Early Changes in DCE-MRI Biomarkers May Predict Survival Outcomes in Patients with Advanced Hepatocellular Carcinoma after Sorafenib Failure: Two Prospective Phase II Trials
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. MRI Protocol
2.3. Image Analysis
2.4. Statistical Analyses
3. Results
3.1. Participants Characteristics
3.2. Intraclass Correlation Coefficients of MR Quantitative Parameters
3.3. Comparison of Changes in DCE-MRI Biomarkers between Treatment Groups
3.4. Comparison of Changes in the Imaging Characteristics and DCE-MRI Biomarkers According to Treatment Response
3.5. Factors Associated with PFS and OS
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462. [Google Scholar] [CrossRef] [Green Version]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Cheng, A.-L.; Kang, Y.-K.; Chen, Z.; Tsao, C.-J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.-S.; et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009, 10, 25–34. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Zhang, J.; Zhang, Y.; Li, Y.; Liu, Z.; Li, Q.; Luo, M.; Liang, R.; Ye, J. Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2019, 38, 447. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Escudier, B.; Tomczak, P.; Kaprin, A.; Szczylik, C.; Hutson, T.E.; Michaelson, M.D.; Gorbunova, V.A.; Gore, M.E.; Rusakov, I.G.; et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): A randomised phase 3 trial. Lancet 2011, 378, 1931–1939. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Yau, T.; Park, J.-W.; Lim, H.Y.; Lee, T.-Y.; Obi, S.; Chan, S.L.; Qin, S.; Kim, R.D.; Casey, M.; et al. Randomized phase II study of axitinib versus placebo plus best supportive care in second-line treatment of advanced hepatocellular carcinoma. Ann. Oncol. 2015, 26, 2457–2463. [Google Scholar] [CrossRef]
- McNamara, M.G.; Le, L.W.; Horgan, A.M.; Aspinall, A.; Burak, K.W.; Dhani, N.; Chen, E.; Sinaei, M.; Lo, G.; Kim, T.K.; et al. A phase II trial of second-line axitinib following prior anti-angiogenic therapy in advanced hepatocellular carcinoma. Cancer 2015, 121, 1620–1627. [Google Scholar] [CrossRef]
- Safran, H.; Charpentier, K.; Kaubisch, A.; Dubel, G.; Perez, K.; Faricy-Anderson, K.E.; Miner, T.J.; Victor, J.; Taber, A.M.; Bakalarski, P.; et al. Lenalidomide for second-line treatment of advanced hepatocellular cancer: A Brown University oncology group phase II study. Am. J. Clin. Oncol. 2015, 38, 1–4. [Google Scholar] [CrossRef]
- Shao, Y.-Y.; Chen, B.-B.; Ou, D.-L.; Lin, Z.-Z.; Hsu, C.-H.; Wang, M.-J.; Cheng, A.-L. Lenalidomide as second-line therapy for advanced hepatocellular carcinoma: Exploration of biomarkers for treatment efficacy. Aliment Pharmacol. Ther. 2017, 46, 722–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murukesh, N.; Dive, C.; Jayson, G.C. Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br. J. Cancer 2010, 102, 8–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pircher, A.; Hilbe, W.; Heidegger, I.; Drevs, J.; Tichelli, A.; Medinger, M. Biomarkers in tumor angiogenesis and anti-angiogenic therapy. Int. J. Mol. Sci. 2011, 12, 7077–7099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.B.; Shih, T.T. DCE-MRI in hepatocellular carcinoma-clinical and therapeutic image biomarker. World J. Gastroenterol. 2014, 20, 3125–3134. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.; O’Connor, J.P.B. Assessment of Tumor Angiogenesis: Dynamic Contrast-enhanced MR Imaging and Beyond. Magn. Reson. Imaging Clin. N. Am. 2016, 24, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.S.; Park, B.; Choi, Y.; Lim, H.-S.; Woo, D.-C.; Kim, K.W.; Kim, J.K. Dynamic contrast-enhanced MRI for oncology drug development. J. Magn. Reson. Imaging. 2016, 44, 251–264. [Google Scholar] [CrossRef]
- Waterhouse, D.J.; Fitzpatrick, C.R.M.; Pogue, B.W.; O’Connor, J.P.B.; Bohndiek, S.E. A roadmap for the clinical implementation of optical-imaging biomarkers. Nat. Biomed. Eng. 2019, 3, 339–353. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Shen, Y.C.; Yu, C.W.; Hsu, C.; Hu, F.C.; Hsu, C.H.; Chen, B.B.; Wei, S.Y.; Cheng, A.L.; Shih, T.T.F. Dynamic contrast-enhanced magnetic resonance imaging biomarkers predict survival and response in hepatocellular carcinoma patients treated with sorafenib and metronomic tegafur/uracil. J. Hepatol. 2011, 55, 858–865. [Google Scholar] [CrossRef]
- Chen, B.B.; Hsu, C.Y.; Yu, C.W.; Liang, P.C.; Hsu, C.; Hsu, C.H.; Cheng, A.L.; Shih, T.T.F. Dynamic Contrast-enhanced MR Imaging of Advanced Hepatocellular Carcinoma: Comparison with the Liver Parenchyma and Correlation with the Survival of Patients Receiving Systemic Therapy. Radiology 2016, 281, 454–464. [Google Scholar] [CrossRef]
- Chen, B.B.; Hsu, C.Y.; Yu, C.W.; Liang, P.C.; Hsu, C.; Hsu, C.H.; Cheng, A.L.; Shih, T.T.F. Early perfusion changes within 1 week of systemic treatment measured by dynamic contrast-enhanced MRI may predict survival in patients with advanced hepatocellular carcinoma. Eur. Radiol. 2017, 27, 3069–3079. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, B.-B.; Hung, Y.; Huang, P.; Shen, Y.; Shao, Y.; Hsu, C.-H.; Cheng, A.; Lee, R.; Chao, Y.; et al. A Multicenter Phase II Study of Second-Line Axitinib for Patients with Advanced Hepatocellular Carcinoma Failing First-Line Sorafenib Monotherapy. Oncologist 2020, 25, e1280–e1285. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.N.; Dankowski, T.; Ziegler, A. Unbiased split variable selection for random survival forests using maximally selected rank statistics. Stat. Med. 2017, 36, 1272–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapiro, J.; Duran, R.; Lin, M.; Schernthaner, R.; Lesage, D.; Wang, Z.; Savic, L.J.; Geschwind, J.-F. Early survival prediction after intra-arterial therapies: A 3D quantitative MRI assessment of tumour response after TACE or radioembolization of colorectal cancer metastases to the liver. Eur. Radiol. 2015, 25, 1993–2003. [Google Scholar] [CrossRef]
- Yopp, A.C.; Schwartz, L.H.; Kemeny, N.; Gultekin, D.H.; Gönen, M.; Bamboat, Z.; Shia, J.; Haviland, D.; D’Angelica, M.I.; Fong, Y.; et al. Anti-angiogenic therapy for primary liver cancer: Correlation of changes in dynamic contrast-enhanced magnetic resonance imaging with tissue hypoxia markers and clinical response. Ann. Surg. Oncol. 2011, 18, 2192–2199. [Google Scholar] [CrossRef] [PubMed]
- Lewis, H.L.; Ghasabeh, M.A.; Khoshpouri, P.; Kamel, I.R.; Pawlik, T.M. Functional hepatic imaging as a biomarker of primary and secondary tumor response to loco-regional therapies. Surg. Oncol. 2017, 26, 411–422. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.L.; Whisenant, J.G.; Loveless, M.E.; Yankeelov, T.E. Practical dynamic contrast enhanced MRI in small animal models of cancer: Data acquisition, data analysis, and interpretation. Pharmaceutics 2012, 4, 442–478. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.L.; Sorace, A.G.; Whisenant, J.G.; McIntyre, J.O.; Kang, H.; Yankeelov, T.E. DCE- and DW-MRI as early imaging biomarkers of treatment response in a preclinical model of triple negative breast cancer. NMR Biomed. 2017, 30, e3799. [Google Scholar] [CrossRef]
- Chen, B.-B.; Lu, Y.-S.; Yu, C.-W.; Lin, C.-H.; Chen, T.W.-W.; Wei, S.-Y.; Cheng, A.-L.; Shih, T.T.-F. Imaging biomarkers from multiparametric magnetic resonance imaging are associated with survival outcomes in patients with brain metastases from breast cancer. Eur. Radiol. 2018, 28, 4860–4870. [Google Scholar] [CrossRef]
Characteristics | Lenalidomide | Axitinib | p-Value | All Participants |
---|---|---|---|---|
Number | 41 | 33 | 74 | |
Age, year (mean, SD) | 59.7 (11.6) | 58 (9.7) | 0.825 | 60 (11.8) |
Sex (women) | 5 (12.2) | 5 (15.2) | 0.978 | 10 (13.5) |
Tumor size (mean, SD) | 78.6 (51.3) | 85.6 (51.6) | 0.564 | 81.7 (51.2) |
Etiology | ||||
Hepatitis B | 26 (63.4) | 25 (75.8) | 0.375 | |
Hepatitis C | 8 (19.5) | 6 (18.2) | 1 | |
Alcoholic | 4 (9.8) | 2 (6.1) | 0.88 | |
ECOG | 0.059 | |||
0 | 7 (17.1) | 13 (39) | 20 (27.0) | |
1 | 34 (82.9) | 20 (60.6) | 54 (73.0) | |
AFP > 400 ng/mL | 27 (65.9) | 14 (42.4) | 0.059 | 41 (55.4) |
Liver cirrhosis | 31(75) | 24 (73) | 0.172 | 55(74.3) |
Vascular invasion | 22 (53.7) | 19 (57.6) | 0.919 | 41 (55.4) |
Extrahepatic spread | 35 (85.4) | 28 (84.8) | 1 | 63 (85.1) |
Child–Pugh = 5 | <0.001 * | |||
5 | 23 (43.7) | 33 (100) | 55 (74.3) | |
6 | 19 (46.3) | 0 | 19 (25.7) | |
BCLC stage | 0.195 | |||
B | 0 | 2 (6) | ||
C | 41 (100) | 31 (94) | ||
Prior therapy | ||||
Surgery | 19 (46.3) | 17 (51.5) | 0.835 | 36 (48.6) |
Ablation | 8 (19.5) | 11 (33.3) | 0.278 | 19 (25.7) |
TACE | 33 (80.5) | 27 (81.8) | 1 | 60 (81.1) |
RECIST 1.1 response | 0.105 | |||
PR | 6 (14.6) | 2 (6.1) | 8 (10.8) | |
SD | 15 (36.6) | 20 (60.6) | 35 (47.3) | |
PD | 20 (48.8) | 11 (33.3) | 31 (41.9) |
DCE-MRI Parameters | Lenalidomide | Axitinib | p-Value | All |
---|---|---|---|---|
Number of participants on Day 3 | 41 | 33 | 74 | |
ΔPeak_D3 (%) | −3.7 (−11.9, 5.2) | −7.5 (−17.8, 3.6) | 0.265 | −4.3 (−13, 3.8) |
ΔAUC_D3 (%) | −8 (−18.9, 23.7) | −25.7 (−53.4, 7.3) | 0.008 * | −12 (−37.4, 1) |
ΔKtrans_D3 (%) | −0.9 (−40.8, 74.1) | −30.6 (−64.2, −8.8) | 0.024 * | −21.4 (−49.6, 28.5) |
Number of participants on Day 14 | 39 | 33 | 72 | |
ΔPeak_D14 (%) | −2.9 (−11.7, 5.7) | −11.9 (−22.4, 1.4) | 0.04 * | −4 (−15.9, 4) |
ΔAUC_D14 (%) | −3.1 (−24.8, 20.2) | −39.1 (−52.25, −5.9) | 0.002 * | −19.5 (−43.8, 11.5) |
ΔKtrans_D14 (%) | −7.7 (−45.3, 45.8) | −47.8 (−71.6, −14.2) | 0.003 * | −22.3 (−57.6, 26.3) |
Survival outcomes | PFS | OS | ||||||
---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | |||||
Parameter | HR (95 % CI) | p-Value | HR (95 % CI) | p-Value | HR (95 % CI) | p-Value | HR (95 % CI) | p-Value |
Drug (axitinib vs. lenalidomide) | 0.79 (0.49–1.28) | 0.347 | 0.84 (0.52–1.37) | 0.488 | ||||
Age (>60 vs. ≤60 y/o) | 1.03(0.64–1.67) | 0.89 | 0.97 (0.64–1.58) | 0.915 | ||||
Sex (man vs. woman) | 1.62 (0.82–3.2) | 0.166 | 1.19 (0.58–2.44) | 0.636 | ||||
Size | 1.15 (0.72–1.85) | 0.559 | 1.17 (0.71–1.93) | 0.528 | ||||
AFP (>400 ng/mL) | 0.99 (0.62–1.59) | 0.956 | 1.37 (0.85–2.23) | 0.198 | ||||
ECOG | 0.87 (0.51–1.49) | 0.622 | 0.89 (0.51–1.56) | 0.687 | ||||
Liver cirrhosis | 0.82 (0.62–1.08) | 0.151 | 0.84 (0.63–1.12) | 0.241 | ||||
Vascular invasion | 0.93 (0.58–1.5) | 0.778 | 1.12 (0.70–1.80) | 0.638 | ||||
Extrahepatic spread | 1.21 (0.63–2.32) | 0.566 | 1.23 (0.60–2.50) | 0.569 | ||||
ORR | 0.19 (0.07–0.49) | 0.001 * | 0.2 (0.07–0.52) | 0.001 * | 0.26 (0.1–0.66) | 0.005 * | 0.29 (0.11–0.76) | 0.012 * |
DCR | 0.51 (0.31–0.84) | 0.002 * | 0.65 (0.39–1.01) | 0.089 | ||||
DEC-MRI parameters | ||||||||
ΔPeak_D3 (%) | 0.4 (0.17–0.93) | 0.017 * | 0.55 (0.25–1.21) | 0.13 | ||||
ΔAUC_D3 (%) | 0.51 (0.25–1.04) | 0.043 * | 0.61 (0.31–1.21) | 0.15 | ||||
ΔKtrans_D3 (%) | 0.67 (0.44–1.13) | 0.1 | 0.68 (0.4–1.15) | 0.15 | ||||
ΔPeak_D14 (%) | 0.51 (0.26–1.01) | 0.032 * | 0.6 (0.3–1.04) | 0.064 | ||||
ΔAUC_D14 (%) | 0.54 (0.33–0.9) | 0.009 * | 0.53 (0.32–0.9) | 0.016 * | 0.63 (0.37–1.07) | 0.085 | ||
ΔKtrans_D14 (%) | 0.26 (0.12–0.56) | <0.001 * | 0.29 (0.14–0.63) | 0.002 * | 0.47 (0.23–0.98) | 0.038 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.-B.; Lin, Z.-Z.; Shao, Y.-Y.; Hsu, C.; Hsu, C.-H.; Cheng, A.-L.; Liang, P.-C.; Shih, T.T.-F. Early Changes in DCE-MRI Biomarkers May Predict Survival Outcomes in Patients with Advanced Hepatocellular Carcinoma after Sorafenib Failure: Two Prospective Phase II Trials. Cancers 2021, 13, 4962. https://doi.org/10.3390/cancers13194962
Chen B-B, Lin Z-Z, Shao Y-Y, Hsu C, Hsu C-H, Cheng A-L, Liang P-C, Shih TT-F. Early Changes in DCE-MRI Biomarkers May Predict Survival Outcomes in Patients with Advanced Hepatocellular Carcinoma after Sorafenib Failure: Two Prospective Phase II Trials. Cancers. 2021; 13(19):4962. https://doi.org/10.3390/cancers13194962
Chicago/Turabian StyleChen, Bang-Bin, Zhong-Zhe Lin, Yu-Yun Shao, Chiun Hsu, Chih-Hung Hsu, Ann-Lii Cheng, Po-Chin Liang, and Tiffany Ting-Fang Shih. 2021. "Early Changes in DCE-MRI Biomarkers May Predict Survival Outcomes in Patients with Advanced Hepatocellular Carcinoma after Sorafenib Failure: Two Prospective Phase II Trials" Cancers 13, no. 19: 4962. https://doi.org/10.3390/cancers13194962