The Gut Microbiome and Cancer Immunotherapy: Can We Use the Gut Microbiome as a Predictive Biomarker for Clinical Response in Cancer Immunotherapy?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Method
3. Results
α-Diversity | Number and Evenness of Distribution of Taxa within a Given Sample |
β-diversity | The difference in diversity of taxa from one sample to another, i.e., the number of taxa that are not the same (or not similarly distributed) in two different samples. |
16S rRNA gene sequencing | Sequencing of the 16S rRNA marker gene |
Metagenomic sequencing | Sequencing of the entire metagenome (all the genetic material in a sample), also allowing analysis of the functional capacity of the microbiome |
3.1. Characteristics of Clinical Studies
3.2. The Gut Microbiome Profile Prior to ICIs Is Related to Efficacy of Immunotherapy: Tumor PFS and OS
3.3. Melanoma
3.4. Hepatocellular Carcinoma (HCC)
3.5. NSCLC
3.6. GI Toxicity
3.7. Effect of the Gut Microbiome Modulation: FMT on Advanced Melanoma Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaur, A.; Doberstein, T.; Amberker, R.R.; Garje, R.; Field, E.; Singh, N. Immune-related adverse events in cancer patients treated with immune checkpoint inhibitors. Medicina 2019, 98, e17348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruger, S.; Ilmer, M.; Kobold, S.; Cadilha, B.L.; Endres, S.; Ormanns, S.; Schuebbe, G.; Renz, B.W.; D’Haese, J.G.; Schloesser, H.; et al. Advances in cancer immunotherapy 2019—latest trends. J. Exp. Clin. Cancer Res. 2019, 38, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cramer, P.; Bresalier, R.S. Gastrointestinal and Hepatic Complications of Immune Checkpoint Inhibitors. Curr. Gastroenterol. Rep. 2017, 19, 3. [Google Scholar] [CrossRef]
- Benmebarek, M.-R.; Karches, C.H.; Cadilha, B.L.; Lesch, S.; Endres, S.; Kobold, S. Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. Int. J. Mol. Sci. 2019, 20, 1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brentjens, R.J.; Davila, M.L.; Riviere, I.; Park, J.; Wang, X.; Cowell, L.G.; Bartido, S.; Stefanski, J.; Taylor, C.; Olszewska, M.; et al. CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci. Transl. Med. 2013, 5, 177ra38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CAR T-cell therapy for solid tumours. Lancet Oncol. 2021, 22, 893. [CrossRef]
- Halsey, T.; Ologun, G.; Wargo, J.; Jenq, R.R. Uncovering the role of the gut microbiota in immune checkpoint blockade therapy: A mini-review. Semin. Hematol. 2020, 57, 13–18. [Google Scholar] [CrossRef]
- Peters, B.A.; Wilson, M.; Moran, U.; Pavlick, A.; Izsak, A.; Wechter, T.; Weber, J.; Osman, I.; Ahn, J. Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients. Genome Med. 2019, 11, 61. [Google Scholar] [CrossRef] [Green Version]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef]
- Horvat, T.; Adel, N.G.; Dang, T.-O.; Momtaz, P.; Postow, M.A.; Callahan, M.K.; Carvajal, R.D.; Dickson, M.A.; D’Angelo, S.P.; Woo, K.M.; et al. Immune-Related Adverse Events, Need for Systemic Immunosuppression, and Effects on Survival and Time to Treatment Failure in Patients With Melanoma Treated With Ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. 2015, 33, 3193–3198. [Google Scholar] [CrossRef] [Green Version]
- Athale, J.; Shah, N.N. Surviving the storm: Critical care outcomes of chimeric antigen receptor T-cell therapy. Lancet Haematol. 2021, 8, e311–e312. [Google Scholar] [CrossRef]
- Hills, J.R.D.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hieken, T.J.; Chen, J.; Hoskin, T.L.; Walther-Antonio, M.; Johnson, S.; Ramaker, S.; Xiao, J.; Radisky, D.C.; Knutson, K.L.; Kalari, K.; et al. The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease. Sci. Rep. 2016, 6, 30751. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q.; Du, H.; Cheng, X.; Cheng, X.; Tang, Y.; Pan, L.; Wang, Q.; Lin, J. Characteristics of fecal gut microbiota in patients with colorectal cancer at different stages and different sites. Oncol. Lett. 2019, 18, 4834–4844. [Google Scholar] [CrossRef] [Green Version]
- Shui, L.; Yang, X.; Li, J.; Yi, C.; Sun, Q.; Zhu, H. Gut Microbiome as a Potential Factor for Modulating Resistance to Cancer Immunotherapy. Front. Immunol. 2020, 10, 2989. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Li, M.; Liu, B.; Zhu, H.; Dai, Q.; Fan, X.; Mehta, K.; Huang, C.; Neupane, P.; Wang, F.; et al. Relating Gut Microbiome and Its Modulating Factors to Immunotherapy in Solid Tumors: A Systematic Review. Front. Oncol. 2021, 11, 760. [Google Scholar] [CrossRef]
- Kim, E.; Ahn, H.; Park, H. A review on the role of gut microbiota in immune checkpoint blockade therapy for cancer. Mamm. Genome 2021, 32, 223–231. [Google Scholar] [CrossRef]
- Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.-L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 2018, 359, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Frankel, A.E.; Coughlin, L.A.; Kim, J.; Froehlich, T.W.; Xie, Y.; Frenkel, E.P.; Koh, A. Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify Specific Human Gut Microbiota and Metabolites Associated with Immune Checkpoint Therapy Efficacy in Melanoma Patients. Neoplasia 2017, 19, 848–855. [Google Scholar] [CrossRef]
- Chaput, N.; Lepage, P.; Coutzac, C.; Soularue, E.; Le Roux, K.; Monot, C.; Boselli, L.; Routier, E.; Cassard, L.; Collins, M.; et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 2017, 28, 1368–1379. [Google Scholar] [CrossRef] [PubMed]
- Dubin, K.; Callahan, M.K.; Ren, B.; Khanin, R.; Viale, A.; Ling, L.; No, D.; Gobourne, A.; Littmann, E.; Huttenhower, C.; et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 2016, 7, 10391. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Ye, J. Characterization of gut microbiota in patients with primary hepatocellular carcinoma received immune checkpoint inhibitors. Medicine 2020, 99, e21788. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, T.; Tu, X.; Huang, Y.; Zhang, H.; Tan, D.; Jiang, W.; Cai, S.; Zhao, P.; Song, R.; et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J. Immunother. Cancer 2019, 7, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Dong, H.; Xia, L.; Yang, Y.; Zhu, Y.; Shen, Y.; Zheng, H.; Yao, C.; Wang, Y.; Lu, S. The Diversity of Gut Microbiome is Associated With Favorable Responses to Anti–Programmed Death 1 Immunotherapy in Chinese Patients With NSCLC. J. Thorac. Oncol. 2019, 14, 1378–1389. [Google Scholar] [CrossRef] [PubMed]
- Routy, B.; Le Chatelier, E.; DeRosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 2017, 359, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Baruch, E.N.; Youngster, I.; Ben-Betzalel, G.; Ortenberg, R.; Lahat, A.; Katz, L.; Adler, K.; Dick-Necula, D.; Raskin, S.; Bloch, N.; et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021, 371, 602–609. [Google Scholar] [CrossRef]
- Davar, D.; Dzutsev, A.K.; McCulloch, J.A.; Rodrigues, R.R.; Chauvin, J.-M.; Morrison, R.M.; Deblasio, R.N.; Menna, C.; Ding, Q.; Pagliano, O.; et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science 2021, 371, 595–602. [Google Scholar] [CrossRef]
- Aarnoutse, R.; Ziemons, J.; Penders, J.; Rensen, S.S.; De Vos-Geelen, J.; Smidt, M.L. The Clinical Link between Human Intestinal Microbiota and Systemic Cancer Therapy. Int. J. Mol. Sci. 2019, 20, 4145. [Google Scholar] [CrossRef] [Green Version]
- Ervin, S.M.; Ramanan, S.V.; Bhatt, A.P. Relationship Between the Gut Microbiome and Systemic Chemotherapy. Dig. Dis. Sci. 2020, 65, 874–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Secombe, K.R.; Coller, J.K.; Gibson, R.J.; Wardill, H.R.; Bowen, J.M. The bidirectional interaction of the gut microbiome and the innate immune system: Implications for chemotherapy-induced gastrointestinal toxicity. Int. J. Cancer 2019, 144, 2365–2376. [Google Scholar] [CrossRef] [PubMed]
- Oh, B.; Eade, T.; Lamoury, G.; Carroll, S.; Morgia, M.; Kneebone, A.; Hruby, G.; Stevens, M.; Boyle, F.; Clarke, S.; et al. The Gut Microbiome and Gastrointestinal Toxicities in Pelvic Radiation Therapy: A Clinical Review. Cancers 2021, 13, 2353. [Google Scholar] [CrossRef] [PubMed]
- Rezasoltani, S.; Yadegar, A.; Aghdaei, H.A.; Zali, M.R. Modulatory effects of gut microbiome in cancer immunotherapy: A novel paradigm for blockade of immune checkpoint inhibitors. Cancer Med. 2021, 10, 1141–1154. [Google Scholar] [CrossRef] [PubMed]
- Sims, T.T.; El Alam, M.B.; Karpinets, T.V.; Dorta-Estremera, S.; Hegde, V.L.; Nookala, S.; Yoshida-Court, K.; Wu, X.; Biegert, G.W.G.; Medrano, A.Y.D.; et al. Gut microbiome diversity is an independent predictor of survival in cervical cancer patients receiving chemoradiation. Commun. Biol. 2021, 4, 237. [Google Scholar] [CrossRef]
- Dahmus, J.D.; Kotler, D.L.; Kastenberg, D.M.; Kistler, C.A. The gut microbiome and colorectal cancer: A review of bacterial pathogenesis. J. Gastrointest. Oncol. 2018, 9, 769–777. [Google Scholar] [CrossRef]
- Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.L.; Tonini, G.; Libra, M. Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers 2019, 11, 38. [Google Scholar] [CrossRef] [Green Version]
- Baunwall, S.M.D.; Lee, M.M.; Eriksen, M.K.; Mullish, B.H.; Marchesi, J.R.; Dahlerup, J.F.; Hvas, C.L. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: An updated systematic review and meta-analysis. EClinicalMedicine 2020, 29–30, 100642. [Google Scholar] [CrossRef]
- Dembrovszky, F.; Gede, N.; Szakács, Z.; Hegyi, P.; Kiss, S.; Farkas, N.; Molnár, Z.; Imrei, M.; Dohos, D.; Péterfi, Z. Fecal Microbiota Transplantation May Be the Best Option in Treating Multiple Clostridioides difficile Infection: A Network Meta-Analysis. Infect. Dis. Ther. 2021, 10, 201–211. [Google Scholar] [CrossRef]
- Haifer, C.; Kelly, C.R.; Paramsothy, S.; Andresen, D.; Papanicolas, L.; McKew, G.L.; Borody, T.J.; Kamm, M.; Costello, S.P.; Andrews, J.M.; et al. Australian consensus statements for the regulation, production and use of faecal microbiota transplantation in clinical practice. Gut 2020, 69, 801–810. [Google Scholar] [CrossRef]
- Averitt, A.J.; Weng, C.; Ryan, P.; Perotte, A. Translating evidence into practice: Eligibility criteria fail to eliminate clinically significant differences between real-world and study populations. NPJ Digit. Med. 2020, 3, 1–10. [Google Scholar] [CrossRef]
- Stacey, D.; Bakker, D.; Ballantyne, B.; Chapman, K.; Cumminger, J.; Green, E.; Harrison, M.; Howell, R.; Kuziemsky, C.; MacKenzie, T.; et al. Managing symptoms during cancer treatments: Evaluating the implementation of evidence-informed remote support protocols. Implement. Sci. 2012, 7, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, S.; Bell, E.J.; Zheng, Y.; Kim, R.; White, J.; Devgan, G.; Smith, J.; Lal, L.S.; Engel-Nitz, N.M.; Liu, F.X. The Impact of Adverse Events on Health Care Resource Utilization, Costs, and Mortality Among Patients Treated with Immune Checkpoint Inhibitors. Oncology 2021, 26, e1205–e1215. [Google Scholar] [CrossRef]
- Armijo-Olivo, S.; Stiles, C.R.; Hagen, N.A.; Biondo, P.D.; Cummings, G.G. Assessment of study quality for systematic reviews: A comparison of the Cochrane Collaboration Risk of Bias Tool and the Effective Public Health Practice Project Quality Assessment Tool: Methodological research. J. Eval. Clin. Pr. 2010, 18, 12–18. [Google Scholar] [CrossRef] [PubMed]
Study Year Country | Cancer Type Sample Size (n) Male % | Immune Checkpoint Inhibitor (ICI) | Antibiotic Use | Sample Collection/ Analysis | Outcomes | Findings |
---|---|---|---|---|---|---|
Peters et al., [8] 2019 USA | Metastatic melanoma (n = 27) M: 78% | Anti–PD-1 (n = 14) Anti-CTLA-4 (n = 1) Anti–PD-1/Anti-CTLA-4 (n = 12) | ATB user prior to 6 months: 56% | Fecal 1x before Tx V4 region 16S rRNA gene/metagenome sequencing Metatranscriptome sequencing | PFS | Higher microbial diversity was associated with longer PFS. |
Matson et al., [18] 2018 USA | Metastatic melanoma (n = 42) | Anti–PD-1 (n = 38) Anti-CTLA-4 (n = 4) | Not specified ABT usage | Fecal 1x before ICI V4 region 16S rRNA gene/metagenomic sequencing | Clinical response FMT on mice | The commensal microbiota composition might be useful as a biomarker to predict response to checkpoint blockade therapy. |
Gopalakrishnan et al., [19] 2018 USA | Metastatic melanoma (n = 89) | Anti-PD-1 | ATB not reported | Fecal 2x before Tx and at 49 days V4 region 16S rRNA/Metagenomic sequencing | PFS OS FMT on mice | High diversity in the fecal microbiome had significantly prolonged PFS compared to those with intermediate or low diversity. |
Frankel et al., [20] 2017 USA | Metastatic melanoma (n = 39) Male 77% | CTLA-4 + PD-1 (n = 24) PD-1 (n = 1) CTLA-4 (n = 1) | ATB user (n = 3) prior to ICT or during | Fecal 1x baseline Metagenomic sequencing | Clinical response | Bacteroides caccae was enriched in all ICTs responders. Fecalibacterium prausnitzii, Bacteroides thetaiotamicron and Holdemania filiformis were high in CTLA-4 plus PD-1 responders. Dorea formicogenerans was enriched in PD-1 responders. |
Chaput et al., [21] 2017 France | Metastatic melanoma (n = 26) | CTLA-4 | Use of ATB documented before each CTLA-4 | Fecal 5x V3–V4 region 16S rRNA gene sequencing | PFS OS ICI-induced colitis | Baseline gut microbiota enriched with Fecalibacterium and other Firmicutes is associated with clinical response and CTLA-4 -induced enterocolitis. |
Dubin et al., [22] 2016 USA | Metastatic melanoma (n = 34) | CTLA-4 | No history of antibiotic use 2 months before ICI | Fecal 5x V4–V5 region/16S rRNA gene/ Metagenomic sequencing | ICI-induced colitis | Increased representation of bacteria belonging to the Bacteroidetes phylum is correlated with resistance to the development of ICI induced colitis. |
Li et al., [23] 2020 China | Metastatic HCC with HBV infection (n = 65) | Anti–PD-1 | Not reported | Fecal 2x pre-post ICI V4 region 16S rRNA gene sequencing | Clinical response PFS | Significant differences were observed in the diversity and composition of the patient gut microbiome of responders versus non-responders. |
Zheng et al., [24] 2019 | HCC (n = 8) | Anti-PD-1 | No ATB used | Fecal 4 x V3–V4 region, 16S rRNA gene/ Metagenomic sequencing | Clinical response | The gut microbiome profile might be used for early prediction of the six-month outcomes of anti-PD-1 immunotherapy in HCC at 3–6 weeks after treatment initiation. |
Jin et al., [25] 2019 China |
Advanced NSCLC (n = 37)
M: 78% | Anti-PD-1 Chemotherapy before ICI | ATB usage (n = 11) |
Fecal multiple times
V3–V4 region 16S rRNA gene sequencing | PFS | PFS was significantly prolonged in patients who harbored high-diversity microbiota when compared to the low-diversity group. α-diversity was positively correlated with several CD8+ T cell and NK cell signatures |
Routy et al., [26] 2018 France | NSCLC/RCC Advanced NSCLC (n = 60) Advanced RCC (n = 40) | Anti-PD-1 NSCLC: Nivolumab RCC: NIVOREN trial | 28% were prescribed ATB | Fecal 4x Metagenomic sequencing | PFS OS FMT on mice | Akkermansia muciniphila was significantly enriched in responders versus non-responders. |
Variation | Clinical Response | Cancer Type | ||||
---|---|---|---|---|---|---|
Response (R) | Non-Response (NR) | Melanoma | HCC | NSCLC | NSCLC and RCC | |
Diversity | ↑ Alpha diversity | ↓ Alpha diversity | Peters + Gopalakrishnan | Li + Zheng | Li + Zheng | |
Phylum | ↑ Firmicutes | Chaput | Li | Routy | ||
↑ Proteobacteria | Zheng | |||||
Order | ↑ Bacteroidales | Li | ||||
↓ Bacteroidales | ↑ Bacteroidales | Gopalakrishnan | ||||
↑ Clostridiales | Gopalakrishnan | Li | ||||
Family | ↑ Acidaminococcaceae | Frankel | ||||
↑ Bifidobacteriaceae | Matson | |||||
↑ Coriobacteriaceae | Frankel | |||||
↑ Lactobacillaceae | Frankel | |||||
↑ Lachnospiraceae | Chaput | Zheng | Jin | |||
↑ Ruminococcaceae | Gopalakrishnan + Chaput | Routy + Zheng | ||||
Genus | ↑ Akkermansia | Routy | ||||
↑ Alistipes | Routy | |||||
↑ Bacteroides | Peters + Chaput + Gopalakrishnan | |||||
↑ Blautia | Chaput | |||||
↑Bilophila | Peters | |||||
↑ Fecalibacterium | Gopalakrishnan + Peters + Chaput | Li | ||||
↑ Lachnobacterium | Jin | |||||
↑ Lactobacillus | Matson | |||||
↑ Parabacteroides | Peters | |||||
↑ Ruminococcus | Routy | |||||
↑ Shigella | Jin | |||||
Species | ↑Anaerotruncus colihominis | Gopalakrishnan | ||||
↑ Akkermansia muciniphila | Zheng | Routy | ||||
↑ Alistipes putredinis | Jin | |||||
↑ Alistipes spp. | Routy | |||||
↑ Bacteroides caccae | Frankel | |||||
↑ Bifidobacterium dentium | Zheng | |||||
↑ Bacteroides dorei | Peters | |||||
↑ Bacteriodes eggerthii | Frankel | Zheng | ||||
↑ Bacteroides fragilis | Chaput | |||||
↑ Bacteroides massiliensis | Peters | |||||
↑ Bacteroides nordii | Zheng | |||||
↑ Bacteroides ovatus | Peters | |||||
↑ Blautia producta | Peters | |||||
↑ Bacteroides thetaiotaomicron | Frankel | |||||
↑ Bacteroides hetaiotaomicron | Gopalakrishnan | |||||
↑ Bifidobacterium adolescentis | Matson | Routy | ||||
↑ Bifidobacterium longum | Matson | Jin | Routy | |||
↑ Blautia obeum | Matson | |||||
↑ Blautia obeum | Zheng | |||||
↑ Clostridium XIVa | Chaput | |||||
↑ Collinsella aerofaciens | Matson | |||||
↑ Coprococcus eutactus | Peters | |||||
↑ Dorea formicigenerans | Frankel | |||||
↑ Enterococcus faecium | Matson | |||||
↑ Escherichia coli | Gopalakrishnan | Zheng | ||||
↑ Eubacterium spp. | Routy | |||||
↑ Fecalibacterium prausnitzii | Peters + Frankel + Chaput + Gopalakrishnan | |||||
↑ Fusobacterium varium | Zheng | |||||
↑ Gemmiger formicilis | Chaput | |||||
↑ Holdemania filiformis | Frankel | |||||
↑ Klebsiella pneumoniae | Matson | |||||
↑ Lachnospiraceae bacterium 3 1 46FAA | Peters | |||||
↑ Lachnospiraceae bacterium 7_1_58FAA | Zheng | |||||
↑ Lactobacillus gasseri | Zheng | |||||
↑ Lactobacillus oris | Zheng | |||||
↑ Lactobacillus vaginalis | Zheng | |||||
↑ Lactobacillus. Mucosae | Zheng | |||||
↑ Parabacteroides distasonis | Routy | |||||
↑ Parabacteroides merdae | Matson | |||||
↑ Prevotella copri | Jin | |||||
↑ Roseburia intestinalis | Matson | |||||
↑ Ruminococcus bromii | Zheng | |||||
↑ Ruminococcus gnavus | Peters | |||||
↑ Ruminococcus spp. | Routy | |||||
↑ Ruminococcus_unclassified | Jin | |||||
↑ Slackia exigua | Frankel | |||||
↑ Streptococcus anginosus | Peters | |||||
↑ Streptococcus parasanguinis | Frankel | |||||
↑ Streptococcus sanguinis | Peters | |||||
↑ Streptococcus thermophiles | Zheng | |||||
↑ Veillonella parvula | Matson | |||||
↑ Prevotella stercorea | Peters | |||||
irAEs | Colitis | No colitis | ||||
↓ Diversity | ↓ Firmicutes | Chaput | ||||
↑ Fecalibacterium prausnitzii | ↑ Bacteroides | Chaput | ||||
↑ Firmicutes | ↑ Bacteroides fragilis | Chaput | ||||
↑ Gemmiger formicilis | ↑ Bacteroides uniformis, | Chaput | ||||
↓ Bacteroidetes | ↑ Bacteroides vulgatus | Chaput | ||||
↑ Bacteroidetes | Chaput + Dubin | |||||
↓ Blautia | ↑ Parabacteroides distasonis | Chaput | ||||
↓ Clostridium IV | Chaput | |||||
↓ Eubacterium, unclassified | Chaput | |||||
↓ Lachnospiraceae | Chaput | |||||
↓ Lachnospiracea incertae sedis | Chaput | |||||
↓ Ruminococcus | Chaput | |||||
↑Bacteroidaceae | Dubin | |||||
↑ Barnesiellaceae | Dubin | |||||
↑ Rikenellaceae | Dubin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, B.; Boyle, F.; Pavlakis, N.; Clarke, S.; Eade, T.; Hruby, G.; Lamoury, G.; Carroll, S.; Morgia, M.; Kneebone, A.; et al. The Gut Microbiome and Cancer Immunotherapy: Can We Use the Gut Microbiome as a Predictive Biomarker for Clinical Response in Cancer Immunotherapy? Cancers 2021, 13, 4824. https://doi.org/10.3390/cancers13194824
Oh B, Boyle F, Pavlakis N, Clarke S, Eade T, Hruby G, Lamoury G, Carroll S, Morgia M, Kneebone A, et al. The Gut Microbiome and Cancer Immunotherapy: Can We Use the Gut Microbiome as a Predictive Biomarker for Clinical Response in Cancer Immunotherapy? Cancers. 2021; 13(19):4824. https://doi.org/10.3390/cancers13194824
Chicago/Turabian StyleOh, Byeongsang, Frances Boyle, Nick Pavlakis, Stephen Clarke, Thomas Eade, George Hruby, Gillian Lamoury, Susan Carroll, Marita Morgia, Andrew Kneebone, and et al. 2021. "The Gut Microbiome and Cancer Immunotherapy: Can We Use the Gut Microbiome as a Predictive Biomarker for Clinical Response in Cancer Immunotherapy?" Cancers 13, no. 19: 4824. https://doi.org/10.3390/cancers13194824
APA StyleOh, B., Boyle, F., Pavlakis, N., Clarke, S., Eade, T., Hruby, G., Lamoury, G., Carroll, S., Morgia, M., Kneebone, A., Stevens, M., Liu, W., Corless, B., Molloy, M., Kong, B., Libermann, T., Rosenthal, D., & Back, M. (2021). The Gut Microbiome and Cancer Immunotherapy: Can We Use the Gut Microbiome as a Predictive Biomarker for Clinical Response in Cancer Immunotherapy? Cancers, 13(19), 4824. https://doi.org/10.3390/cancers13194824