Genomic Instability of Circulating Tumor DNA as a Prognostic Marker for Pancreatic Cancer Survival: A Prospective Cohort Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Collection
2.2. Sample Processing and DNA Extraction
2.3. Library Preparation for Whole-Genome Sequencing of Cell-Free DNA
2.4. Whole-Genome Sequencing of Tumor Tissue DNA
2.5. Genomic Instability Calculation (I-Score)
2.6. Identification of Recurrent Copy Number Alterations Regions in Pancreatic Cancer Patients
2.7. Gene Sum Score Calculation and Validation
2.8. Comparing Copy Number Aberration Profiles of ctDNA and Matched Tumor Tissue DNA
2.9. Statistical Analysis
3. Results
3.1. Patient Demographics and Distribution of I-Score
3.2. Prognostic Impact of ctDNA I-Score in Pancreatic Cancer
3.3. ctDNA I-Score Is Associated with Response to Chemotherapy
3.4. Identifying Recurrent CNAs in Pancreatic Cancer
3.5. GISTIC Genes and GSS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Cancer Society. Cancer Facts & Figures; American Cancer Society: Atlanta, GA, USA, 2020. [Google Scholar]
- Hong, S.; Won, Y.J.; Park, Y.R.; Jung, K.W.; Kong, H.J.; Lee, E.S. Community of Population-Based Regional Cancer R. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2017. Cancer Res. Treat. 2020, 52, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Lengauer, C.; Kinzler, K.W.; Vogelstein, B. Genetic instabilities in human cancers. Nature 1998, 396, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Burrell, R.A.; McGranahan, N.; Bartek, J.; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013, 501, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Chan-Seng-Yue, M.; Kim, J.C.; Wilson, G.W.; Ng, K.; Figueroa, E.F.; O’Kane, G.M.; Connor, A.A.; Denroche, R.E.; Grant, R.C.; McLeod, J.; et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat. Genet. 2020, 52, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Buscail, E.; Maulat, C.; Muscari, F.; Chiche, L.; Cordelier, P.; Dabernat, S.; Alix-Panabieres, C.; Buscail, L. Liquid Biopsy Approach for Pancreatic Ductal Adenocarcinoma. Cancers 2019, 11, 852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castells, A.; Puig, P.; Mora, J.; Boadas, J.; Boix, L.; Urgell, E.; Sole, M.; Capellà, G.; Lluís, F.; Fernández-Cruz, L.; et al. K-ras mutations in DNA extracted from the plasma of patients with pancreatic carcinoma: Diagnostic utility and prognostic significance. J. Clin. Oncol. 1999, 17, 578–584. [Google Scholar] [CrossRef]
- Kim, M.K.; Woo, S.M.; Park, B.; Yoon, K.A.; Kim, Y.H.; Joo, J.; Lee, W.J.; Han, S.S.; Park, S.J.; Kong, S.Y. Prognostic Implications of Multiplex Detection of KRAS Mutations in Cell-Free DNA from Patients with Pancreatic Ductal Adenocarcinoma. Clin. Chem. 2018, 64, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, V.; Kim, D.U.; San Lucas, F.A.; Castillo, J.; Allenson, K.; Mulu, F.C.; Stephens, B.M.; Huang, J.; Semaan, A.; Guerrero, P.A.; et al. Circulating Nucleic Acids Are Associated with Outcomes of Patients with Pancreatic Cancer. Gastroenterology 2019, 156, 108–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.Y.; Ding, X.Q.; Zhu, H.; Wang, R.X.; Pan, X.R.; Tong, J.H. KRAS Mutant Allele Fraction in Circulating Cell-Free DNA Correlates with Clinical Stage in Pancreatic Cancer Patients. Front. Oncol. 2019, 9, 1295. [Google Scholar] [CrossRef]
- Waddell, N.; Pajic, M.; Patch, A.M.; Chang, D.K.; Kassahn, K.S.; Bailey, P.; Johns, A.L.; Miller, D.; Nones, K.; Quek, K.; et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015, 518, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.J.; Yachida, S.; Mudie, L.J.; Stephens, P.J.; Pleasance, E.D.; Stebbings, L.A.; Morsberger, L.A.; Latimer, C.; McLaren, S.; Lin, M.L.; et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010, 467, 1109–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coussy, F.; El-Botty, R.; Chateau-Joubert, S.; Dahmani, A.; Montaudon, E.; Leboucher, S.; Morisset, L.; Painsec, P.; Sourd, L.; Huguet, L.; et al. BRCAness, SLFN11, and RB1 loss predict response to topoisomerase I inhibitors in triple-negative breast cancers. Sci. Transl. Med. 2020, 12, eaax2625. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Van Allen, E.M.; Miao, D.; Schilling, B.; Shukla, S.A.; Blank, C.; Zimmer, L.; Sucker, A.; Hillen, U.; Foppen, M.H.G.; Goldinger, S.M.; et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 2015, 350, 207–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenhauer, E.A.; Therasse, J.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Benjamini, Y.; Speed, T.P. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012, 40, e72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Mächler, M.; Magnusson, A.; Möller, S.; et al. Gplots: Various R Programming Tools for Plotting Data. R Package Version 3.0.3. 2020. Available online: https://CRAN.R-project.org/package=gplots (accessed on 30 October 2021).
- Seshan, V.E.; Olshen, A. DNAcopy: DNA Copy Number Data Analysis. R Package Version 1.38.1. 2014. Available online: file:///C:/Users/MDPI/AppData/Local/Temp/10.1.1.649.7474-1.pdf (accessed on 30 October 2021).
- Mermel, C.H.; Schumacher, S.E.; Hill, B.; Meyerson, M.L.; Beroukhim, R.; Getz, G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011, 12, R41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, l1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contal, C.; O’Quigley, J. An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput. Stat. Data Anal. 1999, 30, 253–270. [Google Scholar] [CrossRef]
- Lee, J.H.; Giovannetti, E.; Hwang, J.H.; Petrini, I.; Wang, Q.; Voortman, J.; Wang, Y.; Steinberg, S.M.; Funel, N.; Meltzer, P.S.; et al. Loss of 18q22.3 involving the carboxypeptidase of glutamate-like gene is associated with poor prognosis in resected pancreatic cancer. Clin. Cancer Res. 2012, 18, 524–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandhu, V.; Wedge, D.C.; Bowitz Lothe, I.M.; Labori, K.J.; Dentro, S.C.; Buanes, T.; Skrede, M.L.; Dalsgaard, A.M.; Munthe, E.; Myklebost, O.; et al. The Genomic Landscape of Pancreatic and Periampullary Adenocarcinoma. Cancer Res. 2016, 76, 5092–5102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, T.; Chelala, C.; Bhakta, V.; Chaplin, T.; Caulee, K.; Baril, P.; Young, B.D.; Lemoine, N.R. Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays. Oncogene 2008, 27, 1951–1960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, S.J.; Hart, S.N.; Halling, G.C.; Johnson, S.H.; Smadbeck, J.B.; Drucker, T.; Lima, J.F.; Rohakhtar, F.R.; Harris, F.R.; Kosari, F.; et al. Integrated Genomic Analysis of Pancreatic Ductal Adenocarcinomas Reveals Genomic Rearrangement Events as Significant Drivers of Disease. Cancer Res. 2016, 76, 749–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 2017, 32, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Li, B.T.; Drilon, A.; Johnson, M.L.; Hsu, M.; Sima, C.S.; McGinn, C.; Sugita, H.; Kris, M.G.; Azzoli, C.G. A prospective study of total plasma cell-free DNA as a predictive biomarker for response to systemic therapy in patients with advanced non-small-cell lung cancers. Ann. Oncol. 2016, 27, 154–159. [Google Scholar] [CrossRef]
- Lee, J.S.; Park, S.S.; Lee, Y.K.; Norton, J.A.; Jeffrey, S.S. Liquid biopsy in pancreatic ductal adenocarcinoma: Current status of circulating tumor cells and circulating tumor DNA. Mol. Oncol. 2019, 13, 1623–1650. [Google Scholar] [CrossRef] [Green Version]
- Mohan, S.; Ayub, M.; Rothwell, D.G.; Gulati, S.; Kilerci, B.; Hollebecque, A.; Sun Leong, H.; Smith, N.K.; Sahoo, S.; Descamps, T.; et al. Analysis of circulating cell-free DNA identifies KRAS copy number gain and mutation as a novel prognostic marker in pancreatic cancer. Sci. Rep. 2019, 9, 11610. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Tian, L.; Feng, Y.; Yi, M.; Chen, X.; Huang, Q. The predictive role of p16 deletion, p53 deletion, and polysomy 9 and 17 in pancreatic ductal adenocarcinoma. Pathol. Oncol. Res. 2013, 19, 35–40. [Google Scholar] [CrossRef]
- Miyazawa, Y.; Uekita, T.; Hiraoka, N.; Fujii, S.; Kosuge, T.; Kanai, Y.; Nojima, Y.; Sakai, R. CUB domain-containing protein 1, a prognostic factor for human pancreatic cancers, promotes cell migration and extracellular matrix degradation. Cancer Res. 2010, 70, 5136–5146. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Liu, Q.; Jia, Y.; Tu, K.; Yao, Y.; Liu, Q.; Guo, C. BCAT1 promotes tumor cell migration and invasion in hepatocellular carcinoma. Oncol. Lett. 2016, 12, 2648–2656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callagy, G.M.; Webber, M.J.; Pharoah, P.D.; Caldas, C. Meta-analysis confirms BCL2 is an independent prognostic marker in breast cancer. BMC Cancer 2008, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Samanta, S.; Tamura, S.; Dubeau, L.; Mhawech-Fauceglia, P.; Miyagi, Y.; Kato, H.; Lieberman, R.; Buckanovich, R.J.; Lin, Y.G.; Neamati, N. Clinicopathological significance of endoplasmic reticulum stress proteins in ovarian carcinoma. Sci. Rep. 2020, 10, 2160. [Google Scholar] [CrossRef] [PubMed]
- Davoli, T.; Uno, H.; Wooten, E.C.; Elledge, S.J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 2017, 355, eaaf8399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouw, K.W.; Goldberg, M.S.; Konstantinopoulos, P.A.; D’Andrea, A.D. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov. 2017, 7, 675–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalimutho, M.; Nones, K.; Srihari, S.; Duijf, P.H.G.; Waddell, N.; Khanna, K.K. Patterns of Genomic Instability in Breast Cancer. Trends Pharmacol. Sci. 2019, 40, 198–211. [Google Scholar] [CrossRef]
Characteristic | Total | I-Score | p-Value | ||
---|---|---|---|---|---|
(n = 315) | Low (n = 239) | High (n = 76) | |||
Age | Mean ± SD | 65.4 ± 9.7 | 65.8 ± 9.6 | 64.1 ± 10 | 0.1862 |
Sex | |||||
Male | 181 (57.5%) | 136 (75.1%) | 45 (24.9%) | 0.7231 | |
Female | 134 (42.5%) | 103 (76.9%) | 31 (23.1%) | ||
Status | |||||
Resectable | 110 (34.9%) | 104 (94.5%) | 6 (5.5%) | <0.0001 | |
Locally advanced | 78 (24.8%) | 74 (94.9%) | 4 (5.1%) | ||
Metastatic | 127 (40.3%) | 61 (48.0%) | 66 (52.0%) | ||
Pancreatic tumor location | |||||
Body or tail | 164 (52.1%) | 108 (65.9%) | 56 (34.1%) | <0.0001 | |
Head or neck | 151 (47.9%) | 131 (86.8%) | 20 (13.2%) | ||
CA19-9, U/mL a | |||||
≤37 | 106 (34.1%) | 95 (98.6%) | 11 (10.4%) | <0.0001 | |
>37 | 205 (65.9%) | 141 (68.8%) | 64 (31.2%) | ||
CEA, U/mL b | |||||
≤5 | 152 (53.3%) | 138 (90.8%) | 14 (9.2%) | <0.0001 | |
>5 | 133 (46.7%) | 77 (57.9%) | 56 (42.1%) | ||
ECOG | |||||
0 + 1 | 309 (98.1%) | 234 (75.7%) | 75 (24.3%) | >0.9999 | |
2 + 3 | 6 (1.9%) | 5 (83.3%) | 1 (16.7%) |
Characteristic | PFS (n = 315, Event = 186) | OS (n = 315, Event = 167) | |||||||
---|---|---|---|---|---|---|---|---|---|
Univariable Model | Multivariable Model | Univariable Model | Multivariable Model | ||||||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||
I-score | Low (≤7.3) | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | ||||
High (>7.3) | 2.69 (1.96–3.69) | <0.0001 | 1.99 (1.42–2.77) | <0.0001 | 3.07 (2.21–4.25) | <0.0001 | 2.15 (1.53–3.01) | <0.0001 | |
Age | 1.00 (0.98–1.01) | 0.674 | 1.01 (0.99–1.02) | 0.5036 | |||||
Sex | Male | 1 (ref) | 1 (ref) | ||||||
Female | 0.91 (0.68–1.21) | 0.5081 | 0.76 (0.55–1.04) | 0.0842 | |||||
Status | Resectable | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | ||||
Locally advanced + Metastatic | 2.76 (1.99–3.84) | <0.0001 | 2.26 (1.60–3.20) | <0.0001 | 4.05 (2.82–5.82) | <0.0001 | 3.41 (2.34–4.96) | <0.0001 | |
Pancreatic tumor location | Body or tail | 1 (ref) | 1 (ref) | ||||||
Head or neck | 0.86 (0.65–1.15) | 0.3198 | 0.72 (0.53–0.97) | 0.0331 | |||||
CA19-9, U/mL a | ≤37 | 1 (ref) | 1 (ref) | ||||||
>37 | 1.69 (1.22–2.33) | 0.0014 | 1.60 (1.14–2.24) | 0.0066 | |||||
CEA, U/mL b | ≤5 | 1 (ref) | 1 (ref) | ||||||
>5 | 1.74 (1.28–2.35) | 0.0004 | 2.09 (1.51–2.88) | <0.0001 | |||||
ECOG | 0 + 1 | 1 (ref) | 1 (ref) | ||||||
2 + 3 | 1.19 (0.49–2.89) | 0.7082 | 0.93 (0.30–2.93) | 0.9058 |
Amp/Del | GISTIC Amp/Del Region | Curated Pancreatic Cancer-Related Gene | ||||||
---|---|---|---|---|---|---|---|---|
Chr | Start | End | Chr | Start | End | Gene | Type | |
Amp | chr3 | 174,000,002 | 198,022,430 | chr3 | 187,439,164 | 187,463,513 | BCL6 | OCG |
chr3 | 178,866,310 | 178,952,497 | PIK3CA | OCG | ||||
chr8 | 125,000,002 | 146,364,022 | chr8 | 128,748,314 | 128,753,680 | MYC | OCG | |
chr8 | 141,668,480 | 142,011,412 | PTK2 | PPA | ||||
chr12 | 24,000,002 | 27,000,000 | chr12 | 25,358,179 | 25,403,854 | KRAS | OCG | |
chr19 | 31,000,002 | 59,128,983 | chr19 | 45,251,977 | 45,263,301 | BCL3 | OCG | |
chr19 | 45,281,125 | 45,303,903 | CBLC | OCG | ||||
chr19 | 40,736,223 | 40,791,302 | AKT2 | OCG | ||||
chr19 | 39,390,339 | 39,399,534 | NFKBIB | PPA | ||||
chr19 | 39,078,280 | 39,108,643 | MAP4K1 | PPA | ||||
chr19 | 39,876,269 | 39,881,835 | PAF1 | PPA | ||||
chr19 | 38,924,339 | 39,078,204 | RYR1 | PPA | ||||
Del | chr9 | 1 | 27,000,000 | chr9 | 4,985,244 | 5,128,183 | JAK2 | OCG |
chr9 | 21,802,634 | 21,865,969 | MTAP | TSG | ||||
chr9 | 21,967,750 | 21,994,490 | CDKN2A | TSG | ||||
chr9 | 22,002,901 | 22,009,312 | CDKN2B | TSG | ||||
chr9 | 8,314,245 | 10,612,723 | PTPRD | TSG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, S.M.; Kim, M.K.; Park, B.; Cho, E.-H.; Lee, T.-R.; Ki, C.-S.; Yoon, K.-A.; Kim, Y.-H.; Choi, W.; Kim, D.Y.; et al. Genomic Instability of Circulating Tumor DNA as a Prognostic Marker for Pancreatic Cancer Survival: A Prospective Cohort Study. Cancers 2021, 13, 5466. https://doi.org/10.3390/cancers13215466
Woo SM, Kim MK, Park B, Cho E-H, Lee T-R, Ki C-S, Yoon K-A, Kim Y-H, Choi W, Kim DY, et al. Genomic Instability of Circulating Tumor DNA as a Prognostic Marker for Pancreatic Cancer Survival: A Prospective Cohort Study. Cancers. 2021; 13(21):5466. https://doi.org/10.3390/cancers13215466
Chicago/Turabian StyleWoo, Sang Myung, Min Kyeong Kim, Boram Park, Eun-Hae Cho, Tae-Rim Lee, Chang-Seok Ki, Kyong-Ah Yoon, Yun-Hee Kim, Wonyoung Choi, Do Yei Kim, and et al. 2021. "Genomic Instability of Circulating Tumor DNA as a Prognostic Marker for Pancreatic Cancer Survival: A Prospective Cohort Study" Cancers 13, no. 21: 5466. https://doi.org/10.3390/cancers13215466
APA StyleWoo, S. M., Kim, M. K., Park, B., Cho, E.-H., Lee, T.-R., Ki, C.-S., Yoon, K.-A., Kim, Y.-H., Choi, W., Kim, D. Y., Hwang, J.-H., Cho, J. H., Han, S.-S., Lee, W. J., Park, S.-J., & Kong, S.-Y. (2021). Genomic Instability of Circulating Tumor DNA as a Prognostic Marker for Pancreatic Cancer Survival: A Prospective Cohort Study. Cancers, 13(21), 5466. https://doi.org/10.3390/cancers13215466