Next Article in Journal
Triple-Negative Breast Cancer and the COVID-19 Pandemic: Clinical Management Perspectives and Potential Consequences of Infection
Next Article in Special Issue
An Fc-Optimized CD133 Antibody for Induction of NK Cell Reactivity against B Cell Acute Lymphoblastic Leukemia
Previous Article in Journal
Endocrine Toxicities of Antineoplastic Therapy
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Immune Therapies for Hematologic Malignancies

by
Matthew J. Olnes
1,2
1
Hematology and Medical Oncology, Alaska Native Tribal Health Consortium, 3900 Ambassador Dr., Anchorage, AK 99508, USA
2
WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
Cancers 2021, 13(2), 295; https://doi.org/10.3390/cancers13020295
Submission received: 8 January 2021 / Accepted: 11 January 2021 / Published: 15 January 2021
(This article belongs to the Special Issue Immune Therapies for Hematologic Malignancies)
The era of immunotherapy for hematologic malignancies began with the first allogeneic hematopoietic stem cell transplant (HSCT) study published by E. Donnall Thomas in 1957 [1]. Since then, the field of malignant hematology has been at the forefront of the clinical application of immune therapies. Allogeneic HSCT remains a standard treatment for acute leukemias and relapsed or refractory high-grade lymphomas, as well as select patients with relapsed and refractory indolent non-Hodgkin lymphomas and multiple myeloma. A key component of this therapy is the presence of allogeneic donor T-cells that provide long lasting immune surveillance and graft versus tumor effects. Some newer developments that have improved clinical outcomes include HSCT protocols that expand the pool of eligible donors with haploidentical grafts [2], and manipulations such as T-cell depletion to minimize rejection and graft versus host disease [3].
Allogeneic HSCT is the only curative treatment for myelodysplastic syndromes (MDS). Hypomethylating agents, lenolidomide, and luspatercept play an important role in managing this disease, but relapses invariably occur. Patients with low and intermediate risk MDS exhibit an increased oligoclonal expansion of autoreactive CD8+ T-cells which mount an immune assault on bone marrow progenitors, as well as reduced T helper 2 (TH2) and regulatory T-cell (T-reg) responses which favor autoimmunity [4,5]. Immune suppression administered to dampen the autoimmune attack on the bone marrow has a defined clinical role in a subset of patients with MDS [6], with some patients achieving long-term responses [7]. However, which MDS patients to treat with immune suppressive therapy remains a challenging question.
Chimeric antigen receptor (CAR) T-cells targeting CD19, CD20, and CD22 have become highly effective therapies for acute lymphoblastic leukemia (ALL) and for an increasing number of relapsed and refractory non-Hodgkin lymphoma subtypes, with many patients achieving durable long-term remissions [8,9,10,11]. There has been a recent surge in novel CAR T-cell constructs with a rapidly expanding variety of antigens being targeted, including CD30 to treat relapsed and refractory Hodgkin lymphoma [12], and CAR T-cells targeting B-cell membrane antigen (BCMA) and the G protein-coupled receptor class C group 5 member D (GPRC5D) to treat multiple myeloma [13,14,15]. Pre-clinical studies have also shown promise in targeting the interleukin-3 receptor alpha chain (IL-3Ra or CD123) [16] as well as CD13 and TIM3 to treat acute myeloid leukemia (AML) [17]. Mechanisms of CAR T-cell resistance have recently become further elucidated, including anti-mouse immune responses, sub-optimal CAR T-cell signaling, decreased persistence of CAR T-cells in vivo, ineffective tumor infiltration, and target antigen loss [14,18]. Strategies to overcome these resistance mechanisms are currently under investigation [14,18].
Therapeutic monoclonal antibodies (mAbs) targeting CD20 through antibody-dependent cytotoxicity have been in use to treat B-cell malignancies for more than two decades. CD38 and signaling lymphocytic activation molecule F7 have emerged as targets for mAbs to effectively treat relapsed and refractory multiple myeloma [19,20,21,22,23], and they are being investigated in the front-line setting [24]. Immune checkpoint inhibitor mAbs targeting programmed death ligand-1 (PD-1) have recently been approved as treatment options for relapsed and refractory Hodgkin lymphoma [25,26,27,28], and they are being investigated in other lymphoid malignancies [29]. There are also ongoing studies exploring the use of immune checkpoint inhibitors and the anti-CD47 directed monoclonal antibody (mAb) magrolimab in combination with hypomethylating agents to treat MDS [30,31].
Bispecific T-cell engaging mAbs (BiTEs) enhance cell-mediated immune responses by placing T-cells in close proximity to cells expressing target tumor antigens on their surface. Blinatumomab, a BiTE directed against CD19 and CD3, was approved as second line therapy for relapsed or refractory B-cell precursor ALL [32]. Blinatumomab combined with the tyrosine kinase inhibitor dasatinib recently demonstrated encouraging activity as a front-line chemotherapy-free therapy for Philadelphia chromosome positive ALL [33], and the BCMA and CD3 targeting BiTE AMG 420 exhibited activity in patients with relapsed and refractory multiple myeloma treated in a first-in-human clinical trial [34].
Antibody–drug conjugates (ADC) are another important immunotherapy for hematologic malignancies. ADCs are comprised of mAbs covalently linked to cytotoxic chemotherapy “warheads” [35]. Gemtuzumab ozogamicin is an ADC targeting CD33 that has an established role in treating patients with AML [36,37]. Brentuximab vedotin, an ADC directed against CD30, has become a treatment option for Hodgkin lymphoma [38,39] and peripheral T-cell lymphoma [40,41,42]. More recently, the ADCs directed against CD79b (polatuzumab vedotin) and CD19 (tafasitamab-cxix) were approved in the United States to treat patients with relapsed and refractory diffuse large B-cell lymphoma [43,44], and the BCMA directed ADC belantamab mafodotin-blmf was approved for patients with relapsed and refractory myeloma [45]. A plethora of other immunoconjugates are under investigation [35].
Natural Killer (NK) cells have evolved into a prominent immunotherapy for hematologic malignancies. Some attractive features of this approach are that NK cells function independently of major histocompatibility complex restriction, they do not require prior antigen sensitization, and they do not elicit graft versus host disease [46]. Sources for NK cell therapies include cells derived from haploidentical and umbilical cord donors, as well NK cell lines and memory-like cells induced by cytokines [47]. Strategies to activate and prolong NK cell function are an area of active clinical investigation [47,48,49]. A promising approach is the use of BiTEs and trispecific killer cell mAbs to enhance NK activity through the engagement of ligands such as CD16, IL-15R, NKG2D, and NKp46 [47,48,49,50]. CAR NK cell constructs have also shown clinical activity in treating CD19 positive lymphomas [51].
Many newer immune therapies share advantages inherent to allogeneic HSCT, including sustained immune surveillance and the propagation of anti-tumor killing. The recent exponential growth of immunotherapy studies indicates that the coming years will hold great promise for patients with hematologic malignancies as we move away from cytotoxic chemotherapy in favor of more effective strategies to engage the immune system therapeutically. This Special Issue of Cancers will highlight developments in pre-clinical research and the application of immune therapies for hematologic malignancies.

Funding

This editorial received no external funding.

Acknowledgments

The author thanks Sargam Kapoor and Holly Martinson for comments on this manuscript.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Thomas, E.D.; Lochte, H.L.; Lu, W.C.; Ferrebee, J.W. Intravenous Infusion of Bone Marrow in Patients Receiving Radiation and Chemotherapy. N. Engl. J. Med. 1957, 257, 491–496. [Google Scholar]
  2. Apperley, J.; Niederwieser, D.; Huang, X.J.; Nagler, A.; Fuchs, E.; Szer, J.; Kodera, Y. Haploidentical hematopoietic stem cell transplantation: A global overview comparing Asia, the European Union, and the United States. Biol. Blood Marrow Transplant. 2016, 22, S15–S18. [Google Scholar]
  3. Aversa, F.; Pierini, A.; Ruggeri, L.; Martelli, M.F.; Velardi, A. The Evolution of T Cell Depleted Haploidentical Transplantation. Front. Immunol. 2019, 10, 2769. [Google Scholar] [PubMed] [Green Version]
  4. Olnes, M.J.; Sloand, E.M. Targeting Immune Dysregulation in Myelodysplastic Syndromes. JAMA 2011, 305, 814. [Google Scholar] [PubMed]
  5. Ivy, K.S.; Brent Ferrell, P., Jr. Disordered Immune Regulation and its Therapeutic Targeting in Myelodysplastic Syndromes. Curr. Hematol. Malig. Rep. 2018, 13, 244–255. [Google Scholar] [PubMed]
  6. Stahl, M.; Bewersdorf, J.P.; Giri, S.; Wang, R.; Zeidan, A.M. Use of immunosuppressive therapy for management of myelodysplastic syndromes: A systematic review and meta-analysis. Haematologica 2020, 105, 102–111. [Google Scholar] [PubMed] [Green Version]
  7. Lai, C.; Ranpura, V.; Wu, C.; Olnes, M.J.; Parikh, A.R.; Shenoy, A.; Thompson, J.; Weinstein, B.; Scheinberg, P.; Barrett, A.J.; et al. Long-term outcomes in myelodysplastic syndrome patients treated with alemtuzumab. Blood Adv. 2019, 3, 980–983. [Google Scholar]
  8. June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar]
  9. Jain, T.; Bar, M.; Kansagra, A.J.; Chong, E.A.; Hashmi, S.K.; Neelapu, S.S.; Byrne, M.; Jacoby, E.; Lazaryan, A.; Jacobson, C.A.; et al. Use of Chimeric Antigen Receptor T Cell Therapy in Clinical Practice for Relapsed/Refractory Aggressive B Cell Non-Hodgkin Lymphoma: An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Biol. Blood Marrow Transplant. 2019, 25, 2305–2321. [Google Scholar]
  10. Wang, M.L.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar]
  11. Cappell, K.M.; Sherry, R.M.; Yang, J.C.; Goff, S.L.; Vanasse, D.A.; McIntyre, L.; Rosenberg, S.A.; Kochenderfer, J.N. Long-Term Follow-Up of Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy. J. Clin. Oncol. 2020, 38, 3805–3815. [Google Scholar] [CrossRef] [PubMed]
  12. Ramos, C.A.; Grover, N.S.; Beaven, A.W.; Lulla, P.D.; Wu, M.-F.; Ivanova, A.; Wang, T.; Shea, T.C.; Rooney, C.M.; Dittus, C.; et al. Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. J. Clin. Oncol. 2020, 38, 3794–3804. [Google Scholar] [CrossRef] [PubMed]
  13. Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.S.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef] [PubMed]
  14. Smith, E.L.; Harrington, K.; Staehr, M.; Masakayan, R.; Jones, J.; Long, T.J.; Ng, K.Y.; Choddusi, M.; Purdon, T.J.; Wang, X.; et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl. Med. 2019, 11, eaau7746. [Google Scholar] [CrossRef] [PubMed]
  15. Mikkilineni, L.; Kochenderfer, J.N. CAR T cell therapies for patients with multiple myeloma. Nat. Rev. Clin. Oncol. 2020. [Google Scholar] [CrossRef]
  16. Testa, U.; Pelosi, E.; Castelli, G. CD123 as a Therapeutic Target in the Treatment of Hematological Malignancies. Cancers 2019, 11, 1358. [Google Scholar] [CrossRef] [Green Version]
  17. He, X.; Feng, Z.; Ma, J.; Ling, S.; Cao, Y.; Gurung, B.; Wu, Y.; Katona, B.W.; O’Dwyer, K.P.; Siegel, D.L.; et al. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood 2020, 135, 713–723. [Google Scholar] [CrossRef]
  18. Rafiq, S.; Hackett, C.S.; Brentjens, R.J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 2020, 17, 147–167. [Google Scholar] [CrossRef]
  19. Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A.K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.; Munder, M.; Mateos, M.V.; et al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 754–766. [Google Scholar] [CrossRef]
  20. Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Komarnicki, M.; Suzuki, K.; et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 1319–1331. [Google Scholar] [CrossRef] [Green Version]
  21. Attal, M.; Richardson, P.G.; Rajkumar, S.V.; San-Miguel, J.; Beksac, M.; Spicka, I.; Moreau, P.; Dimpopulos, M.A.; Huang, J.S.-Y.; Minarik, J.; et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): A randomised, multicentre, open-label, phase 3 study. Lancet 2019, 394, 2096–2107. [Google Scholar] [CrossRef]
  22. Lonial, S.; Dimopoulos, M.A.; Palumbo, A.; White, D.; Grosicki, S.; Spicka, I.; Walter-Croneck, A.; Moreau, P.; Mateos, M.; Magen, H.; et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2015, 373, 621–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Dimopoulos, M.A.; Dytfeld, D.; Grosicki, S.; Moreau, P.; Takezako, N.; Hori, M.; Leleu, X.; LeBlanc, R.; Suzuki, K.; Raab, M.S.; et al. Elotuzumab plus Pomalidomide and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2018, 379, 1811–1822. [Google Scholar] [CrossRef]
  24. Mateos, M.-V.; Dimopoulos, M.A.; Cavo, M.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lúcio, P.; Nagy, Z.; Kaplan, P.; et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. N. Engl. J. Med. 2018, 378, 518–528. [Google Scholar] [CrossRef] [PubMed]
  25. Chen, R.; Zinzani, P.L.; Lee, H.J.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Tomita, A.; et al. Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087. Blood 2019, 134, 1144–1153. [Google Scholar] [CrossRef] [Green Version]
  26. Armand, P.; Chen, Y.-B.; Redd, R.A.; Joyce, R.M.; Bsat, J.; Jeter, E.; Merryman, R.W.; Coleman, K.C.; Dahi, P.B.; Nieto, Y.; et al. PD-1 blockade with pembrolizumab for classical Hodgkin lymphoma after autologous stem cell transplantation. Blood 2019, 134, 22–29. [Google Scholar] [CrossRef]
  27. Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.; et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef] [Green Version]
  28. Armand, P.; Engert, A.; Younes, A.; Fanale, M.; Santoro, A.; Zinzani, P.L.; Timmerman, J.M.; Collins, G.P.; Ramchandren, R.; Cohen, J.B.; et al. Nivolumab for Relapsed/Refractory Classic Hodgkin Lymphoma After Failure of Autologous Hematopoietic Cell Transplantation: Extended Follow-Up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J. Clin. Oncol. 2018, 36, 1428–1439. [Google Scholar] [CrossRef]
  29. Goodman, A.; Patel, S.P.; Kurzrock, R. PD-1–PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat. Rev. Clin. Oncol. 2017, 14, 203–220. [Google Scholar] [CrossRef]
  30. Boddu, P.; Kantarjian, H.; Garcia-Manero, G.; Allison, J.; Seliger, B.; Daver, N. The emerging role of immune checkpoint based approaches in AML and MDS. Leuk. Lymphoma 2017, 59, 790–802. [Google Scholar] [CrossRef]
  31. Chao, M.P.; Takimoto, C.H.; Feng, D.D.; McKenna, K.; Gip, P.; Liu, J.; Volkmer, J.-P.; Weissman, I.L.; Majeti, R. Therapeutic Targeting of the Macrophage Immune Checkpoint CD47 in Myeloid Malignancies. Front. Oncol. 2020, 9, 1380. [Google Scholar] [CrossRef] [PubMed]
  32. Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef] [PubMed]
  33. Foà, R.; Bassan, R.; Vitale, A.; Elia, L.; Piciocchi, A.; Puzzolo, M.C.; Chanichella, M.; Viero, P.; Ferrara, F.; Lunghi, M.; et al. Dasatinib-Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults. N. Engl. J. Med. 2020, 383, 1613–1623. [Google Scholar] [CrossRef]
  34. Topp, M.S.; Duell, J.; Zugmaier, G.; Attal, M.; Moreau, P.; Langer, C.; Krönke, J.; Facon, T.; Salnikov, A.V.; Lesley, R.; et al. Anti–B-Cell Maturation Antigen BiTE Molecule AMG 420 Induces Responses in Multiple Myeloma. J. Clin. Oncol. 2020, 38, 775–783. [Google Scholar] [CrossRef] [PubMed]
  35. Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov. 2017, 16, 315–337. [Google Scholar] [CrossRef] [PubMed]
  36. Schlenk, R.F.; Paschka, P.; Krzykalla, J.; Weber, D.; Kapp-Schwoerer, S.; Gaidzik, V.I.; Leis, C.; Fiedler, W.; Kindler, T.; Schroeder, T.; et al. Gemtuzumab Ozogamicin in NPM1-Mutated Acute Myeloid Leukemia: Early Results from the Prospective Randomized AMLSG 09-09 Phase III Study. J. Clin. Oncol. 2020, 38, 623–632. [Google Scholar] [CrossRef] [PubMed]
  37. Amadori, S.; Suciu, S.; Selleslag, D.; Aversa, F.; Gaidano, G.; Musso, M.; Annino, L.; Venditti, A.; Voso, M.T.; Mazzone, C.; et al. Gemtuzumab Ozogamicin Versus Best Supportive Care in Older Patients with Newly Diagnosed Acute Myeloid Leukemia Unsuitable for Intensive Chemotherapy: Results of the Randomized Phase III EORTC-GIMEMA AML-19 Trial. J. Clin. Oncol. 2016, 34, 972–979. [Google Scholar] [CrossRef]
  38. Moskowitz, C.H.; Nademanee, A.; Masszi, T.; Agura, E.; Holowiecki, J.; Abidi, M.H.; Chen, A.I.; Stiff, P.; Gianni, A.M.; Carella, A.; et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2015, 385, 1853–1862. [Google Scholar] [CrossRef]
  39. Connors, J.M.; Jurczak, W.; Straus, D.; Ansell, S.M.; Kim, W.S.; Gallamini, A.; Younes, A.; Alekseev, S.; Illés, Á.; Picardi, M.; et al. Brentuximab Vedotin with Chemotherapy for Stage III or IV Hodgkin’s Lymphoma. N. Engl. J. Med. 2018, 378, 331–344. [Google Scholar] [CrossRef]
  40. Prince, H.M.; Kim, Y.H.; Horwitz, S.M.; Dummer, R.; Scarisbrick, J.; Quaglino, P.; Zinzani, P.L.; Wolter, P.; Sanches, J.A.; Ortiz-Romero, P.L.; et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): An international, open-label, randomised, phase 3, multicentre trial. Lancet 2017, 390, 555–566. [Google Scholar] [CrossRef]
  41. Pro, B.; Advani, R.; Brice, P.; Bartlett, N.L.; Rosenblatt, J.D.; Illidge, T.; Matous, J.; Ramchandren, R.; Fanale, M.; Connors, J.M.; et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood 2017, 130, 2709–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  42. Horwitz, S.M.; O’Connor, O.A.; Pro, B.; Illidge, T.; Fanale, M.; Advani, R.; Bartlett, N.L.; Christensen, J.H.; Morschhauser, F.; Domingo-Domenech, E.; et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): A global, double-blind, randomised, phase 3 trial. Lancet 2019, 393, 229–240. [Google Scholar] [CrossRef] [Green Version]
  43. Sehn, L.H.; Herrera, A.F.; Flowers, C.R.; Kamdar, M.K.; McMillan, A.; Hertzberg, M.; Assouline, S.; Kim, T.M.; Kim, W.S.; Ozcan, M.; et al. Polatuzumab Vedotin in Relapsed or Refractory Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2020, 38, 155–165. [Google Scholar] [CrossRef] [PubMed]
  44. Salles, G.; Duell, J.; Barca, E.G.; Tournilhac, O.; Jurczak, W.; Liberati, A.M.; Nagy, Z.; Obr, A.; Gaidano, G.; André, M.; et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): A multicentre, prospective, single-arm, phase 2 study. Lancet Oncol. 2020, 21, 978–988. [Google Scholar] [CrossRef]
  45. Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.-O.; Callander, N.; Lendvai, N.; Sborov, D.; et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020, 21, 207–221. [Google Scholar] [CrossRef]
  46. Mehta, R.S.; Randolph, B.; Daher, M.; Rezvani, K. NK cell therapy for hematologic malignancies. Int. J. Hematol. 2018, 107, 262–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  47. Myers, J.A.; Miller, J.S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2020. [Google Scholar] [CrossRef]
  48. Bald, T.; Krummel, M.F.; Smyth, M.J.; Barry, K.C. The NK cell-cancer cycle: Advances and new challenges in NK cell-based im-munotherapies. Nat Immunol. 2020, 21, 835–847. [Google Scholar] [CrossRef] [PubMed]
  49. Shimasaki, N.; Jain, A.; Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 2020, 19, 200–218. [Google Scholar] [CrossRef]
  50. Gleason, M.K.; Verneris, M.R.; Todhunter, D.A.; Zhang, B.; McCullar, V.; Zhou, S.X.; Panoskaltsis-Mortari, A.; Weiner, L.M.; Vallera, D.A.; Miller, J.S. Bispecific and Trispecific Killer Cell Engagers Directly Activate Human NK Cells through CD16 Signaling and Induce Cytotoxicity and Cytokine Production. Mol. Cancer Ther. 2012, 11, 2674–2684. [Google Scholar] [CrossRef] [Green Version]
  51. Liu, E.; Marin, D.; Banerjee, P.; Macapinlac, H.A.; Thompson, P.; Basar, R.; Kerbauy, L.N.; Overman, B.; Thall, P.; Kaplan, M.; et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N. Engl. J. Med. 2020, 382, 545–553. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Olnes, M.J. Immune Therapies for Hematologic Malignancies. Cancers 2021, 13, 295. https://doi.org/10.3390/cancers13020295

AMA Style

Olnes MJ. Immune Therapies for Hematologic Malignancies. Cancers. 2021; 13(2):295. https://doi.org/10.3390/cancers13020295

Chicago/Turabian Style

Olnes, Matthew J. 2021. "Immune Therapies for Hematologic Malignancies" Cancers 13, no. 2: 295. https://doi.org/10.3390/cancers13020295

APA Style

Olnes, M. J. (2021). Immune Therapies for Hematologic Malignancies. Cancers, 13(2), 295. https://doi.org/10.3390/cancers13020295

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop