Namodenoson in Advanced Hepatocellular Carcinoma and Child–Pugh B Cirrhosis: Randomized Placebo-Controlled Clinical Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Study Design and Treatment
4.3. Assessments
4.4. Biomarker Studies
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Burden of Disease Cancer Collaboration; Fitzmaurice, C.; Akinyemiju, T.F.; Al Lami, F.H.; Alam, T.; Alizadeh-Navaei, R.; Allen, C.; Alsharif, U.; Alvis-Guzman, N.; Amini, E.; et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: A systematic analysis for the global burden of disease study. JAMA Oncol. 2018, 4, 1553–1568. [Google Scholar]
- Granito, A.; Bolondi, L. Non-transplant therapies for patients with hepatocellular carcinoma and child-pugh-turcotte class b cirrhosis. Lancet Oncol. 2017, 18, e101–e112. [Google Scholar] [CrossRef]
- FDA Website. Sorafenib Package Insert. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021923s020lbl.pdf. (accessed on 4 January 2020).
- Llovet, J.M.; Di Bisceglie, A.M.; Bruix, J.; Kramer, B.S.; Lencioni, R.; Zhu, A.X.; Sherman, M.; Schwartz, M.; Lotze, M.; Talwalkar, J.; et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J. Natl. Cancer Inst. 2008, 100, 698–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NIH, U.S. National Library of Medicine, Clinical Trials Data Base. Available online: ClinicalTrials.gov (accessed on 12 July 2020).
- Bar-Yehuda, S.; Stemmer, S.M.; Madi, L.; Castel, D.; Ochaion, A.; Cohen, S.; Barer, F.; Zabutti, A.; Perez-Liz, G.; Del Valle, L.; et al. The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int. J. Oncol. 2008, 33, 287–295. [Google Scholar]
- Madi, L.; Ochaion, A.; Rath-Wolfson, L.; Bar-Yehuda, S.; Erlanger, A.; Ohana, G.; Harish, A.; Merimski, O.; Barer, F.; Fishman, P. The A3 adenosine receptor is highly expressed in tumor versus normal cells: Potential target for tumor growth inhibition. Clin. Cancer Res. 2004, 10, 4472–4479. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.; Stemmer, S.M.; Zozulya, G.; Ochaion, A.; Patoka, R.; Barer, F.; Bar-Yehuda, S.; Rath-Wolfson, L.; Jacobson, K.A.; Fishman, P. CF102 an A3 adenosine receptor agonist mediates anti-tumor and anti-inflammatory effects in the liver. J. Cell Physiol. 2011, 226, 2438–2447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fishman, P.; Bar-Yehuda, S.; Synowitz, M.; Powell, J.; Klotz, K.; Gessi, S.; Borea, P. Adenosine receptors and cancer. In Health and Disease, Handbook of Experimental Pharmacology; Wilson, C.N., Mustafa, S.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Fishman, P.; Bar-Yehuda, S.; Barer, F.; Madi, L.; Multani, A.S.; Pathak, S. The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp. Cell Res. 2001, 269, 230–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stemmer, S.M.; Benjaminov, O.; Medalia, G.; Ciuraru, N.B.; Silverman, M.H.; Bar-Yehuda, S.; Fishman, S.; Harpaz, Z.; Farbstein, M.; Cohen, S.; et al. CF102 for the treatment of hepatocellular carcinoma: A phase I/II, open-label, dose-escalation study. Oncologist 2013, 18, 25–26. [Google Scholar] [CrossRef] [PubMed]
- FDA Website. Cabozantinib Package Insert. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208692s003lbl.pdf (accessed on 4 January 2020).
- FDA Website. Regorafenib Package Insert. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203085lbl.pdf (accessed on 4 January 2020).
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H.R.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in Keynote-240: A randomized, double-blind, phase III trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- FDA Website Ramucirumab Package Insert. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125477s002lbl.pdf (accessed on 4 January 2020).
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Zhu, A.X.; Baron, A.D.; Malfertheiner, P.; Kudo, M.; Kawazoe, S.; Pezet, D.; Weissinger, F.; Brandi, G.; Barone, C.A.; Okusaka, T.; et al. Ramucirumab as second-line treatment in patients with advanced hepatocellular carcinoma: Analysis of REACH trial results by Child-Pugh score. JAMA Oncol. 2017, 3, 235–243. [Google Scholar] [CrossRef]
- Choi, W.M.; Lee, D.; Shim, J.H.; Kim, K.M.; Lim, Y.S.; Lee, H.C.; Yoo, C.; Park, S.R.; Ryu, M.H.; Ryoo, B.Y.; et al. Effectiveness and safety of nivolumab in child-pugh b patients with hepatocellular carcinoma: A real-world cohort study. Cancers 2020, 12, 1968. [Google Scholar] [CrossRef] [PubMed]
- Kambhampati, S.; Bauer, K.E.; Bracci, P.M.; Keenan, B.P.; Behr, S.C.; Gordan, J.D.; Kelley, R.K. Nivolumab in patients with advanced hepatocellular carcinoma and child-pugh class b cirrhosis: Safety and clinical outcomes in a retrospective case series. Cancer 2019, 125, 3234–3241. [Google Scholar] [CrossRef]
- De Lorenzo, S.; Tovoli, F.; Barbera, M.A.; Garuti, F.; Palloni, A.; Frega, G.; Garajova, I.; Rizzo, A.; Trevisani, F.; Brandi, G. Metronomic capecitabine vs. best supportive care in child-pugh b hepatocellular carcinoma: A proof of concept. Sci. Rep. 2018, 8, 9997. [Google Scholar] [CrossRef] [PubMed]
- Granito, A.; Marinelli, S.; Terzi, E.; Piscaglia, F.; Renzulli, M.; Venerandi, L.; Benevento, F.; Bolondi, L. Metronomic capecitabine as second-line treatment in hepatocellular carcinoma after sorafenib failure. Dig. Liver Dis. 2015, 47, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Safadi, R.; Braun, M.; Milgrom, Y.; Masarowa, M.; Hakimian, D.; Hazou, W.; Issacchar, A.; Harpaz, Z.; Farbstein, M.; Itzhak, I.; et al. A phase 2, randomized, double-blind, placebo-controlled dose-finding study of the efficacy and safety of namodenoson (CF102), an A3 Adenosine Receptor (A3AR) agonist, in treating non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In Proceedings of the The Liver Meeting Digital Experience™, Digital Conference, 15 November 2020; Available online: https://www.natap.org/2020/AASLD/AASLD_119.htm (accessed on 4 January 2020).
- Bunemann, M.; Lee, K.B.; Pals-Rylaarsdam, R.; Roseberry, A.G.; Hosey, M.M. Desensitization of G-protein-coupled receptors in the cardiovascular system. Annu. Rev. Physiol. 1999, 61, 169–192. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef] [Green Version]
- Llovet, J.M.; Montal, R.; Villanueva, A. Randomized trials and endpoints in advanced HCC: Role of PFS as a surrogate of survival. J. Hepatol. 2019, 70, 1262–1277. [Google Scholar] [CrossRef] [Green Version]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach-the ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Gessi, S.; Cattabriga, E.; Avitabile, A.; Gafa, R.; Lanza, G.; Cavazzini, L.; Bianchi, N.; Gambari, R.; Feo, C.; Liboni, A.; et al. Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin. Cancer Res. 2004, 10, 5895–5901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fishman, P.; Bar-Yehuda, S.; Ardon, E.; Rath-Wolfson, L.; Barrer, F.; Ochaion, A.; Madi, L. Targeting the A3 adenosine receptor for cancer therapy: Inhibition of prostate carcinoma cell growth by A3AR agonist. Anticancer Res. 2003, 23, 2077–2083. [Google Scholar] [PubMed]
Characteristic | Namodenoson n = 50 | Placebo n = 28 |
---|---|---|
Age, median (range), years | 62 (24–81) | 66 (41–83) |
Gender, n (%) | ||
Male | 38 (76.0%) | 19 (67.6%) |
Female | 12 (24.0%) | 9 (32.1%) |
Ethnicity, n (%) | ||
White/Caucasian | 48 (96.0%) | 27 (96.4%) |
Black/African | 1 (2.0%) | 0 (0.0%) |
Asian | 0 (0.0%) | 1 (3.6%) |
Other | 1 (2.0%) | 0 (0.0%) |
Child–Pugh score, n (%) | ||
7 | 34 (68.0%) | 22 (78.6%) |
8 | 7 (14.0%) | 6 (21.4%) |
9 | 9 (18.0%) | 0 (0.0%) |
BCLC stage, n (%) | ||
B | 10 (20.0%) | 10 (35.7%) |
C | 40 (80.0%) | 18 (64.3%) |
Hepatitis status, n (%) | ||
None | 13 (26.0%) | 11 (39.2%) |
Hepatitis B | 19 (38.0%) | 10 (35.7%) |
Hepatitis C | 25 (50.0%) | 9 (32.1%) |
Hepatitis B and C | 7 (14.0%) | 2 (7.1%) |
ECOG PS, n (%) | ||
0 | 10 (20.0%) | 5 (17.9%) |
1 | 37 (74.0%) | 21 (75.0%) |
2 | 3 (6.0%) | 2 (7.1%) |
AFP, n (%) | ||
≤400 ng/mL | 22 (44.0%) | 15 (53.6%) |
>400 ng/mL | 23 (46.0%) | 12 (42.9%) |
N/A | 5 (10.0%) | 1 (3.6%) |
PVT, n (%) | ||
Yes | 26 (52.0%) | 12 (42.9%) |
No | 24 (48.0%) | 16 (57.1%) |
EHS, n (%) | ||
Yes | 29 (58.0%) | 14 (50.0%) |
No | 21 (42.0%) | 14 (50.0%) |
Prior therapy (chemoembolization), n (%) | ||
Yes | 15 (30.0%) | 6 (21.4%) |
No | 35 (70.0%) | 22 (78.6%) |
Response, n (%) | Namodenoson n = 34 1 | Placebo n = 21 1 |
---|---|---|
CR | 0 (0.0%) | 0 (0.0%) |
PR | 3 (8.8%) | 0 (0.0%) |
SD | 17 (50.0%) | 10 (47.6%) |
PD | 14 (41.2%) | 11 (52.4%) |
Adverse Event | Grade 1–2 | Grade 3 | ||
---|---|---|---|---|
Namodenoson n = 50 | Placebo n = 28 | Namodenoson n = 50 | Placebo n = 28 | |
Any | 10 (20.0%) | 14 (50.0%) | 1 (2.0%) | 1 (3.6%) |
Abdominal pain | 1 (2.0%) | |||
Anemia | 1 (2.0%) | 1 (3.6%) | 1 (3.6%) | |
Asthenia/fatigue | 3 (10.7%) | 1 (3.6%) | ||
Bronchitis | 1 (3.6%) | |||
Chest pain | 1 (2.0%) | 1 (3.6%) | ||
Diarrhea | 1 (2.0%) | 1 (3.6%) | ||
Dyspepsia | 1 (2.0%) | |||
Hypoesthesia | 1 (2.0%) | |||
Hyponatremia | 1 (2.0%) | |||
Hypotension | 1 (2.0%) | |||
Nausea | 2 (4.0%) | 1 (3.6%) | ||
Peripheral edema | 1 (3.6%) | |||
Paresthesia | 1 (2.0%) | |||
Pyrexia | 1 (3.6%) | |||
Sinus tachycardia | 1 (3.6%) | |||
Vomiting | 1 (2.0%) | 1 (3.6%) | ||
Weight decreased/abnormal weight loss | 2 (4.0%) | |||
Weight increased | 2 (4.0%) | 2 (7.1%) | ||
ALT Increased | 1 (2.0%) | |||
Creatinine increased | 1 (3.6%) | |||
INR abnormal | 1 (3.6%) | |||
Leukopenia | 1 (2.0%) | |||
Neutropenia | 1 (2.0%) | |||
Thrombocytopenia | 1 (2.0%) | |||
Increased TSH | 1 (2.0%) | 2 (7.1%) | ||
Decreased T3 | 1 (3.6%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stemmer, S.M.; Manojlovic, N.S.; Marinca, M.V.; Petrov, P.; Cherciu, N.; Ganea, D.; Ciuleanu, T.E.; Pusca, I.A.; Beg, M.S.; Purcell, W.T.; et al. Namodenoson in Advanced Hepatocellular Carcinoma and Child–Pugh B Cirrhosis: Randomized Placebo-Controlled Clinical Trial. Cancers 2021, 13, 187. https://doi.org/10.3390/cancers13020187
Stemmer SM, Manojlovic NS, Marinca MV, Petrov P, Cherciu N, Ganea D, Ciuleanu TE, Pusca IA, Beg MS, Purcell WT, et al. Namodenoson in Advanced Hepatocellular Carcinoma and Child–Pugh B Cirrhosis: Randomized Placebo-Controlled Clinical Trial. Cancers. 2021; 13(2):187. https://doi.org/10.3390/cancers13020187
Chicago/Turabian StyleStemmer, Salomon M., Nebojsa S. Manojlovic, Mihai Vasile Marinca, Petar Petrov, Nelly Cherciu, Doina Ganea, Tudor Eliade Ciuleanu, Ioana Adriana Pusca, Muhammad Shaalan Beg, William T. Purcell, and et al. 2021. "Namodenoson in Advanced Hepatocellular Carcinoma and Child–Pugh B Cirrhosis: Randomized Placebo-Controlled Clinical Trial" Cancers 13, no. 2: 187. https://doi.org/10.3390/cancers13020187
APA StyleStemmer, S. M., Manojlovic, N. S., Marinca, M. V., Petrov, P., Cherciu, N., Ganea, D., Ciuleanu, T. E., Pusca, I. A., Beg, M. S., Purcell, W. T., Croitoru, A. -E., Ilieva, R. N., Natošević, S., Nita, A. L., Kalev, D. N., Harpaz, Z., Farbstein, M., Silverman, M. H., Bristol, D., ... Fishman, P. (2021). Namodenoson in Advanced Hepatocellular Carcinoma and Child–Pugh B Cirrhosis: Randomized Placebo-Controlled Clinical Trial. Cancers, 13(2), 187. https://doi.org/10.3390/cancers13020187