; et al. Efficacy and Safety of Neoadjuvant Pertuzumab and Trastuzumab in Women with Locally Advanced, Inflammatory, or Early HER2-Positive Breast Cancer (NeoSphere): A Randomised Multicentre, Open-Label, Phase 2 Trial. Lancet Oncol. 2012, 13, 25–32. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Procter, M.; de Azambuja, E.; Zardavas, D.; Benyunes, M.; Viale, G.; Suter, T.; Arahmani, A.; Rouchet, N.; Clark, E.; et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N. Engl. J. Med. 2017, 377, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.R.; Im, S.-A.; Mattar, A.; Colomer, R.; Stroyakovskii, D.; Nowecki, Z.; De Laurentiis, M.; Pierga, J.-Y.; Jung, K.H.; Schem, C.; et al. Fixed-Dose Combination of Pertuzumab and Trastuzumab for Subcutaneous Injection plus Chemotherapy in HER2-Positive Early Breast Cancer (FeDeriCa): A Randomised, Open-Label, Multicentre, Non-Inferiority, Phase 3 Study. Lancet Oncol. 2021, 22, 85–97. [Google Scholar] [CrossRef]
- Kuemmel, S.; Tondini, C.A.; Abraham, J.; Nowecki, Z.; Itrych, B.; Hitre, E.; Karaszewska, B.; Juárez-Ramiro, A.; Morales-Vásquez, F.; Pérez-García, J.M.; et al. Subcutaneous Trastuzumab with Pertuzumab and Docetaxel in HER2-Positive Metastatic Breast Cancer: Final Analysis of MetaPHER, a Phase IIIb Single-Arm Safety Study. Breast Cancer Res. Treat. 2021, 187, 467–476. [Google Scholar] [CrossRef]
- Tabernero, J.; Hoff, P.M.; Shen, L.; Ohtsu, A.; Shah, M.A.; Cheng, K.; Song, C.; Wu, H.; Eng-Wong, J.; Kim, K.; et al. Pertuzumab plus Trastuzumab and Chemotherapy for HER2-Positive Metastatic Gastric or Gastro-Oesophageal Junction Cancer (JACOB): Final Analysis of a Double-Blind, Randomised, Placebo-Controlled Phase 3 Study. Lancet Oncol. 2018, 19, 1372–1384. [Google Scholar] [CrossRef]
- Tol, J.; Koopman, M.; Cats, A.; Rodenburg, C.J.; Creemers, G.J.M.; Schrama, J.G.; Erdkamp, F.L.G.; Vos, A.H.; van Groeningen, C.J.; Sinnige, H.A.M.; et al. Chemotherapy, Bevacizumab, and Cetuximab in Metastatic Colorectal Cancer. N. Engl. J. Med. 2009, 360, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Heskamp, S.; Boerman, O.C.; Molkenboer-Kuenen, J.D.M.; Sweep, F.C.G.J.; Geurts-Moespot, A.; Engelhardt, M.S.; van der Graaf, W.T.A.; Oyen, W.J.G.; van Laarhoven, H.W.M. Cetuximab Reduces the Accumulation of Radiolabeled Bevacizumab in Cancer Xenografts without Decreasing VEGF Expression. Mol. Pharm. 2014, 11, 4249–4257. [Google Scholar] [CrossRef] [Green Version]
- Heskamp, S.; Boerman, O.C.; Molkenboer-Kuenen, J.D.M.; Oyen, W.J.G.; van der Graaf, W.T.A.; van Laarhoven, H.W.M. Bevacizumab Reduces Tumor Targeting of Antiepidermal Growth Factor and Anti-Insulin-like Growth Factor 1 Receptor Antibodies. Int. J. Cancer 2013, 133, 307–314. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Kluger, H.; Callahan, M.K.; Postow, M.A.; Rizvi, N.A.; Lesokhin, A.M.; Segal, N.H.; Ariyan, C.E.; Gordon, R.-A.; Reed, K.; et al. Nivolumab plus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2013, 369, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- Loi, S.; Giobbie-Hurder, A.; Gombos, A.; Bachelot, T.; Hui, R.; Curigliano, G.; Campone, M.; Biganzoli, L.; Bonnefoi, H.; Jerusalem, G.; et al. Pembrolizumab plus Trastuzumab in Trastuzumab-Resistant, Advanced, HER2-Positive Breast Cancer (PANACEA): A Single-Arm, Multicentre, Phase 1b-2 Trial. Lancet Oncol. 2019, 20, 371–382. [Google Scholar] [CrossRef]
- Hodi, F.S.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Nivolumab plus Ipilimumab or Nivolumab Alone versus Ipilimumab Alone in Advanced Melanoma (CheckMate 067): 4-Year Outcomes of a Multicentre, Randomised, Phase 3 Trial. Lancet Oncol. 2018, 19, 1480–1492. [Google Scholar] [CrossRef]
- Sheng, I.Y.; Ornstein, M.C. Ipilimumab and Nivolumab as First-Line Treatment of Patients with Renal Cell Carcinoma: The Evidence to Date. Cancer Manag. Res. 2020, 12, 4871–4881. [Google Scholar] [CrossRef]
- Overman, M.J.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.-J.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J. Clin. Oncol. 2018, 36, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, R.; Imbimbo, M.; Malouf, R.; Paget-Bailly, S.; Calais, F.; Marchal, C.; Westeel, V. Single or Combined Immune Checkpoint Inhibitors Compared to First-Line Platinum-Based Chemotherapy with or without Bevacizumab for People with Advanced Non-Small Cell Lung Cancer. Cochrane Database Syst. Rev. 2021, 4, CD013257. [Google Scholar] [CrossRef] [PubMed]
- Marrocco, I.; Romaniello, D.; Yarden, Y. Cancer Immunotherapy: The Dawn of Antibody Cocktails. Methods Mol. Biol. 2019, 1904, 11–51. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Rauth, S.; Aithal, A.; Kaur, S.; Ganguly, K.; Orzechowski, C.; Varshney, G.C.; Jain, M.; Batra, S.K. The Current Landscape of Antibody-Based Therapies in Solid Malignancies. Theranostics 2021, 11, 1493–1512. [Google Scholar] [CrossRef]
- Henricks, L.M.; Schellens, J.H.M.; Huitema, A.D.R.; Beijnen, J.H. The Use of Combinations of Monoclonal Antibodies in Clinical Oncology. Cancer Treat. Rev. 2015, 41, 859–867. [Google Scholar] [CrossRef]
- Chae, Y.K.; Arya, A.; Iams, W.; Cruz, M.R.; Chandra, S.; Choi, J.; Giles, F. Current Landscape and Future of Dual Anti-CTLA4 and PD-1/PD-L1 Blockade Immunotherapy in Cancer; Lessons Learned from Clinical Trials with Melanoma and Non-Small Cell Lung Cancer (NSCLC). J. Immunother. Cancer 2018, 6, 39. [Google Scholar] [CrossRef]
- Pedersen, M.W.; Jacobsen, H.J.; Koefoed, K.; Hey, A.; Pyke, C.; Haurum, J.S.; Kragh, M. Sym004: A Novel Synergistic Anti-Epidermal Growth Factor Receptor Antibody Mixture with Superior Anticancer Efficacy. Cancer Res. 2010, 70, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Alifrangis, L.; Schoemaker, R.; Skartved, N.J.; Hald, R.; Montagut, C.; Kopetz, S.; Tabernero, J.; Kragh, M.; Wade, J.R. Population Pharmacokinetics and Covariate Analysis of Sym004, an Antibody Mixture against the Epidermal Growth Factor Receptor, in Subjects with Metastatic Colorectal Cancer and Other Solid Tumors. J. Pharmacokinet. Pharmacodyn. 2020, 47, 5–18. [Google Scholar] [CrossRef]
- Jones, S.; King, P.J.; Antonescu, C.N.; Sugiyama, M.G.; Bhamra, A.; Surinova, S.; Angelopoulos, N.; Kragh, M.; Pedersen, M.W.; Hartley, J.A.; et al. Targeting of EGFR by a Combination of Antibodies Mediates Unconventional EGFR Trafficking and Degradation. Sci. Rep. 2020, 10, 663. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, S.; Martini, G.; Martinelli, E.; Della Corte, C.M.; Morgillo, F.; Belli, V.; Cardone, C.; Matrone, N.; Ciardiello, F.; Troiani, T. Antitumor Efficacy of Triple Monoclonal Antibody Inhibition of Epidermal Growth Factor Receptor (EGFR) with MM151 in EGFR-Dependent and in Cetuximab-Resistant Human Colorectal Cancer Cells. Oncotarget 2017, 8, 82773–82783. [Google Scholar] [CrossRef] [Green Version]
- Kearns, J.D.; Bukhalid, R.; Sevecka, M.; Tan, G.; Gerami-Moayed, N.; Werner, S.L.; Kohli, N.; Burenkova, O.; Sloss, C.M.; King, A.M.; et al. Enhanced Targeting of the EGFR Network with MM-151, an Oligoclonal Anti-EGFR Antibody Therapeutic. Mol. Cancer Ther. 2015, 14, 1625–1636. [Google Scholar] [CrossRef] [Green Version]
- Nayak, S.U.; Griffiss, J.M.; McKenzie, R.; Fuchs, E.J.; Jurao, R.A.; An, A.T.; Ahene, A.; Tomic, M.; Hendrix, C.W.; Zenilman, J.M. Safety and Pharmacokinetics of XOMA 3AB, a Novel Mixture of Three Monoclonal Antibodies against Botulinum Toxin A. Antimicrob. Agents Chemother. 2014, 58, 5047–5053. [Google Scholar] [CrossRef] [Green Version]
- Krieg, D.; Berner, C.; Winter, G.; Svilenov, H.L. Biophysical Characterization of Binary Therapeutic Monoclonal Antibody Mixtures. Mol. Pharm. 2020, 17, 2971–2986. [Google Scholar] [CrossRef]
- de Kruif, J.; Kramer, A.; Nijhuis, R.; van der Zande, V.; den Blanken, R.; Clements, C.; Visser, T.; Keehnen, R.; den Hartog, M.; Throsby, M.; et al. Generation of Stable Cell Clones Expressing Mixtures of Human Antibodies. Biotechnol. Bioeng. 2010, 106, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Logtenberg, T. Antibody Cocktails: Next-Generation Biopharmaceuticals with Improved Potency. Trends Biotechnol. 2007, 25, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Geuijen, C.A.W.; De Nardis, C.; Maussang, D.; Rovers, E.; Gallenne, T.; Hendriks, L.J.A.; Visser, T.; Nijhuis, R.; Logtenberg, T.; de Kruif, J.; et al. Unbiased Combinatorial Screening Identifies a Bispecific IgG1 That Potently Inhibits HER3 Signaling via HER2-Guided Ligand Blockade. Cancer Cell 2018, 33, 922–936.e10. [Google Scholar] [CrossRef] [Green Version]
- De Nardis, C.; Hendriks, L.J.A.; Poirier, E.; Arvinte, T.; Gros, P.; Bakker, A.B.H.; de Kruif, J. A New Approach for Generating Bispecific Antibodies Based on a Common Light Chain Format and the Stable Architecture of Human Immunoglobulin G1. J. Biol. Chem. 2017, 292, 14706–14717. [Google Scholar] [CrossRef] [Green Version]
- van Loo, P.F.; Hangalapura, B.N.; Thordardottir, S.; Gibbins, J.D.; Veninga, H.; Hendriks, L.J.A.; Kramer, A.; Roovers, R.C.; Leenders, M.; de Kruif, J.; et al. MCLA-117, a CLEC12AxCD3 Bispecific Antibody Targeting a Leukaemic Stem Cell Antigen, Induces T Cell-Mediated AML Blast Lysis. Expert Opin. Biol. Ther. 2019, 19, 721–733. [Google Scholar] [CrossRef]
- Rasmussen, S.K.; Nielsen, L.S.; Müller, C.; Bouquin, T.; Næsted, H.; Mønster, N.T.; Nygaard, F.; Weilguny, D.; Frandsen, T.P.; Tolstrup, A.B. Recombinant Antibody Mixtures; Optimization of Cell Line Generation and Single-Batch Manufacturing Processes. BMC Proc. 2011, 5 (Suppl. 8), O2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiberg, F.C.; Rasmussen, S.K.; Frandsen, T.P.; Rasmussen, L.K.; Tengbjerg, K.; Coljee, V.W.; Sharon, J.; Yang, C.-Y.; Bregenholt, S.; Nielsen, L.S.; et al. Production of Target-Specific Recombinant Human Polyclonal Antibodies in Mammalian Cells. Biotechnol. Bioeng. 2006, 94, 396–405. [Google Scholar] [CrossRef]
- Francis, D.M.; Huang, S.; Armstrong, E.A.; Werner, L.R.; Hullett, C.; Li, C.; Morris, Z.S.; Swick, A.D.; Kragh, M.; Lantto, J.; et al. Pan-HER Inhibitor Augments Radiation Response in Human Lung and Head and Neck Cancer Models. Clin. Cancer Res. 2016, 22, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Ellebaek, S.; Brix, S.; Grandal, M.; Lantto, J.; Horak, I.D.; Kragh, M.; Poulsen, T.T. Pan-HER-An Antibody Mixture Targeting EGFR, HER2 and HER3 Abrogates Preformed and Ligand-Induced EGFR Homo- and Heterodimers. Int. J. Cancer 2016, 139, 2095–2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, T.P.; Choi, D.S.; Anselme, A.C.; Qian, W.; Chen, W.; Lantto, J.; Horak, I.D.; Kragh, M.; Chang, J.C.; Rosato, R.R. Simultaneous Targeting of HER Family Pro-Survival Signaling with Pan-HER Antibody Mixture Is Highly Effective in TNBC: A Preclinical Trial with PDXs. Breast Cancer Res. 2020, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Boune, S.; Hu, P.; Epstein, A.L.; Khawli, L.A. Principles of N-Linked Glycosylation Variations of IgG-Based Therapeutics: Pharmacokinetic and Functional Considerations. Antibodies 2020, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H. Characterization of Glycosylation in Monoclonal Antibodies and Its Importance in Therapeutic Antibody Development. Crit. Rev. Biotechnol. 2021, 41, 300–315. [Google Scholar] [CrossRef]
- Feng, L.; Chen, L.; Murphy, A.; Jacobstein, J.; Lewis, S. Patenting Antibody Combination Therapies. Antib. Ther. 2020, 3, 265–270. [Google Scholar] [CrossRef]
- Chon, J.H.; Zarbis-Papastoitsis, G. Advances in the Production and Downstream Processing of Antibodies. N. Biotechnol. 2011, 28, 458–463. [Google Scholar] [CrossRef]
- Rasmussen, S.K.; Næsted, H.; Müller, C.; Tolstrup, A.B.; Frandsen, T.P. Recombinant Antibody Mixtures: Production Strategies and Cost Considerations. Arch. Biochem. Biophys. 2012, 526, 139–145. [Google Scholar] [CrossRef]
- Kojima, T.; Yamazaki, K.; Kato, K.; Muro, K.; Hara, H.; Chin, K.; Goddemeier, T.; Kuffel, S.; Watanabe, M.; Doi, T. Phase I Dose-Escalation Trial of Sym004, an Anti-EGFR Antibody Mixture, in Japanese Patients with Advanced Solid Tumors. Cancer Sci. 2018, 109, 3253–3262. [Google Scholar] [CrossRef] [Green Version]
- Lieu, C.H.; Harb, W.A.; Beeram, M.; Power, L.; Kearns, J.D.; Nering, R.; Moyo, V.M.; Wolf, B.B.; Adjei, A.A. Phase 1 Trial of MM-151, a Novel Oligoclonal Anti-EGFR Antibody Combination in Patients with Refractory Solid Tumors. JCO 2014, 32, 2518. [Google Scholar] [CrossRef]
- Corraliza-Gorjón, I.; Somovilla-Crespo, B.; Santamaria, S.; Garcia-Sanz, J.A.; Kremer, L. New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness. Front. Immunol. 2017, 8, 1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, A.; Lawson, D.H.; Salama, A.K.S.; Koon, H.B.; Guthrie, T.; Thomas, S.S.; O’Day, S.J.; Shaheen, M.F.; Zhang, B.; Francis, S.; et al. Phase II Study of Vemurafenib Followed by Ipilimumab in Patients with Previously Untreated BRAF-Mutated Metastatic Melanoma. J. Immunother. Cancer 2016, 4, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosi, D.; Pérez-Gracia, E.; Atis, S.; Vié, N.; Combès, E.; Gabanou, M.; Larbouret, C.; Jarlier, M.; Mollevi, C.; Torro, A.; et al. Rational Development of Synergistic Combinations of Chemotherapy and Molecular Targeted Agents for Colorectal Cancer Treatment. BMC Cancer 2018, 18, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosi, D.; Laghzali, Y.; Vinches, M.; Alexandre, M.; Homicsko, K.; Fasolo, A.; Del Conte, G.; Durigova, A.; Hayaoui, N.; Gourgou, S.; et al. Clinical Development Strategies and Outcomes in First-in-Human Trials of Monoclonal Antibodies. J. Clin. Oncol. 2015, 33, 2158–2165. [Google Scholar] [CrossRef]
- Viala, M.; Vinches, M.; Alexandre, M.; Mollevi, C.; Durigova, A.; Hayaoui, N.; Homicsko, K.; Cuenant, A.; Gongora, C.; Gianni, L.; et al. Strategies for Clinical Development of Monoclonal Antibodies beyond First-in-Human Trials: Tested Doses and Rationale for Dose Selection. Br. J. Cancer 2018, 118, 679–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Drug Combination | Antibody Targets | Major Tumor Types | ClinicalTrial.gov Identifier (NTC0) |
---|---|---|---|
Anti-PD-1 + ADG106 | PD-1 + CD137 | Solid cancers, NHL | 4775680 |
Anti-PD-1 + LYT-200 | PD-1 + galectin 9 | Solid cancers | 4666688 |
Anti-PD-1 + TJ004309 | PD-1 + CD73 | Solid cancers | 4322006 |
Anti-PD-L1 + IMC-F106C | PD-L1 + CD3/PRAME (BsAb) | PRAME-cancers | 4262466 |
Atezolizumab + ado-trastuzumab emtansine | PD-L1 + HER2 (ADC) | Breast cancer | 2924883 |
Atezolizumab + anetumab ravtansine | PD-L1 + mesothelin (ADC) | NSCLC | 3455556 |
Atezolizumab + daratumumab | PD-L1 + CD38 | NSCLC | 3023423 |
Atezolizumab + isatixumab | PD-L1 + CD38 | Solid cancers | 3637764 |
Atezolizumab + KY1044 | PD-L1 + ICOS | Solid cancers | 3829501 |
Atezolizumab + mosunetuzumab | PD-L1 + CD20/CD3 (BsAb) | NHL, CLL | 2500407 |
Atezolizumab + obinutuzumab + CT | PD-L1 + CD20 | FL | 2596971 |
Atezolizumab + obinutuzumab + ibrutinib | PD-L1 + CD20 | CLL | 2846623 |
Atezolizumab + obinutuzumab + lenalidomide | PD-L1 + CD20 | FL | 2631577 |
Atezolizumab + obinutuzumab + polatuzumab vedo, Atezolizumab + rituximab + polatuzumab vedo | PD-L1 + CD20 + CD79b (ADC), PD-L1 + CD20 + CD79b (ADC) | FL, DLBCL | 2729896 |
Atezolizumab + pertuzumab + trastuzumab | PDL-1 + HER2 + HER2 | Breast cancer | 3417544 |
Atezolizumab + RO6958688 | PD-L1 + CEA/CD3 (BsAb) | NSCLC | 3337698 |
Atezolizumab + tiragolumab Atezolizumab + tiragolumab + CT | PD-L1 + TIGIT PD-L1 + TIGIT | NSCLC Esophageal cancer | 3563716, 4294810 4540211 |
Atezolizumab + trastuzumab + CT | PD-L1 + HER2 | GC, GEJ | 4661150 |
Atezolizumab + trastuzumab + pertuzumab + CT | PD-L1 + HER2 + HER2 | Breast cancer | 3125928 |
Atezolizumab + tocilizumab | PD-L1 + IL-6R | Prostate cancer | 3821246 |
Atezolizumab + tocilizumab + RT | PD-L1 + IL-6R | Astrocytoma, GBM | 4729959 |
Avelumab + ivuxolimab, ivuxolimab + utomilumab, Avelumab + utomilumab | PD-L1 + OX40, OX40 + CD137, PD-L1 + CD137 | AML, breast cancer | 3390296, 3971409 |
Avelumab + utomilumab + rituximab | PD-L1 + CD137 + CD20 | DLBCL | 2951156 |
Avelumab + utomilumab, avelumab + PD-0360324, Avelumab + utomilumab + ivuxolimab | PD-L1 + CD137, PD-L1 + CSF1, PD-L1 + OX40 | Solid cancers | 2554812 |
Avelumab + utomilumab, Avelumab + ivuxolimab, Avelumab + utomilumab + ivuxolimab | PD-L1 + CD137, PD-L1 + OX40, PDL1 + CD137 + OX40 | Solidcancers | 3217747 |
Balstilimab + AGEN1181 | PD-1 + CTLA-4 | Solid cancers | 3860272 |
Balstilimab + zalifrelimab, Balstilimab + zalifrelimab + CT | PD-1 + CTLA-4 | Angiosarcoma, cervical cancer, bladder cancer | More than 3 trials |
BCD-217 + BCD-100 | CTLA-4 + PD-1 + PD-1 | Melanoma | 3913923 |
Bevacizumab + AK104 + CT | VEGF-A + PD-1/CTLA-4 (BsAb) | Cervical cancer | 4868708 |
Bevacizumab + atezolizumab | VEGF-A + PD-L1 | Solid cancers | More than 5 trials |
Bevacizumab + atezolizumab + CT | VEGF-A + PD-L1 | CRC, NSCLC, Breast cancer | More than 3 trials |
Bevacizumab + atezolizumab + eganelisib | VEGF-A + PD-L1 | Breast cancer | 3961698 |
Bevacizumab + atezolizumab + endocrine ther. | VEGF-A + PD-L1 | Breast cancer | 3280563 |
Bevacizumab + atezolizumab + entinostat | VEGF-A + PD-L1 | RCC | 3024437 |
Bevacizumab + atezolizumab + ipatasertib | VEGF-A + PD-L1 | Breast, ovarian cancer | 3395899, 3363867 |
Bevacizumab + atezolizumab, Atezolizumab + ladiratuzumab vedotin | VEGF-A + PD-L1, PD-L1 + LIV-1 (ADC) | Breast cancer | 3424005 |
Bevacizumab + avelumab + Ad-CEA vax + CT | VEGF-A + PD-L1 | CRC | 3050814 |
Bevacizumab + BCD-100 + CT | VEGF-A + PD-1 | Cervical cancer | 3912402, 3912415 |
Bevacizumab + brentuximab vedotin | VEGF-A + CD30 (ADC) | Germ cell tumor | 2988843 |
Bevacizumab + camrelizumab | VEGF-A + PD-1 | GTD | 4812002 |
Bevacizumab + carotuximab | VEGF-A + endoglin | GTD | 2664961 |
Bevacizumab + cetuximab + CT | VEGF-A + EGFR | CRC | 0265850 |
Bevacizumab + durvalumab + CT | VEGF-A + PD-L1 | Ovarian cancer | 3737643 |
Bevacizumab + pembrolizumab | VEGF-A + PD-1 | RCC | 2348008 |
BI-1206 + CD20 Ab | CD32b + CD20 | BCL | 2933320 |
Cemiplimab + isatuximab | PD-1 + CD38 | MM, lymphoma | 3194867, 3769181 |
Cemiplimab + REGN5668, Ubamatamab + REGN5668 | PD-1 + MUC16/CD28 (BsAb) MUC16/CD3 + MUC16/CD28 | Ovarian cancer | 4590326 3564340 |
Cemiplimab + REGN7075 | PD-1 + EGFR/CD28 (BsAb) | Solid cancers | 4626635 |
Cemiplimab + SAR439459 | PD-1 + TGFβ | Solid cancers | 3192345 |
Cetrelimab + daratumumab | PD-1 + CD38 | Solid cancers | 3547037 |
Cetuximab + avelumab | EGFR + PD-L1 | HNSCC | 3494322 |
Cetuximab + Hu5F9-G4 | EGFR + CD47 | CRC | 2953782 |
CX-2009 + CX-072 | CD166 (PDC) + PD-1 (PDC) | Breast cancer | 4596150 |
Dostarlimab + cobolimab | PD-1 + TIM3 | HCC | 3680508 |
Durvalumab + axatilimab | PD-L1 + CSF1-R | CC | 4301778 |
Durvalumab + daratumumab | PD-L1 + CD38 | MM | 2807454 |
Durvalumab + cetuximab + RT | PD-L1 + EGFR | HNSCC | 3051906 |
Durvalumab + monalizumab | PD-L1 + NKG2A | NSCLC | 3822351, 3794544 |
Durvalumab + oleclumab, Durvalumab + oleclumab + RT | PD-L1 + CD73 | Breast cancer, NSCLC | 3875573, 3822351, 3794544 |
Durvalumab + rituximab | PD-L1 + CD20 | Lymphoma, CLL | 2733042 |
Enoblituzumab + retifenlimab, Retifenlimab + MGC018 Enoblituzumab + tebotelimab | B7-H3 + PD-1, PD-1 + B7-H3 (ADC) B7-H3 + PD-1/LAG-3 (DART) | HNC, solid cancers | 4633485, 3729596 |
Iodine-131 tositumomab + rituximab + CT | CD20 + CD20 | NHL | 0770224 |
Ipilimumab + cemiplimab + CT | CTLA-4 + PD-1 | NSCLC | 3409614, 3430063 |
Ipilimumab + envafolimab | CTLA-4 + PD-L1 | Sarcoma | 4480502 |
Ipilimumab + nivolumab | CTLA-4 + PD-1 | Solid/hematological cancers | More than 60 trials |
Ipilimumab + nivolumab + CT | CTLA-4 + PD-1 | Sarcoma, NSCLC, TCC | 3138161, 3215706, 3036098 |
Ipilimumab + nivolumab + DC-based vaccine | CTLA-4 + PD-1 | SCLC, RCC | 3406715, 4203901 |
Ipilimumab + nivolumab + epacadostat, Nivolumab + lirilumab + epacadostat | CTLA-4 + PD-1, PD-1 + KIR | Solid cancers | 3347123 |
Ipilimumab + nivolumab + TKIs | CTLA-4 + PD-1 | Melanoma | 4655157 |
Ipilimumab + nivolumab + glembatumumab vedotin | CTLA-4 + PD-1 + GPNMB (ADC) | Solid cancers | 3326258 |
Ipilimumab + nivolumab + ragilifimab, Ragilifimab + ipilimumab, Ragilifimab + nivolumab | CTLA-4 + PD-1 + GITR, GITR + CTLA-4, GITR + PD-1 | Solid cancers | 3126110 |
Ipilimumab + nivolumab + lirilumab, Nivolumab + lirilumab | CTLA-4 + PD-1 + KIR, PD-1 + KIR | Solid cancers | 1714739 |
Ipilimumab + nivolumab + panitumumab | CTLA-4 + PD-1 + EGFR | CRC | 3442569 |
Ipilimumab + nivolumab + prednisolone | CTLA-4 + PD-1 | Melanoma | 3563729 |
Ipilimumab + nivolumab + RT | CTLA-4 + PD-1 | NSCLC, PDAC, OSCC | More than 3 trials |
Ipilimumab + nivolumab + IT-hu14,18-IL2 +RT | CTLA-4 + PD-1 + GD2-IL2 (IC) | Melanoma | 3958383 |
Ipilimumab + nivolumab + TKIs | CTLA-4 + PD-1 | CRC, NSCLC | More than 3 trials |
Ipilimumab + nivolumab + trastuzumab, Nivolumab + trastuzumab + CT | CTLA-4 + PD-1 + HER2, PD-1 + HER2 | GC | 3409848 |
Ipilimumab + nivolumab, nivolumab + BMS-986016, Nivolumab + daratumumab | CTLA-4 + PD-1, PD-1 + LAG3, PD-1 + CD38 | CRC | 2060188 |
Ipilimumab + nivolumab, nivolumab + lirilumab, Nivolumab + daratumumab | CTLA-4 + PD-1, PD-1 + KIR, PD-1 + CD38 | Hematological cancers | 1592370 |
Ipilimumab + pembrolizumab | CTLA-4 + PD-1 | Melanoma | 2743819 |
Ipilimumab + vopratelimab | CTLA-4 + ICOS | NSCLC, UC | 3989362 |
Magrolimab + mogamulizumab | CD47 + CCR4 | T-cell lymphoma | 4541017 |
MGD007 + retifanlimab | gpA33/CD3 (DART) + PD-1 | CRC | 3531632 |
Margetuximab + retifanlimab +/− CT Margetuximab + tebotelimab + CT | HER2 + PD-1 HER2 + PD-1/LAG-3 (DART) | GC, GEJ | 4082364 |
Nivolumab + andecaliximab | PD1 + MMP9 | GC, GEJ | 2864381 |
Nivolumab + anetumab ravtansine, Nivolumab + ipilimumab + anetumab ravtansine +/− CT | PD-1 + mesothelin (ADC), PD-1 + mesothelin (ADC) + CTLA-4 | PDAC | 3816358 |
Nivolumab + bevacizumab Nivolumab + bevacizumab + RT | PD-1 + VEGF-A | Ovarian, peritoneal cancer, GBM | 2873962 3743662 |
Nivolumab + BA3011 | PD-1 + AXL (CAB-ADC) | NSCLC | 4681131 |
Nivolumab + blinatumomab | PD-1 + CD3/CD19 (BsAb) | B-ALL | 4546399 |
Nivolumab + BMS-986012 +/− CT | PD-1 + fucosyl-GM1 | SCLC | 2247349, 4702880 |
Nivolumab + BMS-986179 | PD-1 + CD73 | Solid cancers | 2754141 |
Nivolumab + BMS-986207 + COM701 | PD-1 + TIGIT + PVRIG | Solid cancers | 4570839 |
Nivolumab + BMS-986218 | PD-1 + CTLA-4 | Solid cancers | 3110107, 4785287 |
Nivolumab + BMS-986249 | PD-1 + CTLA-4 (PDC) | Solid cancers | 3369223 |
Nivolumab + BMS-986253 | PD-1 + IL-8 | Solid cancers | 3400332, 3689699 |
Nivolumab + brentuximab vedotin | PD-1 + CD30 (ADC) | HL, NHL | 2572167, 2581631 |
Nivolumab + elotuzumab | PD-1 + SLAMF7 | MM | 2612779, 3227432 |
Nivolumab + etigilimab | PD-1 + TIGIT | Solid cancers | 4761198 |
Nivolumab + nimotuzumab | PD-1 + EGFR | NSCLC | 2947386 |
Nivolumab + oregovomab | PD-1 + CA125 | Ovarian cancer | 3100006 |
Nivolumab + relatlimab | PD-1 + LAG-3 | Solid cancers, melanoma, HNSCC, CRC | More than 3 trials |
Nivolumab + rituximab + CT | PD-1 + CD20 | DLBCL | 3259529 |
Nivolumab + rituximab + lenalidomide | PD-1 + CD20 | DLBCL, CNS lymphoma | 3558750 |
Nivolumab + sotigalimab | PD-1 + CD40 | Melanoma, NSCLC | 3123783 |
Nivolumab + sotigalimab + cabiralizumab | PD-1 + CD40 + CSF1R | Melanoma, NSCLC, RCC | 3502330 |
Nivolumab + urelumab | PD-1 + CD137 | Solid cancers, NHL, TCC | 2253992 |
Nivolumab + varlilumab | PD-1 + CD27 | Solid cancers, BCL | 2335918, 3038672 |
Nivolumab and/or ipilimumab + BMS-986178 | PD-1 and/or CTLA-4 + OX40 | Solid cancers | 2737475 |
Nivolumab or pembrolizumab + glembatumumab vedotin, Glembatumumab vedotin + varlilumab | PD-1 + GPNMB (ADC), GPNMB (ADC) + CD27 | Melanoma | 2302339 |
Obinutuzumab + glofitamab + CD19-CAR-T Obinutuzumab + glofitamab | CD20 + CD20/CD3 (BsAb)+CD19, CD20 + CD20/CD3 (BsAb) | DLBCL, Lymphomas | 4889716 4703686 |
Obinutuzumab + polatuzumab vedotin | CD20 + CD79b (ADC) | NHL | 1691898 |
Obinutuzumab + polatuzumab vedotin + CT, Rituximab + polatuzumab vedotin + CT | CD20 + CD79b (ADC), CD20 + CD79b (ADC) | FL, DLBCL | 2600897, 2611323 |
Pembrolizumab + anetumab ravtansine | PD-1 + mesothelin (ADC) | Mesothelioma | 3126630 |
Pembrolizumab + bavituximab | PD-1 + phosphatidylserine | HCC | 3519997 |
Pembrolizumab + BDC-1001 | PD-1 + HER2 (ISAC) | HER2+ cancers | 4278144 |
Pembrolizumab + BI-1206 | PD-1 + CD32b | Solid cancers | 4219254 |
Pembrolizumab + BI-1808 | PD-1 + TNFR2 | Solid cancers | 4752826 |
Pembrolizumab + brentuximab vedotin | PD-1 + CD30 (ADC) | T-cell lymphoma | 4795869 |
Pembrolizumab + canakinumab + CT | PD-1 + IL-1b | NSCLC | 3631199 |
Pembrolizumab + cetuximab Pembrolizumab + trastuzumab, Pembrolizumab + ado-trastuzumab emtansine | PD-1 + EGFR PD-1 + HER2, PD-1 + HER2 (ADC) | Solid cancers, HNSCC | 2318901, 3082534 |
Pembrolizumab + feladilimab +/− CT | PD-1 + ICOS | HNSCC | 4428333, 4128696 |
Pembrolizumab + mirvetuximab soravtansine | PD-1 + FRα (ADC) | Endometrial cancer | 3835819 |
Pembrolizumab + mogamulizumab | PD-1 + CCR4 | Lymphoma | 3309878 |
Pembrolizumab + NP137 | PD-1 + Netrin-1 | Gynecological cancer | 4652076 |
Pembrolizumab + quavonlimab, Pembrolizumab + vibostolimab, Pembro + quavonlimab + vibostolimab | PD-1 + CTLA-4, PD-1 + TIGIT, PD-1 + CTLA-4 + TIGIT | Melanoma | 4305054, 4305041, 4303169 |
Pembrolizumab + sotigalimab | PD-1 + CD40 | Melanoma | 2706353 |
Pembrolizumab + vilobelimab | PD-1 + C5a | SCC | 4812535 |
Pembrolizumab + vofatamab | PD-1 + FGFR3 | TCC | 3123055 |
Rituximab + belimumab | CD20 + BAFF | CSC | 3844061 |
Rituximab + BI-1206 | CD20 + CD32b | NHL | 3571568 |
Rituximab + Hu5F9-G4 | CD20 + CD47 | NHL | 2953509 |
Rituximab + ibritumomab tiuxetan | CD20 + CD20 (ARC) | NHL | 732498 |
Rituximab + ibritumomab tiuxetan + CT | CD20 + CD20 (ARC) | FL, NHL | 372905 |
Serplulimab + HLX04 +/− CT | PD-1 + VEGF-A | CRC, HCC, NSCLC | More than 3 trials |
Serplulimab + HLX07 | PD-1 + EGFR | HNC | 4297995 |
Sintilimab + camrelizumab +/− apatinib +/− CT | PD-1 + PD-1 | Solid cancers | 4282278 |
Sintilimab + IBI305 | PD-1 + VEGF-A | HCC | 3794440 |
Sintilimab + IBI310 | PD-1 + CTLA-4 | Cervical cancer, CRC | 4590599, 4258111 |
Spartalizumab + lacnotuzumab | PD-1 + CSF1 | ESCC | 3785496 |
Spartalizumab + LAG525 | PD-1 + LAG-3 | Solid and hematological cancers, breast cancer | 3499899, 2460224, 3365791 |
Spartalizumab + MBG454 | PD-1 + TIM-3 | Solid cancers | 2608268 |
Spartalizumab + NIS793 +/− CT | PD-1 + TGF-β | Solid cancers, PDAC | 4390763, 2947165 |
Tislelizumab + BGB-A425 | PD-1 + TIM-3 | Solid cancers | 3744468 |
Tislelizumab + garivulimab | PD-1 + PD-L1 | Solid cancers | 3379259, 4702009 |
Tislelizumab + ociperlimab | PD-1 + TIGIT | Lung cancer, ESCC | 4746924, 4732494, 4693234 |
Tislelizumab + zanidatamab + CT | PD-1 + HER2/HER2 (BsAb) | Breast, GC, GEJ | 4276493 |
Tocilizumab + CC-1 | IL-6R + PSMA/CD3 (BsAb) | SCC | 4496674 |
Toripalimab + YH003 | PD-1 + CD40 | Solid cancers | 4481009 |
Trastuzumab + avelumab + CT, Trastuzumab + avelumab + utomilumab +/− CT | HER2 + PD-L1, HER2 + PD-L1 + CD137 | Breast cancer | 3414658 |
Trastuzumab + camrelizumab + CT | HER2 + PD-1 | GC, GEJ | 3950271 |
Trastuzumab + envafolimab | HER2 + PD-L1 | Breast cancer | 4043195 |
Trastuzumab + necitumumab + osimertinib | HER2 + HER2 | NSCLC | 4285671 |
Trastuzumab + pembrolizumab + CT | HER2 + PD-1 | GC | 2901301 |
Trastuzumab + pertuzumab | HER2 + HER2 | Breast cancer | 2625441 |
Trastuzumab + pertuzumab + CT | HER2 + HER2 | Breast cancer | 1796197, 2402712 |
Trastuzumab + pertuzumab + copanlisib | HER2 + HER2 | Breast cancer | 4108858 |
Trastuzumab + pertuzumab + durvalumab | HER2 + HER2 + PD-L1 | Breast cancer | 3820141 |
Trastuzumab + QL1209 + CT | HER2 + HER2 | Breast cancer | 4629846 |
Trastuzumab deruxtecan + durvalumab + CT, Trastuzumab deruxtecan + pertuzumab | HER2 (ADC) + PD-L1, HER2 (ADC) + HER2 | Breast cancer | 4538742 |
Trastuzumab + zenocutuzumab +/− CT | HER2 + HER2/HER3 (BsAb) | Breast cancer | 3321981 |
Tremelimumab + durvalumab | CTLA-4 + PD-L1 | Solid cancers | More than 25 trials |
Tremelimumab + durvalumab + CT | CTLA-4 + PD-L1 | HNSCC, CRC, SCLC | 3019003, 3202758, 3043872 |
Tremelimumab + durvalumab + hormone | CTLA-4 + PD-L1 | Breast cancer | 3430466 |
Tremelimumab + durvalumab + IMCgp100 | CTLA-4 + PD-L1 | Melanoma | 2535078 |
Tremelimumab + durvalumab + olaparib | CTLA-4 + PD-L1 | Ovarian, peritoneal cancer | 2953457 |
Tremelimumab + durvalumab + proton therapy | CTLA-4 + PD-L1 | HNSCC | 3450967 |
Tremelimumab + durvalumab + RT | CTLA-4 + PD-L1 | PDAC, HNSCC, HCC, CRC | More than 3 trials |
Tremelimumab + feladilimab | CTLA-4 + ICOS | Solid cancers | 3693612 |
Tripleitriumab + QL1101 | PD-1 + VEGF-A | CRC | 4527068 |
Zimberelimab + Domvanalimab | PD-1 + TIGIT | NSCLC, SCC, Lung cancer | 4736173, 4262856 |
Clinical Indication | Antibody | Formulation | Target | Clinical Trial | Date |
---|---|---|---|---|---|
Colorectal cancer/lung cancer | MM-151 | Single co-formulation | 3 × EGFR | Phase I * | 2015 |
Colorectal cancer/lung cancer | MM-151 + MM-121 | Sequential administration | 3 × EGFR + HER3 | Phase I * | 2015 |
Colorectal cancer/glioblastoma | Sym004: futuximab + modotuximab | Single co-formulation | 2 × EGFR | Phase II | 2018 |
Epithelial cancers | Sym013 | Single batch | 2 × EGFR + 2 × HER2 + 2 × HER3 | Phase II * | 2016 |
c-MET amplified tumors | Sym015 | Single batch | 2 × cMET | Phase II | 2016 |
Breast cancer | Trastuzumab + Pertuzumab +Hyal ** | Single co-formulation | 2 × HER2 | Approval | 2020 |
Benefits | Questions |
---|---|
Multi-epitope targeting | Manufacturing of antibody mixtures |
Biological synergistic effects | Cost |
Aggregation | Regulatory affairs |
Activation/inhibition of immune responses | Toxicities |
Activation/inhibition of signaling | Different PKC for each antibody drug substance * |
Target elimination | Stoichiometry of antibody drug substances |
Avoiding drug resistance | Dose, timing and treatment schedule |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larbouret, C.; Gros, L.; Pèlegrin, A.; Chardès, T. Improving Biologics’ Effectiveness in Clinical Oncology: From the Combination of Two Monoclonal Antibodies to Oligoclonal Antibody Mixtures. Cancers 2021, 13, 4620. https://doi.org/10.3390/cancers13184620
Larbouret C, Gros L, Pèlegrin A, Chardès T. Improving Biologics’ Effectiveness in Clinical Oncology: From the Combination of Two Monoclonal Antibodies to Oligoclonal Antibody Mixtures. Cancers. 2021; 13(18):4620. https://doi.org/10.3390/cancers13184620
Chicago/Turabian StyleLarbouret, Christel, Laurent Gros, André Pèlegrin, and Thierry Chardès. 2021. "Improving Biologics’ Effectiveness in Clinical Oncology: From the Combination of Two Monoclonal Antibodies to Oligoclonal Antibody Mixtures" Cancers 13, no. 18: 4620. https://doi.org/10.3390/cancers13184620