Novel Biomarkers of Gastric Adenocarcinoma: Current Research and Future Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Treatment-Related Biomarkers—Molecular Targeted Therapy
2.1. Human Epidermal Growth Factor Receptor 2
2.2. Epidermal Growth Factor Receptor
2.3. Vascular Endothelial Growth Factor
2.4. Fibroblast Growth Factor Receptor
2.5. Hepatocyte Growth Factor Receptor
2.6. Claudin 18.2
2.7. Ataxia Teleangiectasia Mutated
2.8. AKT
2.9. Histone Deacetylase
2.10. Matrix Metalloproteinase-9
2.11. Immunotherapy
3. Diagnostic and Potential Target Biomarkers
3.1. DNA Methylation and Gene Expression
3.2. Multiple Gene Expression Signatures
3.3. Noncoding RNA
3.4. Protein Expression
3.5. Serum Biomarkers
3.6. Peritoneal Biomarkers
3.7. Cell Biomarkers
3.8. Tumor Microenvironment
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCA Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Wroblewski, L.E.; Peek, R.M.; Wilson, K.T. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin. Microbiol. Rev. 2010, 23, 713–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cutsem, E.; Sagaert, X.; Topal, B.; Haustermans, K.; Prenen, H. Gastric cancer. Lancet 2016, 388, 2654–2664. [Google Scholar] [CrossRef]
- Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Gastroenterol. Rev. 2019, 14, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Stomach Cancer Survival Rates. Available online: https://www.cancer.org/cancer/stomach-cancer/detection-diagnosis-staging/survival-rates (accessed on 2 March 2021).
- Mishra, A.; Verma, M. Cancer biomarkers: Are we ready for the prime time? Cancers 2010, 2, 190–208. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omura, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomized controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Johnson, A.M.; Dumbrava, E.E.; Raghav, K.; Balaji, K.; Bhatt, M.; Murthy, R.K.; Rodon, J.; Piha-Paul, S.A. Advances in HER2-Targeted Therapy: Novel Agents and Opportunities Beyond Breast and Gastric Cancer. Clin. Cancer Res. 2019, 25, 2033–2041. [Google Scholar] [CrossRef] [Green Version]
- Gravalos, C.; Jimeno, A. HER2 in gastric cancer: A new prognostic factor and a novel therapeutic target. Ann. Oncol. 2008, 19, 1523–1529. [Google Scholar] [CrossRef]
- Okines, A.F.; Thompson, L.C.; Cunningham, D.; Wotherspoon, A.; Reis-Filho, J.S.; Langley, R.E.; Waddell, T.S.; Noor, D.; Eltahir, Z.; Wong, R.; et al. Effect of HER2 on prognosis and benefit from perioperative chemotherapy in early oesophago-gastric adenocarcinoma in the MAGIC trial. Ann. Oncol. 2013, 24, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Bang, Y.J.; Feng-Yi, F.; Xu, J.M.; Lee, K.W.; Jiao, S.C.; Chong, J.L.; Lopez-Sanchez, R.I.; Price, T.; Gladkov, O.; et al. HER2 screening data from ToGA: Targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer 2015, 18, 476–484. [Google Scholar] [CrossRef]
- Matsumoto, T.; Sasako, M.; Mizusawa, J.; Hirota, S.; Ochiai, A.; Kushima, R.; Katai, H.; Tanaka, Y.; Fukushima, N.; Nashimoto, A.; et al. HER2 expression in locally advanced gastric cancer with extensive lymph node (bulky N2 or paraaortic) metastasis (JCOG1005-A trial). Gastric Cancer 2015, 18, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Press, M.F.; Ellis, C.E.; Gagnon, R.C.; Grob, T.J.; Buyse, M.; Villalobos, I.; Liang, Z.; Wu, S.; Bang, Y.J.; Qin, S.K.; et al. HER2 Status in Advanced or Metastatic Gastric, Esophageal, or Gastroesophageal Adenocarcinoma for Entry to the TRIO-013/LOGIC Trial of Lapatinib. Mol. Cancer Ther. 2017, 16, 228–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, W.H.; Gomes-Izquierdo, L.; Vilardell, F.; Chu, K.M.; Soucy, G.; Dos Santos, L.V.; Monges, G.; Viale, G.; Brito, M.J.; Osborne, S.; et al. HER2 status in Gastric and Gastroesophageal Junction Cancer: Results of the Large, Multinational HER-EAGLE Study. Appl. Immunohistochem. Mol. Morph 2018, 26, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Feizy, A.; Karami, A.; Eghdamzamiri, R.; Moghimi, M.; Taheri, H.; Mousavinasab, N. HER2 Expression Status and Prognostic, Diagnostic, and Demographic Properties of Patients with Gastric Cancer: A Single Center Cohort Study from Iran. Asian Pac. J. Cancer Prev. 2018, 19, 1721–1725. [Google Scholar]
- Lordick, F.; Al-Batran, S.E.; Dietel, M.; Gaiser, T.; Hofheinz, R.D.; Kirchner, T.; Kreipe, H.H.; Lorenzen, S.; Möhler, M.; Qaas, A.; et al. HER2 testing in gastric cancer: Results of a German expert meeting. J. Cancer Res. Clin. Oncol. 2017, 143, 835–841. [Google Scholar] [CrossRef] [Green Version]
- Sawaki, A.; Ohashi, Y.; Omuro, Y.; Satoh, T.; Hamamoto, Y.; Boku, N.; Miyata, Y.; Takiuchi, H.; Yamaguchi, K.; Sasaki, Y.; et al. Efficacy of trastuzumab in Japanese patients with HER2-positive advanced gastric or gastroesophageal junction cancer: A subgroup analysis of the Trastuzumab for Gastric Cancer (ToGA) study. Gastric Cancer 2012, 15, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Shitara, K.; Yatabe, Y.; Matsuo, K.; Sugano, M.; Kondo, C.; Takahiri, D.; Ura, T.; Tajika, M.; Ito, S.; Muro, K. Prognosis of patients with advanced gastric cancer by HER2 status and trastuzumab treatment. Gastric Cancer 2013, 16, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Li, H.; Jiang, H.; Feng, Y.; Cui, Y.; Wang, Y.; Ji, Y.; Yu, Y.; Li, W.; Xu, C.; et al. Predictive factors of trastuzumab-based chemotherapy in HER2 positive advanced gastric cancer: A single-center prospective observational study. Clin. Transl. Oncol. 2018, 20, 695–702. [Google Scholar] [CrossRef]
- Shitara, K.; Bang, Y.J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.-C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef]
- Thuss-Patience, P.C.; Shah, M.A.; Ohtsu, A.; Van Cutsem, E.; Ajani, J.A.; Castro, H.; Mansoor, W.; Chung, H.C.; Bodoky, G.; Shitara, K.; et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): An international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol. 2017, 18, 640–653. [Google Scholar] [CrossRef]
- Shah, M.A.; Kang, Y.K.; Thuss-Patience, P.C.; Ohtsu, A.; Ajani, J.A.; Van Cutsem, E.; Hoersch, S.; Harle-Yge, M.L.; de Haas, S.L. Biomarker analysis of the GATSBY study of trastuzumab emtansine versus a taxane in previously treated HER2-positive advanced gastric/gastroesophageal junction cancer. Gastric Cancer 2019, 22, 803–816. [Google Scholar] [CrossRef] [Green Version]
- Shitara, K.; Honma, Y.; Omuro, Y.; Yamaguchi, K.; Chin, K.; Muro, K.; Nakagawa, S.; Kawakami, S.; Hironaka, S.; Nishina, T. Efficacy of trastuzumab emtansine in Japanese patients with previously treated HER2-positive locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma: A subgroup analysis of the GATSBY study. Asia Pac. J. Clin. Oncol. 2020, 16, 5–13. [Google Scholar] [CrossRef]
- Horita, Y.; Nishino, M.; Sugimoto, S.; Kida, A.; Mizukami, A.; Yano, M.; Arihara, F.; Matsuda, K.; Matsuda, M.; Sakai, A. Phase II clinical trial of second-line weekly paclitaxel plus trastuzumab for patients with HER2-positive metastatic gastric cancer. Anticancer Drugs 2019, 30, 98–104. [Google Scholar] [CrossRef]
- Makiyama, A.; Sukawa, Y.; Kashiwada, T.; Kawada, J.; Hosokawa, A.; Horie, Y.; Tsuji, A.; Moriwaki, T.; Tanioka, H.; Shinozaki, K.; et al. Randomized, Phase II Study of Trastuzumab Beyond Progression in Patients with HER2-Positive Advanced Gastric or Gastroesophageal Junction Cancer: WJOG7112G (T-ACT Study). J. Clin. Oncol. 2020, 38, 1919–1927. [Google Scholar] [CrossRef]
- Ryu, M.H.; Yoo, C.; Kim, J.G.; Ryoo, B.Y.; Park, Y.S.; Park, S.R.; Han, H.S.; Chung, I.J.; Song, E.K.; Lee, K.H.; et al. Multicenter phase II study of trastuzumab in combination with capecitabine and oxaliplatin for advanced gastric cancer. Eur. J. Cancer 2015, 51, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Liu, T.; Fan, Q.; Bai, L.; Feng, B.; Qin, S.; Wang, J.; Xu, N.; Cheng, Y.; Bai, Y.; et al. Optimal regimen of trastuzumab in combination with oxaliplatin/ capecitabine in first-line treatment of HER2-positive advanced gastric cancer (CGOG1001): A multicenter, phase II trial. BMC Cancer 2016, 16, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, F.; Romero, C.; Jimenez-Fonseca, P.; Izquierdo-Manuel, M.; Salud, A.; Martinez, E.; Jorge, M.; Arrazubi, V.; Mendez, J.C.; Garcia-Alfonso, P.; et al. Phase II study to evaluate the efficacy of Trastuzumab in combination with Capecitabine and Oxaliplatin in first-line treatment of HER2-positive advanced gastric cancer: HERXO trial. Cancer Chemother. Pharm. 2019, 83, 1175–1181. [Google Scholar] [CrossRef] [Green Version]
- Roviello, G.; Petrioli, R.; Petrioli, R.; Nardone, V.; Rosellini, P.; Multari, A.G.; Conca, R.; Aieta, M. Docetaxel, oxaliplatin, 5FU, and trastuzumab as first-line therapy in patients with human epidermal receptor 2-positive advanced gastric or gastroesophageal junction cancer: Preliminary results of a phase II study. Medicine 2018, 97, e10745. [Google Scholar] [CrossRef] [PubMed]
- Mondaca, S.; Margolis, M.; Sanchez-Vega, F.; Jonsson, P.; Riches, J.C.; Ku, G.Y.; Hechtman, J.F.; Tuvy, Y.; Berger, M.F.; Shah, M.A.; et al. Phase II study of trastuzumab with modified docetaxel, cisplatin, and 5 fluorouracil in metastatic HER2-positive gastric cancer. Gastric Cancer 2019, 22, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Kagawa, S.; Muraoka, A.; Kambara, T.; Nakayama, H.; Hamano, R.; Tanaka, N.; Noma, K.; Tanakaya, K.; Kishimoto, H.; Shigeyasu, K.; et al. A multi-institution phase II study of docetaxel and S-1 in combination with trastuzumab for HER2-positive advanced gastric cancer (DASH study). Cancer Chemother. Pharm. 2018, 81, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Takahari, D.; Chin, K.; Ishizuka, N.; Takashima, A.; Minashi, K.; Kadowaki, S.; Nishina, T.; Nakajima, T.E.; Amagai, K.; Machida, N.; et al. Multicenter phase II study of trastuzumab with S-1 plus oxaliplatin for chemotherapy-naïve, HER2-positive advanced gastric cancer. Gastric Cancer 2019, 22, 1238–1246. [Google Scholar] [CrossRef]
- Yuki, S.; Shinozaki, K.; Kashiwada, T.; Kusumoto, T.; Iwatsuki, M.; Satake, H.; Kobayashi, K.; Esaki, T.; Nakashima, Y.; Kawanaka, H.; et al. Multicenter phase II study of SOX plus trastuzumab for patients with HER2(+) metastatic or recurrent gastric cancer: KSCC/HGCSG/CCOG/PerSeUS 1501B. Cancer Chemother. Pharm. 2020, 85, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Mori, Y.; Shimura, T.; Nishie, H.; Natsume, M.; Mochizuki, H.; Hirata, Y.; Sobue, S.; Mizushima, T.; Sano, H.; et al. A phase II prospective study of the trastuzumab combined with 5-weekly S-1 and CDDP therapy for HER2-positive advanced gastric cancer. Cancer Chemother. Pharm. 2016, 77, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Sukawa, Y.; Hironaka, S.; Mori, M.; Nishikawa, K.; Tokunaga, S.; Okuda, H.; Sakamoto, T.; Taku, K.; Nishikawa, T.; et al. Five-weekly S-1 plus cisplatin therapy combined with trastuzumab therapy in HER2-positive gastric cancer: A phase II trial and biomarker study (WJOG7212G). Gastric Cancer 2018, 21, 84–95. [Google Scholar] [CrossRef]
- Endo, S.; Kurokawa, M.; Gamoh, M.; Kimura, Y.; Matsuyama, J.; Taniguchi, H.; Takeno, A.L.; Kawabata, R.; Kawada, J.; Masuzawa, T.; et al. Trastuzumab with S-1 Plus Cisplatin in HER2-positive Advanced Gastric Cancer Without Measurable Lesions: OGSG 1202. Anticancer Res. 2019, 39, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Fujii, M.; Masuishi, T.; Nishikawa, K.; Kunisaki, C.; Matsusaka, S.; Segawa, Y.; Nakamura, M.; Sasaki, K.; Nagao, N.; et al. Multicenter phase II study of trastuzumab plus S-1 alone in elderly patients with HER2-positive advanced gastric cancer (JACCRO GC-06). Gastric Cancer 2018, 21, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M.A.; Xu, R.H.; Bang, Y.J.; Hoff, P.M.; Liu, T.; Herraez-Baranda, L.A.; Xia, F.; Garg, A.; Shing, M.; Tabernero, J. HELOISE: Phase IIIb Randomized Multicenter Study Comparing Standard-of-Care and Higher-Dose Trastuzumab Regimens Combined with Chemotherapy as First-Line Therapy in Patients with Human Epidermal Growth Factor Receptor 2-Positive Metastatic Gastric or Gastroesophageal Junction Adenocarcinoma. J. Clin. Oncol. 2017, 35, 2558–2567. [Google Scholar]
- Tabernero, J.; Hoff, P.M.; Shen, L.; Ohtsu, A.; Shah, M.A.; Cheng, K.; Song, C.; Wu, H.; Eng-Wong, J.; Kim, K.; et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): Final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol. 2018, 19, 1372–1384. [Google Scholar] [CrossRef]
- Liu, T.; Qin, Y.; Li, J.; Xu, R.; Xu, J.; Yang, S.; Qin, S.; Bai, Y.; Wu, C.; Mao, Y.; et al. Pertuzumab in combination with trastuzumab and chemotherapy for Chinese patients with HER2-positive metastatic gastric or gastroesophageal junction cancer: A subpopulation analysis of the JACOB trial. Cancer Commun. 2019, 39, 38. [Google Scholar] [CrossRef] [Green Version]
- Oh, D.Y.; Lee, K.W.; Cho, J.Y.; Kang, W.K.; Im, S.A.; Kim, J.W.; Bang, Y.J. Phase II trial of dacomitinib in patients with HER2-positive gastric cancer. Gastric Cancer 2016, 19, 1095–1103. [Google Scholar] [CrossRef]
- Kim, T.Y.; Han, H.S.; Lee, K.W.; Zang, D.Y.; Rha, S.Y.; Park, Y.I.; Kim, J.-S.; Lee, K.H.; Park, S.H.; Song, E.K.; et al. A phase I/II study of poziotinib combined with paclitaxel and trastuzumab in patients with HER2-positive advanced gastric cancer. Gastric Cancer 2019, 22, 1206–1214. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, S.; Goldman, B.; Fenoglio-Preiser, C.; Lenz, H.J.; Zhang, W.; Danenberg, K.D.; Shibata, S.I.; Blanke, C.D. Southwest Oncology Group study S0413: A phase II trial of lapatinib (GW572016) as first-line therapy in patients with advanced or metastatic gastric cancer. Ann. Oncol. 2011, 22, 2610–2615. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Xu, R.H.; Chung, H.C.; Sun, G.P.; Doi, T.; Xu, J.M.; Tsuji, A.; Omuro, Y.; Li, J.; Wang, J.W.; et al. Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN—A randomized, phase III study. J. Clin. Oncol. 2014, 32, 2039–2049. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, S.; Riera Knorrenschild, J.; Haag, G.M.; Pohl, M.; Thuss-Patience, P.; Bassermann, F.; Helbig, U.; Weißinger, F.; Schnoy, E.; Becker, K.; et al. Lapatinib versus lapatinib plus capecitabine as second-line treatment in human epidermal growth factor receptor 2-amplified metastatic gastro-oesophageal cancer: A randomised phase II trial of the Arbeitsgemeinschaft Internistische Onkologie. Eur. J. Cancer 2015, 51, 569–576. [Google Scholar] [CrossRef]
- Hecht, J.R.; Bang, Y.J.; Qin, S.K.; Chung, H.C.; Xu, J.M.; Park, J.O.; Jeziorski, K.; Shparyk, Y.; Hoff, P.M.; Sobrero, A.; et al. Lapatinib in Combination with Capecitabine Plus Oxaliplatin in Human Epidermal Growth Factor Receptor 2-Positive Advanced or Metastatic Gastric, Esophageal, or Gastroesophageal Adenocarcinoma: TRIO-013/LOGiC-A Randomized Phase III Trial. J. Clin. Oncol. 2016, 34, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Moehler, M.; Schad, A.; Maderer, A.; Atasoy, A.; Mauer, M.E.; Caballero, C.; Thomaidis, T.; Mahachie John, J.M.; Lang, I.; Van Cutsem, E.; et al. Lapatinib with ECF/X in the first-line treatment of metastatic gastric cancer according to HER2neu and EGFR status: A randomized placebo-controlled phase II study (EORTC 40071). Cancer Chemother. Pharm. 2018, 82, 733–739. [Google Scholar] [CrossRef] [PubMed]
- LaBonte, M.J.; Yang, D.; Zhang, W.; Wilson, P.M.; Nagarwala, Y.M.; Koch, K.M.; Briner, C.; Kaneko, T.; Rha, S.Y.; Gladkov, O.; et al. A Phase II Biomarker-Embedded Study of Lapatinib plus Capecitabine as First-line Therapy in Patients with Advanced or Metastatic Gastric Cancer. Mol. Cancer Ther. 2016, 15, 2251–2258. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Vega, F.; Hechtman, J.F.; Castel, P.; Ku, G.Y.; Tuvy, Y.; Won, H.; Fong, C.J.; Bouvier, N.; Nanjangud, G.J.; Soong, J.; et al. GFR and MET Amplifications Determine Response to HER2 Inhibition in ERBB2-Amplified Esophagogastric Cancer. Cancer Discov. 2019, 9, 199–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waddell, T.; Chau, I.; Cunningham, D.; Gonzalez, D.; Okines, A.F.; Wotherspoon, A.; Saffery, C.; Middleton, G.; Wadsley, J.; Ferry, D.; et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): A randomised, open-label phase 3 trial. Lancet Oncol. 2013, 14, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Stahl, M.; Maderer, A.; Lordick, F.; Mihaljevic, A.L.; Kanzler, S.; Hoehler, T.; Thuss-Patience, P.; Mönig, S.; Kunzmann, V.; Schroll, S.; et al. Perioperative chemotherapy with or without epidermal growth factor receptor blockade in unselected patients with locally advanced oesophagogastric adenocarcinoma: Randomized phase II study with advanced biomarker program of the German Cancer Society (AIO/CAO STO-0801). Eur. J. Cancer 2018, 93, 119–126. [Google Scholar]
- Satoh, T.; Lee, K.H.; Rha, S.Y.; Sasaki, Y.; Park, S.H.; Komatsu, Y.; Yasui, H.; Kim, T.-Y.; Yamaguchi, K.; Fuse, N.; et al. Randomized phase II trial of nimotuzumab plus irinotecan versus irinotecan alone as second-line therapy for patients with advanced gastric cancer. Gastric Cancer 2015, 18, 824–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lordick, F.; Luber, B.; Lorenzen, S.; Hegewisch-Becker, S.; Folprecht, G.; Wöll, E.; Decker, T.; Endlicher, E.; Röthling, N.; Schuster, T.; et al. Cetuximab plus oxaliplatin/leucovorin/5-fluorouracil in first-line metastatic gastric cancer: A phase II study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Br. J. Cancer 2010, 102, 500–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moehler, M.; Mueller, A.; Trarbach, T.; Lordick, F.; Seufferlein, T.; Kubicka, S.; Geißler, M.; Schwarz, S.; Galle, P.R.; Kanzler, S. Cetuximab with irinotecan, folinic acid and 5-fluorouracil as first-line treatment in advanced gastroesophageal cancer: A prospective multi-center biomarker-oriented phase II study. Ann. Oncol. 2011, 22, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Lordick, F.; Kang, Y.K.; Chung, H.C.; Salman, P.; Oh, S.C.; Bodoky, G.; Kurteva, G.; Volovat, C.; Moiseyenko, V.M.; Gorbunova, V.; et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): A randomised, open-label phase 3 trial. Lancet Oncol. 2013, 14, 490–499. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Liu, H.; Yang, L.; Liang, J.; Xu, N.; Bai, Y.; Wang, J.; Shen, L. Predictive biomarkers for the efficacy of cetuximab combined with cisplatin and capecitabine in advanced gastric or esophagogastric junction adenocarcinoma: A prospective multicenter phase 2 trial. Med. Oncol. 2014, 31, 226. [Google Scholar] [CrossRef]
- Liu, X.; Guo, W.; Zhang, W.; Yin, J.; Zhang, J.; Zhu, X.; Liu, T.; Chen, Z.; Wang, B.; Chang, J.; et al. A multi-center phase II study and biomarker analysis of combined cetuximab and modified FOLFIRI as second-line treatment in patients with metastatic gastric cancer. BMC Cancer 2017, 17, 188. [Google Scholar] [CrossRef] [Green Version]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Ohtsu, A.; Shah, M.A.; Van Cutsem, E.; Rha, S.Y.; Sawaki, A.; Park, S.R.; Lim, H.Y.; Yamada, Y.; Wu, J.; Langer, B.; et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: A randomized, double-blind, placebo-controlled phase III study. J. Clin. Oncol. 2011, 29, 3968–3976. [Google Scholar] [CrossRef]
- Meulendijks, D.; de Groot, J.W.; Los, M.; Boers, J.E.; Beerepoot, L.V.; Polee, M.N.; Beeker, A.; Portielje, J.E.; Goey, S.H.; de Jong, R.S.; et al. Bevacizumab combined with docetaxel, oxaliplatin, and capecitabine, followed by maintenance with capecitabine and bevacizumab, as first-line treatment of patients with advanced HER2-negative gastric cancer: A multicenter phase 2 study. Cancer 2016, 122, 1434–1443. [Google Scholar] [CrossRef] [Green Version]
- Meulendijks, D.; Beerepoot, L.V.; Boot, H.; de Groot, J.W.; Los, M.; Boers, J.E.; Vanhoutvin, S.A.; Polee, M.B.; Beeker, A.; Portielje, J.E.; et al. Trastuzumab and bevacizumab combined with docetaxel, oxaliplatin and capecitabine as first-line treatment of advanced HER2-positive gastric cancer: A multicenter phase II study. Investig. New Drugs 2016, 34, 119–128. [Google Scholar] [CrossRef]
- Moehler, M.; Mueller, A.; Hartmann, J.T.; Ebert, M.P.; Al-Batran, S.E.; Reimer, P.; Weihrauch, M.; Lordick, F.; Trarbach, T.; Biesterfeld, S.; et al. An open-label, multicentre biomarker-oriented AIO phase II trial of sunitinib for patients with chemo-refractory advanced gastric cancer. Eur. J. Cancer 2011, 47, 1511–1520. [Google Scholar] [CrossRef]
- Moehler, M.; Gepfner-Tuma, I.; Maderer, A.; Thuss-Patience, P.C.; Ruessel, J.; Hegewisch-Becker, S.; Wilke, H.; Al-Batran, S.E.; Rafiyan, M.-R.; Weißinger, F.; et al. Sunitinib added to FOLFIRI versus FOLFIRI in patients with chemorefractory advanced adenocarcinoma of the stomach or lower esophagus: A randomized, placebo-controlled phase II AIO trial with serum biomarker program. BMC Cancer 2016, 16, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Won, E.; Basunia, A.; Chatila, W.K.; Hechtman, J.F.; Chou, J.F.; Ku, G.Y.; Chalasani, S.B.; Boyar, M.S.; Goldberg, Z.; Desai, A.M.; et al. Efficacy of Combined VEGFR1-3, PDGFα/β, and FGFR1-3 Blockade Using Nintedanib for Esophagogastric Cancer. Clin. Cancer Res. 2019, 25, 3811–3817. [Google Scholar] [CrossRef] [Green Version]
- Van Cutsem, E.; Bang, Y.J.; Mansoor, W.; Petty, R.D.; Chao, Y.; Cunningham, D.; Ferry, D.R.; Smith, N.R.; Frewer, P.; Ratnayake, J.; et al. A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Ann. Oncol. 2017, 28, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Iveson, T.; Donehower, R.C.; Davidenko, I.; Tjulandin, S.; Deptala, A.; Harrison, M.; Nirni, S.; Lakshmaiah, K.; Thomas, A.; Jiang, Y.; et al. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: An open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol. 2014, 15, 1007–1018. [Google Scholar] [CrossRef]
- Zhu, M.; Tang, R.; Doshi, S.; Oliner, K.S.; Dubey, S.; Jiang, Y.; Donehower, R.C.; Iveson, T.; Loh, E.Y.; Zhang, Y. Exposure-response analysis of rilotumumab in gastric cancer: The role of tumour MET expression. Br. J. Cancer 2015, 112, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Catenacci, D.V.; Tebbutt, N.C.; Davidenko, I.; Murad, A.M.; Al-Batran, S.E.; Ilson, D.H.; Tjulandin, S.; Gotovkin, E.; Karaszewska, B.; Bondarenko, I.; et al. Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1467–1482. [Google Scholar] [CrossRef]
- Shah, M.A.; Bang, Y.J.; Lordick, F.; Alsina, M.; Chen, M.; Hack, S.P.; Bruey, J.M.; Smith, D.; McCaffery, I.; Shames, D.S.; et al. Effect of Fluorouracil, Leucovorin, and Oxaliplatin With or Without Onartuzumab in HER2-Negative, MET-Positive Gastroesophageal Adenocarcinoma: The METGastric Randomized Clinical Trial. JAMA Oncol. 2017, 3, 620–627. [Google Scholar] [CrossRef]
- Sahin, U.; Türeci, Ö.; Manikhas, G.; Lordick, F.; Rusyn, A.; Vynnychenko, I.; Dudov, A.; Bazin, I.; Bondarenko, I.; Melichar, B.; et al. FAST: A randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann. Oncol. 2021, 32, 609–619. [Google Scholar] [CrossRef]
- Bang, Y.J.; Im, S.A.; Lee, K.W.; Cho, J.Y.; Song, E.K.; Kyung, H.L.; Kim, Y.H.; Park, J.O.; Chun, H.G.; Zang, D.Y.; et al. Randomized, Double-Blind Phase II Trial With Prospective Classification by ATM Protein Level to Evaluate the Efficacy and Tolerability of Olaparib Plus Paclitaxel in Patients With Recurrent or Metastatic Gastric Cancer. J. Clin. Oncol. 2015, 33, 3858–3865. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.J.; Kang, Y.K.; Ng, M.; Chung, H.C.; Wainberg, Z.A.; Gendreau, S.; Chan, W.Y.; Xu, N.; Maslyar, D.; Meng, R.; et al. A phase II, randomised study of mFOLFOX6 with or without the Akt inhibitor ipatasertib in patients with locally advanced or metastatic gastric or gastroesophageal junction cancer. Eur. J. Cancer 2019, 108, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Yoo, C.; Ryu, M.H.; Na, Y.S.; Ryoo, B.Y.; Lee, C.W.; Kang, Y.K. Vorinostat in combination with capecitabine plus cisplatin as a first-line chemotherapy for patients with metastatic or unresectable gastric cancer: Phase II study and biomarker analysis. Br. J. Cancer 2016, 114, 1185–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M.A.; Starodub, A.; Sharma, S.; Berlin, J.; Patel, M.; Wainberg, Z.A.; Chaves, J.; Gordon, M.; Windsor, K.; Brachmann, C.B.; et al. Andecaliximab/GS-5745 Alone and Combined with mFOLFOX6 in Advanced Gastric and Gastroesophageal Junction Adenocarcinoma: Results from a Phase I Study. Clin. Cancer Res. 2018, 24, 3829–3837. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.A.; Bodoky, G.; Starodub, A.; Cunningham, D.; Yip, D.; Wainberg, Z.A.; Bendell, J.; Thai, D.; He, J.; Bhargava, P.; et al. Phase III Study to Evaluate Efficacy and Safety of Andecaliximab with mFOLFOX6 as First-Line Treatment in Patients With Advanced Gastric or GEJ Adenocarcinoma (GAMMA-1). J. Clin. Oncol. 2021, 39, 990–1000. [Google Scholar] [CrossRef]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.-P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients with Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef]
- Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 2018, 24, 1449–1458. [Google Scholar] [CrossRef]
- Kawazoe, A.; Yamaguchi, K.; Yasui, H.; Negoro, Y.; Azuma, M.; Amagai, K.; Hara, H.; Baba, H.; Tsuda, M.; Hosaka, H.; et al. Safety and efficacy of pembrolizumab in combination with S-1 plus oxaliplatin as a first-line treatment in patients with advanced gastric/gastroesophageal junction cancer: Cohort 1 data from the KEYNOTE-659 phase IIb study. Eur. J. Cancer 2020, 129, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wei, X.L.; Wang, F.H.; Xu, N.; Shen, L.; Dai, G.H.; Yuan, X.L.; Chen, Y.; Yang, S.J.; Shi, J.H.; et al. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ib/II clinical trial NCT02915432. Ann. Oncol. 2019, 30, 1479–1486. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.K.; Boku, N.; Satoh, T.; Ryu, M.H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- Huang, J.; Mo, H.; Zhang, W.; Chen, X.; Qu, D.; Wang, X.; Wu, D.; Wang, X.; Lan, B.; Yang, B.; et al. Promising efficacy of SHR-1210, a novel anti-programmed cell death 1 antibody, in patients with advanced gastric and gastroesophageal junction cancer in China. Cancer 2019, 125, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Moehler, M.; Dvorkin, M.; Boku, N.; Özgüroglu, M.; Ryu, M.H.; Muntean, A.S.; Lonardi, S.; Nechaeva, M.; Bragagnoli, A.C.; Coskun, H.S.; et al. Phase III Trial of Avelumab Maintenance After First-Line Induction Chemotherapy Versus Continuation of Chemotherapy in Patients with Gastric Cancers: Results from JAVELIN Gastric 100. J. Clin. Oncol. 2020, 39, 966–977. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Maron, S.B.; Chatila, W.K.; Millang, B.; Chavan, S.S.; Alterman, C.; Chou, J.K.; Segal, M.F.; Simmons, M.Z.; Momtaz, P.; et al. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: An open-label, single-arm, phase 2 trial. Lancet Oncol. 2020, 21, 821–831. [Google Scholar] [CrossRef]
- Catenacci, D.V.; Kang, Y.K.; Park, H.; Uronis, H.E.; Lee, K.W.; Ng, M.C.; Enzinger, P.C.; Park, S.H.; Gold, P.J.; Lacy, J.; et al. Margetuximab plus pembrolizumab in patients with previously treated, HER2-positive gastro-oesophageal adenocarcinoma (CP-MGAH22–05): A single-arm, phase 1b–2 trial. Lancet Oncol. 2020, 21, 1066–1076. [Google Scholar] [CrossRef]
- Kelly, R.J.; Lee, J.; Bang, Y.J.; Almhanna, K.; Blum-Murphy, M.; Catenacci, D.V.; Chung, H.C.; Wainberg, Z.A.; Gibson, M.K.; Lee, K.W.; et al. Safety and Efficacy of Durvalumab and Tremelimumab Alone or in Combination in Patients with Advanced Gastric and Gastroesophageal Junction Adenocarcinoma. Clin. Cancer Res. 2020, 26, 846–854. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zhou, Q.; Wu, J.; Ji, M.; Li, G.; Jiang, J.; Wu, C. Efficacy of adjuvant immunotherapy with cytokine-induced killer cells in patients with locally advanced gastric cancer. Cancer Immunol. Immunother. 2012, 61, 2251–2259. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.T.; Banks, K.C.; Pectasides, E.; Kim, S.Y.; Kim, K.; Lanman, R.B.; Talasaz, A.; An, J.; Choi, M.G.; Lee, J.H.; et al. Impact of genomic alterations on lapatinib treatment outcome and cell-free genomic landscape during HER2 therapy in HER2+ gastric cancer patients. Ann. Oncol. 2018, 29, 1037–1048. [Google Scholar] [CrossRef]
- Luber, B.; Deplazes, J.; Keller, G.; Walch, A.; Rauser, S.; Eichmann, M.; Langer, R.; Höfler, H.; Hegewisch-Becker, S.; Folprecht, G.; et al. Biomarker analysis of cetuximab plus oxaliplatin/leucovorin/5-fluorouracil in first-line metastatic gastric and oesophago-gastric junction cancer: Results from a phase II trial of the Arbeitsgemeinschaft Internistische Onkologie (AIO). BMC Cancer 2011, 11, 509. [Google Scholar] [CrossRef] [Green Version]
- Van Cutsem, E.; de Haas, S.; Kang, Y.K.; Ohtsu, A.; Tebbutt, N.C.; Xu, J.M.; Yong, W.P.; Langer, B.; Delmar, P.; Scherer, S.J.; et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: A biomarker evaluation from the AVAGAST randomized phase III trial. J. Clin. Oncol. 2012, 30, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Muro, K.; Cunningham, D.; Bodoky, G.; Sobrero, A.; Cascinu, S.; Ajani, A.; Oh, S.C.; Al-Batran, S.E.; Wainberg, Z.A.; et al. Biomarker analyses of second-line ramucirumab in patients with advanced gastric cancer from RAINBOW, a global, randomized, double-blind, phase 3 study. Eur. J. Cancer 2020, 127, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.T.; Ahn, S.; Lee, J.; Lee, S.J.; Park, S.H.; Park, Y.S.; Lim, H.Y.; Kang, W.K.; Kim, K.M.; Park, J.O. Value of FGFR2 expression for advanced gastric cancer patients receiving pazopanib plus CapeOX (capecitabine and oxaliplatin). J. Cancer Res. Clin. Oncol. 2016, 142, 1231–1237. [Google Scholar] [CrossRef]
- Choi, Y.Y.; Kim, H.; Shin, S.J.; Kim, H.Y.; Lee, J.; Yang, H.K.; Kim, W.H.; Kim, Y.W.; Kook, M.C.; Park, Y.K.; et al. Microsatellite Instability and Programmed Cell Death-Ligand 1 Expression in Stage II/III Gastric Cancer: Post Hoc Analysis of the CLASSIC Randomized Controlled study. Ann. Surg. 2019, 270, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Wainberg, Z.A.; Catenacci, D.V.; Hochster, H.S.; Ford, J.; Kunz, P.; Lee, F.C.; Kallender, H.; Cecchi, F.; Rabe, D.C.; et al. Phase II study evaluating 2 dosing schedules of oral foretinib (GSK1363089), cMET/VEGFR2 inhibitor, in patients with metastatic gastric cancer. PLoS ONE 2013, 8, e54014. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Lee, H.E.; Lee, H.S.; Han, N.; Kim, M.A.; Kim, W.H. Evaluation of Intratumoral and Intertumoral Heterogeneity of MET Protein Expression in Gastric Cancer. Appl. Immunohistochem. Mol. Morphol. 2018, 26, 445–453. [Google Scholar] [CrossRef]
- El Darsa, H.; El Sayed, R.; Abdel-Rahman, O. MET Inhibitors for the Treatment of Gastric Cancer: What’s Their Potential? J. Exp. Pharmacol. 2020, 12, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Koslowski, M.; Dhaene, K.; Usener, D.; Brandenburg, G.; Seitz, G.; Huber, C.; Türeci, Ö. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin. Cancer Res. 2008, 14, 7624–7634. [Google Scholar] [CrossRef] [Green Version]
- Rohde, C.; Yamaguchi, R.; Mukhina, S.; Sahin, U.; Itoh, K.; Türeci, Ö. Comparison of Claudin 18.2 expression in primary tumors and lymph node metastases in Japanese patients with gastric adenocarcinoma. Jpn. J. Clin. Oncol. 2019, 49, 870–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, K.; Shitara, K.; Al-Batran, S.E.; Bang, Y.-J.; Catenacci, D.; Enzinger, P.; Ilson, D.; Kim, S.; Lordick, F.; Shah, M.; et al. SPOTLIGHT: Comparison of zolbetuximab or placebo + mFOLFOX6 as first-line treatment in patients with claudin18.2+/HER2- locally advanced unresectable or metastatic gastric or gastroesophageal junction adenocarcinoma (GEJ): A randomized phase III study. Ann. Oncol. 2019, 30, IX66–IX67. [Google Scholar] [CrossRef]
- Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, O.T.; Byrne, M.C. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 2000, 192, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Choi, M.G.; Kim, K.; Kim, K.-M.; Kim, S.T.; Park, S.H.; Cristescu, R.; Peter, S.; Lee, J. High PD-L1 expression in gastric cancer (GC) patients and correlation with molecular features. Pathol. Res. Pract. 2020, 216, 152881. [Google Scholar] [CrossRef]
- Garcia, C.; Ring, K.L. The Role of PD-1 Checkpoint Inhibitions in Gynecologic Malignancies. Curr. Treat. Options Oncol. 2018, 19, 70. [Google Scholar] [CrossRef]
- Chung, H.C.; Bang, Y.J.; Fuchs, C.S.; Qin, S.K.; Satoh, T.; Shitara, K.; Tabernero, J.; Van Cutsem, E.; Alsina, M.; Cao, Z.A.; et al. First-line pembrolizumab/placebo plus trastuzumab and chemotherapy in HER2-positive advanced gastric cancer: KEYNOTE-811. Future Oncol. 2021, 17, 491–501. [Google Scholar] [CrossRef]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef]
- Fashoyin-Aje, L.; Donoghue, M.; Chen, H.; He, K.; Veeraraghavan, J.; Goldberg, K.B.; Keegan, P.; McKee, A.E.; Pazdur, R. FDA Approval Summary: Pembrolizumab for Recurrent Locally Advanced or Metastatic Gastric or Gastroesophageal Junction Adenocarcinoma Expressing PD-L1. Oncologist 2019, 24, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puneet Kazmi, H.R.; Kumari, S.; Tiwari, S.; Khanna, A.; Narayan, G. Epigenetic Mechanisms and Events in Gastric Cancer-Emerging Novel Biomarkers. Pathol. Oncol. Res. 2018, 24, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Pirini, F.; Noazin, S.; Jahuira-Arias, M.H.; Rodriguez-Torres, S.; Friess, L.; Michailidi, C.; Cok, J.; Combe, J.; Vargas, G.; Prado, W.; et al. Early detection of gastric cancer using global, genome-wide and IRF4, ELMO1, CLIP4 and MSC DNA methylation in endoscopic biopsies. Oncotarget 2017, 8, 38501–38516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shigaki, H.; Baba, M.; Watanabe, M.; Murata, A.; Iwagami, S.; Miyake, K.; Ishimoto, T.; Iwatsuki, M.; Baba, H. LINE-1 hypomethylation in gastric cancer, detected by bisulfite pyrosequencing, is associated with poor prognosis. Gastric Cancer 2013, 16, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Alarcon, M.A.; Olivares, W.; Cordova-Delgado, M.; Munoz-Medel, M.; de Mayo, T.; Carrasco-Avino, G.; Wichmann, I.; Landeros, N.; Amigo, J.; Norero, E.; et al. The Reprimo-Like Gene Is an Epigenetic-Mediated Tumor Suppressor and a Candidate Biomarker for the Non-Invasive Detection of Gastric Cancer. Int. J. Mol. Sci. 2020, 21, 9472. [Google Scholar] [CrossRef]
- Amigo, J.D.; Opazo, J.C.; Jorquera, R.; Wichmann, I.A.; Garcia-Bloj, B.A.; Alarcon, M.A.; Owen, G.I.; Corvalan, A.H. The Reprimo Gene Family: A Novel Gene Lineage in Gastric Cancer with Tumor Suppressive Properties. Int. J. Mol. Sci. 2018, 19, 1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, T.; Kawano, Y.; Himuro, N.; Sugita, S.; Sato, Y.; Ishikawa, K.; Takada, K.; Murase, K.; Miyanishi, K.; Sato, T.; et al. BAK is a predictive and prognostic biomarker for the therapeutic effect of docetaxel treatment in patients with advanced gastric cancer. Gastric Cancer 2016, 19, 827–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, Y.; Bai, F.; Ye, Z.; Zhang, N.; Yao, L.; Tang, Y.; Li, X. Downregulated CDK10 expression in gastric cancer: Association with tumor progression and poor prognosis. Mol. Med. Rep. 2018, 17, 6812–6818. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Cho, H.J.; Kim, M.; Lee, K.H.; Kim, M.A.; Han, S.W.; Oh, D.Y.; Lee, H.J.; Im, S.A.; Kim, T.Y.; et al. Differing effects of adjuvant chemotherapy according to BRCA1 nuclear expression in gastric cancer. Cancer Chemother. Pharmacol. 2013, 71, 1435–1443. [Google Scholar] [CrossRef]
- Li, P.; He, C.Y.; Xu, Q.; Sun, L.P.; Ha, M.W.; Yuan, Y. Effect of the -2081G/A polymorphism of the TLR4 gene and its interaction with Helicobacter pylori infection on the risk of gastric cancer in Chinese individuals. Genet. Test. Mol. Biomarkers 2014, 18, 610–615. [Google Scholar] [CrossRef]
- Hou, K.; Zhu, Z.; Wang, Y.; Zhang, C.; Yu, S.; Zhu, Q.; Yan, B. Overexpression and Biological Function of Ubiquitin-Specific Protease 42 in Gastric Cancer. PLoS ONE 2016, 11, e0152997. [Google Scholar] [CrossRef] [PubMed]
- Arpalahti, L.; Laitinen, A.; Hagström, J.; Mustonen, H.; Kokkola, A.; Böckelman, C.; Haglund, C.; Homberg, C.I. Positive cytoplasmic UCHL5 tumor expression in gastric cancer is linked to improved prognosis. PLoS ONE 2018, 13, e0193125. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.H.; Ryu, M.H.; Park, Y.S.; Lee, H.J.; Lee, C.; Ryoo, B.Y.; Lee, J.L.; Chang, H.M.; Kim, T.W.; Kang, Y.K. Phase II study of everolimus with biomarker exploration in patients with advanced gastric cancer refractory to chemotherapy including fluoropyrimidine and platinum. Br. J. Cancer 2012, 106, 1039–1044. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, Z.A.; Soares, H.P.; Patel, R.; DiCarlo, B.; Park, D.J.; Liem, A.; Wang, H.-J.; Yonemoto, L.; Martinez, D.; Laux, I.; et al. Phase II trial of everolimus in patients with refractory metastatic adenocarcinoma of the esophagus, gastroesophageal junction and stomach: Possible role for predictive biomarkers. Cancer Chemother. Pharmacol. 2015, 76, 61–67. [Google Scholar] [CrossRef]
- Yamada, Y.; Boku, N.; Nishina, T.; Yamaguchi, K.; Denda, T.; Tsuji, A.; Hamamoto, Y.; Konishi, K.; Tsuji, Y.; Amagai, K.; et al. Impact of excision repair cross-complementing gene 1 (ERCC1) on the outcomes of patients with advanced gastric cancer: Correlative study in Japan Clinical Oncology Group Trial JCOG9912. Ann. Oncol. 2013, 24, 2560–2565. [Google Scholar] [CrossRef]
- Tsuburaya, A.; Sugimoto, N.; Imamura, H.; Nishikawa, K.; Imamoto, H.; Tsujinaka, T.; Esaki, T.; Horita, Y.; Kimura, Y.; Fujiya, T.; et al. Molecular Biomarker Study in a Randomised Phase III Trial of Irinotecan Plus S-1 versus S-1 for Advanced Gastric Cancer (GC0301/TOP-002). Clin. Oncol. 2016, 28, e45–e51. [Google Scholar] [CrossRef]
- Sasako, M.; Terashima, M.; Ichikawa, W.; Ochiai, A.; Kitada, K.; Kurahashi, I.; Sakuramoto, S.; Katai, H.; Sano, T.; Imamura, H. Impact of the expression of thymidylate synthase and dihydropyrimidine dehydrogenase genes on survival in stage II/III gastric cancer. Gastric Cancer 2015, 18, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, M.; Sato, Y.; Ohnuma, H.; Takayama, T.; Sagawa, T.; Nobuoka, T.; Harada, K.; Miyamoto, H.; Sato, Y.; Takahashi, Y.; et al. A phase II study of neoadjuvant combination chemotherapy with docetaxel, cisplatin, and S-1 for locally advanced resectable gastric cancer: Nucleotide excision repair (NER) as potential chemoresistance marker. Cancer Chemother. Pharmacol. 2013, 71, 789–797. [Google Scholar] [CrossRef]
- Shi, X.J.; Wei, Y.; Ji, B. Systems Biology of Gastric Cancer: Perspectives on the Omics-Based Diagnosis and Treatment. Front. Mol. Biosci. 2020, 7, 203. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.J.; Kim, Y.W.; Yang, H.K.; Chung, H.C.; Park, Y.K.; Lee, K.H.; Lee, K.W.; Kim, Y.H.; Noh, S.I.; Cho, J.Y.; et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): A phase 3 open-label, randomised controlled trial. Lancet 2012, 379, 315–321. [Google Scholar] [CrossRef]
- Cheong, J.H.; Yang, H.K.; Kim, H.; Kim, W.H.; Kim, Y.W.; Kook, M.C.; Park, Y.K.; Kim, H.H.; Lee, H.S.; Lee, K.H.; et al. Predictive test for chemotherapy response in resectable gastric cancer: A multi-cohort, retrospective analysis. Lancet Oncol. 2018, 19, 629–638. [Google Scholar] [CrossRef]
- Roh, C.K.; Choi, Y.Y.; Choi, S.; Seo, W.J.; Cho, M.; Jang, E.; Son, T.; Kim, H.I.; Kim, H.; Hyung, W.J.; et al. Single Patient Classifier Assay, Microsatellite Instability, and Epstein-Barr Virus Status Predict Clinical Outcomes in Stage II/III Gastric Cancer: Results from CLASSIC Trial. Yonsei Med. J. 2019, 60, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van de Velde, C.J.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Smyth, E.C.; Nyamundanda, G.; Cunningham, D.; Fontana, E.; Ragulan, C.; Tan, I.B.; Lin, S.J.; Wotherspoon, A.; Ninkivell, M.; Fassan, M.; et al. A seven-Gene Signature assay improves prognostic risk stratification of perioperative chemotherapy treated gastroesophageal cancer patients from the MAGIC trial. Ann. Oncol. 2018, 29, 2356–2362. [Google Scholar] [CrossRef]
- Sundar, R.; Huang, K.K.; Qamra, A.; Kim, K.M.; Kim, S.T.; Kang, W.K.; Tan, A.L.; Lee, J.; Tan, P. Epigenomic promoter alterations predict for benefit from immune checkpoint inhibition in metastatic gastric cancer. Ann. Oncol. 2019, 30, 424–430. [Google Scholar] [CrossRef]
- Li, Z.; Gao, X.; Peng, X.; Chen, M.-J.; Li, Z.; Wei, B.; Wen, X.; Wei, B.; Dong, Y.; Bu, Z.; et al. Multi-omics characterization of molecular features of gastric cancer correlated with response to neoadjuvant chemotherapy. Sci. Adv. 2020, 6, eaay4211. [Google Scholar] [CrossRef] [Green Version]
- Smyth, E.C.; Wotherspoon, A.; Peckitt, C.; Gonzalez, D.; Hulkki-Wilson, S.; Eltahir, Z.; Fassan, M.; Rugge, M.; Valeri, N.; Okines, A.; et al. Mismatch Repair Deficiency, Microsatellite Instability, and Survival: An Exploratory Analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) Trial. JAMA Oncol. 2017, 3, 1197–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratti, M.; Lampis, A.; Hahne, J.C.; Passalacqua, R.; Valeri, N. Microsatellite instability in gastric cancer: Molecular bases, clinical perspectives, and new treatment approaches. Cell Mol. Life Sci. 2018, 75, 4151–4162. [Google Scholar] [CrossRef] [PubMed]
- Okines, A.F.; Gonzales de Castro, D.; Cunningham, D.; Chau, I.; Langley, R.E.; Thompson, L.C.; Stenning, S.P.; Saffery, C.; Barbachano, Y.; Coxon, F.; et al. Biomarker analysis in oesophagogastric cancer: Results from the REAL3 and TransMAGIC trials. Eur. J. Cancer 2013, 49, 2116–2125. [Google Scholar] [CrossRef]
- Geiss, G.K.; Bumgarner, R.E.; Birditt, B.; Dahl, T.; Dowidar, N.; Dunaway, D.L.; Fell, H.P.; Ferree, S.; George, R.D.; Grogan, T.; et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 2008, 26, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Taguri, M.; Imamura, H.; Sugimoto, N.; Nishikawa, K.; Yoshida, K.; Tan, P.; Tsuburaya, A. Genomic predictors of chemotherapy efficacy in advanced or recurrent gastric cancer in the GC0301/TOP002 phase III clinical trial. Cancer Lett. 2018, 412, 208–215. [Google Scholar] [CrossRef]
- Kitamura, S.; Tanahashi, T.; Aoyagi, E.; Nakagawa, T.; Okamoto, K.; Kimura, T.; Miyamoto, H.; Mitsui, Y.; Rokutan, K.; Muguruma, N.; et al. Response Predictors of S-1, Cisplatin, and Docetaxel Combination Chemotherapy for Metastatic Gastric Cancer: Microarray Analysis of Whole Human Genes. Oncology 2017, 93, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Sun, J.; Zhang, N.; Zheng, Y.; Wang, X.; Lv, L.; Liu, J.; Xu, Y.; Shen, Y.; Yang, M. Noncoding RNAs in gastric cancer: Implications for drug resistance. Mol. Cancer 2020, 19, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, H.; Shiroki, T.; Nakagawa, T.; Yokoyama, M.; Tamai, K.; Yamanami, H.; Fujiya, T.; Sato, I.; Yamaguchi, K.; Tanaka, N.; et al. Enhanced Expression of Long Non-Coding RNA HOTAIR Is Associated with the Development of Gastric Cancer. PLoS ONE 2013, 8, e77070. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Wang, W.; Jin, H.; Wang, Q.; Ge, Y.; Lu, J.; Ma, G.; Chu, H.; Tong, N.; Zhu, H.; et al. The association analysis of lncRNA HOTAIR genetic variants and gastric cancer risk in a Chinese population. Oncotarget 2015, 6, 31255–31262. [Google Scholar] [CrossRef] [Green Version]
- Hao, N.B.; He, Y.F.; Li, X.Q.; Wang, K.; Wang, R.L. The role of miRNA and lncRNA in gastric cancer. Oncotarget 2017, 8, 81572–81582. [Google Scholar] [CrossRef] [Green Version]
- Xiong, S.; Hu, M.; Li, C.; Zhou, X.; Chen, H. Role of miR-34 in gastric cancer: From bench to bedside (Review). Oncol. Rep. 2019, 42, 1635–1646. [Google Scholar] [CrossRef]
- Pan, X.M.; Sun, R.F.; Li, Z.H.; Guo, X.M.; Qin, H.J.; Gao, L.B. Pri-miR-34b/c rs4938723 polymorphism is associated with a decreased risk of gastric cancer. Genet. Test. Mol. Biomarkers 2015, 19, 198–202. [Google Scholar] [CrossRef]
- Mu, Y.P.; Tang, S.; Sun, W.J.; Gao, W.M.; Wang, M.; Su, X.L. Association of miR-193b down-regulation and miR-196a up-regulation with clinicopathological features and prognosis in gastric cancer. Asian Pac. J. Cancer Prev. 2014, 15, 8893–8900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, M.; Tang, H.L.; Lu, X.H.; Liu, M.Y.; Lu, X.M.; Gu, Y.X.; Liu, J.F.; He, Z.M. miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer. PLoS ONE 2013, 8, e72662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, U.; Mukherjee, S.; Fountzilas, C.; Boland, P.; Miller, A.; Patnaik, S.; Attwood, K.; Yendamuri, S.; Adjei, A.; Kannisto, E.; et al. Pralatrexate in Combination with Oxaliplatin in Advanced Esophagogastric Cancer: A Phase II Trial with Predictive Molecular Correlates. Mol. Cancer Ther. 2020, 19, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Ahn, D.H.; Rah, H.; Choi, Y.K.; Jeon, Y.J.; Min, K.T.; Kwack, K.; Hong, S.P.; Hwang, S.G.; Kim, N.K. Association of the miR-146aC>G, miR-149T>C, miR-196a2T>C, and miR-499A>G polymorphisms with gastric cancer risk and survival in the Korean population. Mol. Carcinog. 2013, 52, E39–E51. [Google Scholar] [CrossRef]
- Ahadi, A. A systematic review of microRNAs as potential biomarkers for diagnosis and prognosis of gastric cancer. Immunogenetics 2021, 73, 155–161. [Google Scholar] [CrossRef]
- Huang, M.; He, Y.R.; Liang, L.C.; Huang, Q.; Zhu, Z.Q. Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J. Gastroenterol. 2017, 23, 6330–6338. [Google Scholar] [CrossRef]
- Qiu, H.B.; Zhang, L.Y.; Ren, C.; Zeng, Z.L.; Wu, W.J.; Luo, H.Y.; Zhou, Z.W.; Xu, R.H. Targeting CDH17 suppresses tumor progression in gastric cancer by downregulating Wnt/β-catenin signaling. PLoS ONE 2013, 8, e56959. [Google Scholar] [CrossRef] [Green Version]
- Tuncel, T.; Karagoz, B.; Haholu, A.; Ozgun, A.; Emirzeoglu, L.; Bilgi, O.; Kandemir, E.G. Immunoregulatory function of HLA-G in gastric cancer. Asian Pac. J. Cancer Prev. 2013, 14, 7681–7684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Bartolomeo, M.; Pietrantonio, F.; Pellegrinelli, A.; Martinetti, A.; Mariani, L.; Daidone, M.G.; Bajetta, E.; Pelosi, G.; de Braud, F.; Floriani, I.; et al. Osteopontin, E-cadherin, and β-catenin expression as prognostic biomarkers in patients with radically resected gastric cancer. Gastric Cancer 2016, 19, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Seker, M.; Aydin, D.; Bilici, A.; Yavuzer, D.; Ozgun, M.G.; Ozcelik, M.; Aydin, O.; Aliustaoglu, M. Correlation of Caveolin-1 Expression with Prognosis in Patients with Gastric Cancer after Gastrectomy. Oncol. Res. Treat. 2017, 40, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Shen, Z.; Wang, Z.; Wang, X.; Zhang, H.; Qin, J.; Qin, X.; Xu, J.; Sun, Y. Increased expression of IDO associates with poor postoperative clinical outcome of patients with gastric adenocarcinoma. Sci. Rep. 2016, 6, 21319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, P.; Li, Y.H.; Tang, Z.J.; Shu, X.; Liu, X. High monocarboxylate transporter 4 protein expression in stromal cells predicts adverse survival in gastric cancer. Asian Pac. J. Cancer Prev. 2014, 15, 8923–8929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romiti, A.; Di Rocco, R.; Milione, M.; Ruco, L.; Ziparo, V.; Zullo, A.; Duranti, E.; Sarcina, I.; Barucca, V.; D’Antonio, C.; et al. Somatostatin receptor subtype 2 A (SSTR2A) and HER2 expression in gastric adenocarcinoma. Anticancer Res. 2012, 32, 115–119. [Google Scholar]
- Huang, Z.; Zhang, N.; Zha, L.; Mao, H.C.; Chen, X.; Xiang, J.F.; Zhang, H.; Wang, Z.W. Aberrant expression of the autocrine motility factor receptor correlates with poor prognosis and promotes metastasis in gastric carcinoma. Asian Pac. J. Cancer Prev. 2014, 15, 989–997. [Google Scholar] [CrossRef]
- Thomaidis, T.; Maderer, A.; Al-Batran, S.E.; Kany, J.; Pauligk, C.; Steinmetz, K.; Schad, A.; Hofheinz, R.; Schmalenberg, H.; Homann, N.; et al. VEGFR-3 and CXCR4 as predictive markers for treatment with fluorouracil, leucovorin plus either oxaliplatin or cisplatin in patients with advanced esophagogastric cancer: A comparative study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). BMC Cancer 2014, 14, 476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.X.; Wu, C.T.; Xiao, L.; Tang, S.H. The diagnostic and clinicopathological value of trefoil factor 3 in patients with gastric cancer: A systsematic review and meta-analysis. Biomarkers 2021, 26, 95–102. [Google Scholar] [CrossRef]
- He, L.J.; Xie, D.; Hu, P.J.; Liao, Y.J.; Deng, H.X.; Kung, H.F.; Zhu, S.L. Macrophage migration inhibitory factor as a potential prognostic factor in gastric cancer. World J. Gastroenterol. 2015, 21, 9916–9926. [Google Scholar] [CrossRef]
- Hu, R.; Sou, K.; Takeoka, S. A rapid and highly sensitive biomarker detection platform based on a temperature-responsive liposome-linked immunosorbent assay. Sci. Rep. 2020, 10, 18086. [Google Scholar] [CrossRef]
- Hacker, U.T.; Escalona-Espinosa, L.; Consalvo, N.; Goede, V.; Schiffmann, L.; Scherer, S.J.; Hedge, P.; Van Cutsem, E.; Coutelle, O.; Büning, H. Evaluation of Angiopoietin-2 as a biomarker in gastric cancer: Results from the randomised phase III AVAGAST trial. Br. J. Cancer 2016, 114, 855–862. [Google Scholar] [CrossRef] [Green Version]
- Shikata, K.; Ninomiya, T.; Yonemoto, K.; Ikeda, F.; Hata, J.; Doi, Y.; Fukuhara, M.; Matsumoto, T.; Iida, M.; Kitazono, T.; et al. Optimal cutoff value of the serum pepsinogen level for prediction of gastric cancer incidence: The Hisayama Study. Scand. J. Gastroenterol. 2012, 47, 669–675. [Google Scholar] [CrossRef]
- Bang, C.S.; Lee, J.J.; Baik, G.H. Prediction of Chronic Atrophic Gastritis and Gastric Neoplasms by Serum Pepsinogen Assay: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. J. Clin. Med. 2019, 8, 657. [Google Scholar] [CrossRef] [Green Version]
- Nagel, M.; Schulz, J.; Maderer, A.; Goepfert, K.; Gehrke, N.; Thomaidis, T.; Thuss-Patience, P.C.; Al-Batran, S.E.; Hegewisch-Becker, S.; Grimminger, P.; et al. Cytokeratin-18 fragments predict treatment response and overall survival in gastric cancer in a randomized controlled trial. Tumor Biol. 2018, 40, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, M.A.; Kucukoner, M.; Inal, A.; Urakci, Z.; Evliyaoglu, O.; Firat, U.; Kaya, M.; Isikdogan, A. Relationship between serum soluble vascular adhesion protein-1 level and gastric cancer prognosis. Oncol. Res. Treat. 2014, 37, 340–344. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, H.C.; Zhu, A.K.; Ying, R.C.; Wei, W.; Zhang, F.J. Prognostic significance of plasma chemerin levels in patients with gastric cancer. Peptides 2014, 61, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wang, T.; Song, H.; Tian, L.; Lyu, G.; Zhao, L.; Xue, Y. C-C motif chemokine 22 ligand (CCL22) concentrations in sera of gastric cancer patients are related to peritoneal metastasis and predict recurrence within one year after radical gastrectomy. J. Surg. Res. 2017, 211, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.B.; Lu, J.; Zheng, Z.F.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Chen, Q.Y.; Cao, L.L.; Lin, M.; Tu, R.H.; et al. The predictive value of the preoperative C-reactive protein-albumin ratio for early recurrence and chemotherapy benefit in patients with gastric cancer after radical gastrectomy: Using randomized phase III trial data. Gastric Cancer 2019, 22, 1016–1028. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Xu, B.B.; Zheng, Z.F.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Chen, Q.Y.; Cao, L.L.; Lin, M.; Tu, R.H.; et al. CRP/prealbumin, a novel inflammatory index for predicting recurrence after radical resection in gastric cancer patients: Post hoc analysis of a randomized phase III trial. Gastric Cancer 2019, 22, 536–545. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.C. The role of visfatin in cancer proliferation, angiogenesis, metastasis, drug resistance and clinical prognosis. Cancer Manag. Res. 2019, 11, 3481–3491. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.W.; Wang, Q.J.; Xia, M.M.; Qian, J. Elevated plasma visfatin levels correlate with poor prognosis of gastric cancer patients. Peptides 2014, 58, 60–64. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Okada, K.; Hanada, H.; Tamura, S.; Kimura, Y.; Fujita, J.; Imamura, H.; Kishi, K.; Yano, M.; Miki, H.; et al. The clinical importance of a transcription reverse-transcription concerted (TRC) diagnosis using peritoneal lavage fluids in gastric cancer with clinical serosal invasion: A prospective, multicenter study. Surgery 2014, 155, 417–423. [Google Scholar] [CrossRef]
- Tamura, S.; Fujiwara, Y.; Kimura, Y.; Fujita, J.; Imamura, H.; Kinuta, M.; Yano, M.; Hiratsuka, M.; Kobayashi, K.; Okada, K.; et al. Prognostic information derived from RT-PCR analysis of peritoneal fluid in gastric cancer patients: Results from a prospective multicenter clinical trial. J. Surg. Oncol. 2014, 109, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Wang, Y.; Shen, J.; Hu, J.; Yin, P.; Gong, J. Detection of carcinoembryonic antigen in peritoneal fluid of patients undergoing laparoscopic distal gastrectomy with complete mesogastric excision. Br. J. Surg. 2018, 105, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Kim, G.H.; Jeon, H.K.; Park, S.J. Clinical Application of Circulating Tumor Cells in Gastric Cancer. Gut Liver 2019, 13, 394–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pernot, S.; Badoual, C.; Terme, M.; Castan, F.; Cazes, A.; Bouche, O.; Bennouna, J.; Francois, E.; Ghiringhelli, F.; De La Fouchardiere, C.; et al. Dynamic evaluation of circulating tumour cells in patients with advanced gastric and oesogastric junction adenocarcinoma: Prognostic value and early assessment of therapeutic effects. Eur. J. Cancer 2017, 79, 15–22. [Google Scholar] [CrossRef]
- Sclafani, F.; Smyth, E.; Cunningham, D.; Chau, I.; Turner, A.; Watkins, D. A pilot study assessing the incidence and clinical significance of circulating tumor cells in esophagogastric cancers. Clin. Colorectal. Cancer 2014, 13, 94–99. [Google Scholar] [CrossRef]
- Li, M.; Zhang, B.; Zhang, Z.; Liu, X.; Qi, X.; Zhao, J.; Jiang, Y.; Zhai, H.; Ji, Y.; Luo, D. Stem cell-like circulating tumor cells indicate poor prognosis in gastric cancer. Biomed. Res. Int. 2014, 2014, 981261. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Bae, J.-S. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment. Mediators Inflamm. 2016, 2016, 6058147. [Google Scholar] [CrossRef] [Green Version]
- Tada, Y.; Togashi, Y.; Kotani, D.; Kuwata, T.; Sato, E.; Kawazoe, A.; Doi, T.; Wada, H.; Nishikawa, H.; Shitara, K. Targeting VEGFR2 with Ramucirumab strongly impacts effector/ activated regulatory T cells and CD8(+) T cells in the tumor microenvironment. J. Immunother. Cancer 2018, 6, 106. [Google Scholar] [CrossRef]
- Pernot, S.; Terme, M.; Radosevic-Robin, N.; Castan, F.; Badoual, C.; Marcheteau, E.; Penault-Llorca, F.; Bouche, O.; Bennouna, J.; Francois, E.; et al. Infiltrating and peripheral immune cell analysis in advanced gastric cancer according to the Lauren classification and its prognostic significance. Gastric Cancer 2020, 23, 73–81. [Google Scholar] [CrossRef]
- Zeng, D.; Li, M.; Zhou, R.; Zhang, J.; Sun, H.; Shi, M.; Bin, J.; Liao, Y.; Rao, J.; Liao, W. Tumor Microenvironment Characterization in Gastric Cancer Identifies Prognostic and Immunotherapeutically Relevant Gene Signatures. Cancer Immunol. Res. 2019, 7, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Jiang, Y.; Li, G.; Fisher, G.A., Jr.; Li, R. Natural killer cell and stroma abundance are independently prognostic and predict gastric cancer chemotherapy benefit. JCI Insight. 2020, 5, e136570. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, D.; Yu, R.; Li, C.; Song, Y.; Chen, X.; Fan, Y.; Liu, Y.; Qu, X. Immune Landscape of Gastric Carcinoma Tumor Microenvironment Identifies a Peritoneal Relapse Relevant Immune Signature. Front. Immunol. 2021, 12, 651033. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Song, D.; Li, H.; Liang, L.; Zhao, N.; Liu, T. Reduction in Peripheral CD19+CD24hCD27+ B Cell Frequency Predicts Favourable Clinical Course in XELOX-Treated Patients with Advanced Gastric Cancer. Cell Physiol. Biochem. 2017, 41, 2045–2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, X.; Gao, X.S.; Cui, M.; Xie, M.; Peng, C.; Bai, Y.; Guo, W.; Han, L.; Gu, X.; Xiong, W. Clinicopathological and prognostic significance of platelet to lymphocyte ratio in patients with gastric cancer. Oncotarget 2016, 7, 49878–49887. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Hao, Y.; Cong, X.; Zou, M.; Li, S.; Zhu, L.; Song, H.; Xue, Y. Peripheral Venous Blood Platelet-to-Lymphocyte Ratio (PLR) for Predicting the Survival of Patients With Gastric Cancer Treated With SOX or XELOX Regimen Neoadjuvant Chemotherapy. Technol. Cancer Res. Treat. 2019, 18, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Shimada, H.; Takiguchi, N.; Kainuma, O.; Soda, H.; Ikeda, A.; Cho, A.; Miyazaki, A.; Gunji, H.; Yamamoto, H.; Nagata, M. High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer. Gastric Cancer 2010, 13, 170–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.S.; Lee, H.; Shin, S.J.; Beom, S.H.; Jung, M.; Bae, S.; Lee, E.Y.; Park, K.H.; Choi, Y.Y.; Son, T.; et al. Complementary utility of targeted next-generation sequencing and immunohistochemistry panels as a screening platform to select targeted therapy for advanced gastric cancer. Oncotarget 2017, 8, 38389–38398. [Google Scholar] [CrossRef] [Green Version]
- Park, J.J.; Hsu, G.; Siden, E.G.; Thorlund, K.; Mills, E.J. An overview of precision oncology basket and umbrella trials for clinicians. CA Cancer J. Clin. 2020, 70, 125–137. [Google Scholar] [CrossRef]
- Malone, E.R.; Oliva, M.; Sabatini, P.J.; Stockley, T.L.; Siu, L.L. Molecular profiling for precision cancer therapies. Genome Med. 2020, 12, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target | Study | Design | Patient Number | Treatment Aim | Outcome |
---|---|---|---|---|---|
HER2 | Bang, Y.J. et al. [8] | RCT (phase 3) | 594 | Trastuzumab + CT vs. CT alone in HER2(+) AGC (ToGA trial) | OS: 13.8 vs. 11.1 months (p = 0.005) PFS: 6.7 vs. 5.5 months (p = 0.0002) ORR: 47 vs. 35% (p = 0.002) |
Sawaki, A. et al. [18] | RCT (phase 3) | 101 | Trastuzumab + CT vs. CT alone in HER2(+) AGC (subgroup analysis of ToGA trial) | OS: 15.9 vs. 17.7 months PFS: 6.2 vs. 5.6 months ORR: 64.4 vs. 58.5% | |
Shitara, K. et al. [19] | Retrospective case series | 364 | Trastuzumab + CT in HER2(+) vs. CT in HER2(−) AGC (1), CT in HER2(+) vs. HER2(−) AGC (2) | OS: 24.7 vs. 13.9 months (p = 0.03) (1) OS: 13.5 vs. 13.9 months (p = 0.91) (2) | |
Li, Q. et al. [20] | Prospective observational study | 107 | Trastuzumab as first-line treatment in HER2(+) AGC | OS: 16 months PFS: 7.7 months ORR: 58.9% | |
Shitara, K. et al. [21] | RCT (phase 2) | 187 | Trastuzumab deruxtecan vs. CT in previously treated HER2(+) AGC | OS: 12.5 vs. 8.4 months (p = 0.01) ORR: 51 vs. 14% (p < 0.001) | |
Thuss-Patience, P.C. et al. [22] | RCT (phase 2/3) | 182 | Trastuzumab emtansine vs. Taxane as second-line therapy in HER2(+) AGC (GATSBY study) | OS: 7.9 vs. 8.6 months (p = 0.86) | |
Shah, M.A. et al. [23] | RCT (phase 2/3) | 182 | Biomarker analysis of the GATSBY study: Trastuzumab emtansine vs. Taxane as second-line therapy in HER2(+) AGC | Subgroup with high HER2 expression in IHC: OS: 9.5 vs. 8.3 months | |
Shitara, K. et al. [24] | RCT (phase 2/3) | 82 | Trastuzumab emtansine vs. taxane as second-line therapy in HER2(+) AGC (subgroup analysis of GATSBY study) | OS: 11.8 vs. 10 months | |
Horita, Y. et al. [25] | Phase 2 | 28 | Paclitaxel + trastuzumab in previously treated HER2(+) AGC | OS: 9.6 months PFS: 4.6 months ORR: 21.4% | |
Makiyama, A. et al. [26] | RCT (phase 2) | 91 | Paclitaxel + trastuzumab vs. Paclitaxel as first-line therapy of HER2(+) AGC | OS: 10 months (p = 0.20) PFS: 3.7 vs. 3.2 months (p = 0.33) ORR: 33 vs. 32% (p = 1.00) | |
Ryu, M.H. et al. [27] | Phase 2 | 55 | Trastuzumab + capecitabine + oxaliplatin in HER2(+) AGC | OS: 21 months PFS: 9.8 months ORR: 67% | |
Gong, J. et al. [28] | Phase 2 | 51 | Trastuzumab + oxaliplatin + capecitabine as first-line therapy in HER2(+) AGC | OS: 19.5 months PFS: 9.2 months ORR: 66.7% | |
Rivera, F. et la [29] | Phase 2 | 41 | Xelox + trastuzumab as first-line therapy of HER2(+) AGC | OS: 13.8 months PFS: 7.1 months ORR: 46.7% | |
Roviello, G. et al. [30] | Phase 2 | 15 | DOF (docetaxel, oxaliplatin, 5-FU) + trastuzumab in HER2(+) AGC | OS: 19.4 months PFS: 9.2 months ORR: 60% | |
Mondaca, S. et al. [31] | Phase 2 | 26 | mDCF (docetaxel, cisplatin and 5-FU) + trastuzumab as first-line therapy in HER2(+) metastatic GC | OS: 24.9 months PFS: 13 months ORR: 65% | |
Kagawa, S. et al. [32] | Phase 2 | 23 | Trastuzumab + docetaxel as first-line therapy in HER2(+) AGC | OS: 17.5 months PFS: 6.7 months ORR: 39.1% | |
Takahari, D. et al. [33] | Phase 2 | 75 | Trastuzumab + S-1 + oxaliplatin in HER2(+) AGC | OS: 18.1 months PFS: 8.8 months ORR: 70.7% | |
Yuki, S. et al. [34] | Phase 2 | 42 | Trastuzumab + S-1 + oxaliplatin as treatment of HER2(+) advanced or recurrent GC | OS: 27.6 months PFS: 7.0 months ORR: 82.1% | |
Kataoka, H. et al. [35] | Phase 2 | 22 | Trastuzumab + S-1 + cisplatin in HER2(+) AGC | OS: 15.3 months PFS: 7.5 months ORR: 41.2% | |
Miura, Y. et al. [36] | Phase 2 | 44 | Trastuzumab + S-1 + cisplatin in HER2(+) AGC | OS: 16.5 months PFS: 5.9 months ORR: 61% | |
Endo, S. et al. [37] | Prospective observational study | 15 | Trastuzumab + cisplatin + S-1 in HER2(+) AGC | OS: 14.4 months | |
Kimura, Y. et al. [38] | Phase 2 | 51 | Trastuzumab + S-1 in patients 65 years or older with HER2(+) AGC | OS: 15.8 months PFS: 5.1 months ORR: 40.8% | |
Shah, M.A. et al. [39] | RCT (Phase 3b) | 248 | Standard-of-care vs. higher-dose trastuzumab + CT as first-line therapy in HER2(+) metastatic GC (HELOISE trial) | OS: 12.5 vs. 10.6 months (p = 0.2401) | |
Tabernero, J. et al. [40] | RCT (phase 3) | 780 | Pertuzumab + trastuzumab + CT vs. placebo + trastuzumab + CT as first-line therapy of HER2(+) AGC (JACOB trial) | OS: 17.5 vs. 14.2 months (p = 0.057) | |
Liu, T. et al. [41] | RCT (phase 3) | 163 | Pertuzumab + trastuzumab + CT vs. placebo + trastuzumab + CT as first-line therapy of HER2(+) metastatic GC (subgroup analysis of JACOB trial) | OS: 18.7 vs. 16.1 months PFS: 10.5 vs. 8.6 months ORR: 68.9 vs. 55.7% | |
Oh, D.Y. et al. [42] | Phase 2 | 27 | Dacomitinib in previously treated HER2(+) AGC | OS: 7.1 months PFS: 2.1 months ORR: 7.4% | |
Kim, T.Y. et al. [43] | Phase 2 | 32 | Poziotinib + trastuzumab + paclitaxel as second-line therapy in HER2(+) AGC | OS: 29.5 weeks PFS: 13 weeks ORR: 21.9% | |
EGFR HER2 | Iqbal, S. et al. [44] | Phase 2 | 47 | Lapatinib as first-line therapy in advanced or metastatic GC | OS: 4.8 months PFS: 1.9 months ORR: 9% |
Satoh, T. et al. [45] | RCT (phase 3) | 261 | Lapatinib + paclitaxel vs. paclitaxel alone as second-line therapy in HER2(+) AGC | OS: 11 vs. 8.9 months (p = 0.10) PFS: 5.4 vs. 4.4 months (p = 0.24) ORR: 27 vs. 9% (p < 0.001) | |
Lorenzen, S. et al. [46] | RCT (phase 2) | 37 | Lapatinib + capecitabine vs. lapatinib alone in HER2(+) AGC | ORR: 11.1% (LAP + CAP) (study closed for futility) | |
Hecht, J.R. et al. [47] | RCT (phase 3) | 545 | Lapatinib + capecitabine/oxaliplatin vs. placebo + capecitabine/oxaliplatin in HER2(+) AGC | OS: 12.2 vs. 10.5 months (NS) PFS: 6.0 vs. 5.4 months (p = 0.038) ORR: 53 vs. 39% (p = 0.003) | |
Moehler, M. et al. [48] | RCT (phase 2) | 29 | Lapatinib + ECF/ECX vs. placebo + ECF/ECX as first-line therapy in metastatic GC patients EGFR(+) and/or HER2(+) | OS: 13.8 vs. 10.1 months (NS) PFS: 8 vs. 5.9 months (NS) ORR: 42.9 vs. 21.4% | |
LaBonte, M.J. et al. [49] | Phase 2 | 68 | Lapatinib as first-line therapy in AGC independent of HER2 status | OS: 6.3 months PFS: 3.3 months ORR: 17.9% | |
Sanchez-Vega, F. et al. [50] | Prospective observational study | 20 | Afatinib in trastuzumab-resistant HER2(+) metastatic GC | OS: 7 months PFS: 2 months ORR: 25% | |
EGFR | Waddell, T. et al. [51] | RCT (phase 3) | 553 | Panitumumab + CT vs. CT alone in advanced EG cancer (REAL3 trial) | OS: 8.8 vs. 11.3 months (p = 0.013) PFS: 6.0 vs. 7.4 months (p = 0.068) ORR: 46 vs. 42% (p = 0.42) |
Stahl, M. et al. [52] | RCT (phase 2) | 160 | Panitumumab + CT vs. placebo + CT in untreated locally advanced esophagogastric cancer | Similar histological response and R0 resection rate. | |
Satoh, T. et al. [53] | RCT (phase 2) | 82 | Nimotuzumab + irinotecan vs. irinotecan alone as second-line therapy in AGC | OS: 251 vs. 232 days (p = 0.978) PFS: 73 vs. 85 days (p = 0.567) ORR: 18.4 vs. 10.3% | |
Lordick, F. et al. [54] | Phase 2 | 52 | Cetuximab + CT as first-line therapy in metastatic GC | OS: 9.5 months PFS: 7.6 months ORR: 65% | |
Moehler, M. et al. [55] | Phase 2 | 49 | Cetuximab + irinotecan/folinic acid/5-FU as first-line therapy of HER2(+) AGC | OS: 16.5 months PFS: 9 months ORR: 46% (higher response in EGFR-expressing tumors, PTEN expression associated with longer PFS and OS) | |
Lordick, F. et al. [56] | RCT (phase 3) | 904 | Cetuximab + capecitabine-cisplatin vs. capecitabine-cisplatin in unresectable or metastatic GC or EGJ cancer (EXPAND trial) | PFS: 4.4 vs. 5.6 months (p = 0.32) | |
Zhang, X. et al. [57] | Phase 2 | 47 | Cetuximab + cisplatin/capecitabine in untreated unresectable or metastatic GC | OS: 10.8 months PFS: 5.2 months ORR: 53.2% | |
Liu X et al. [58] | Phase 2 | 61 | Cetuximab + modified FOLFIRI as second-line therapy in metastatic GC | OS: 8.6 months ORR: 33.3% | |
VEGF | Wilke, H. et al. [59] | RCT (phase 3) | 665 | Ramucirumab + paclitaxel vs. placebo + paclitaxel as second-line therapy in AGC | OS: 9.6 vs. 7.4 months (p = 0.017) PFS: 4.4 vs. 2.9 months (p < 0.0001) ORR: 28 vs. 16% (p = 0.0001) |
Ohtsu, A. et al. [60] | RCT (phase 3) | 774 | Bevacizumab + CT vs. placebo + CT as first-line therapy in AGC (AVAGAST trial) | OS: 12.1 vs. 10.1 months (p = 0.1002) PFS: 6.7 vs. 5.3 months (p = 0.0037) ORR: 46 vs. 37.4% (p = 0.0315) | |
Meulendijks, D. et al. [61] | Phase 2 | 60 | Bevacizumab + CT as first-line therapy in HER2(−) GC | OS: 12 months PFS: 8.3 months ORR: 70% | |
Meulendijks, D. et al. [62] | Phase 2 | 25 | Bevacizumab + trastuzumab + CT as first-line therapy in HER2(+) AGC | OS: 17.9 months PFS: 10.8 months ORR: 74% | |
VEGF PDGF | Moehler, M. et al. [63] | Phase 2 | 51 | Sunitinib monotherapy in pretreated AGC | OS: 5.8 months PFS: 1.3 months ORR: 4% |
Moehler, M. et al. [64] | RCT (phase 2) | 91 | Sunitinib + FOLFIRI vs. placebo + FOLFIRI as second- or third-line therapy in AGC | OS: 10.4 vs. 8.9 months (p = 0.21) PFS: 3.5 vs. 3.3 months (p = 0.66) | |
FGFR VEGF PDGF | Won, E. et al. [65] | Phase 2 | 32 | Nintedanip as second-line therapy in metastatic EG cancer | OS: 14.2 months PFS: 1.9 months ORR: 0% |
FGFR | Van Cutsem, E. et al. [66] | RCT | 71 | AZD4547 vs. paclitaxel as second-line therapy in AGC with FGFR2 polysomy or gene amplification (SHINE study) | OS: 5.5 vs. 6.6 months (p = 0.8156) PFS: 1.8 vs. 3.5 months (p = 0.9581) ORR: 2.6 vs. 23.3% (p = 0.9970) |
HGFR/MET | Iveson, T. et al. [67] | RCT (phase 2) | 121 | Rilotumumab (2 different concentrations) vs. placebo in advanced or metastatic GC | PFS: 5.7 vs. 4.2 months (p = 0.016) |
Zhu, M. et al. [68] | RCT (phase 2) | 121 | Rilotumumab + ECX vs. placebo + ECX in MET-positive patients | High rilotumumab vs. placebo vs. low rilotumumab: OS: 13.4 vs. 5.7 and 8.1 months (p = 0.017) PFS: 7.0 vs. 4.4 and 5.5 months (p = 0.017) | |
Catenacci, D.V. et al. [69] | RCT (phase 3) | 609 | Rilotumumab + epirubicin/cisplatin/capecitabine vs. placebo + epirubicin/cisplatin/capecitabine as first-line therapy in MET(+) AGC | OS: 8.8 vs. 10.7 months (p = 0.003) (study stopped early) | |
Shah, M.A. et al. [70] | RCT (phase 3) | 499 | Onartuzumab + mFOLFOX6 vs. placebo + mFOLFOX6 in HER2-negative, MET-positive gastroesophageal adenocarcinoma | OS: 11.0 vs. 11.3 months (p = 0.24) PFS: 6.7 vs. 6.8 months (p = 0.43) ORR: 46.1 vs. 40.6% (p = 0.25) | |
Claudin 18.2 | Sahin, U. et al. [71] | RCT (phase 2) | 161 | Zolbetuximab + CT + vs. CT alone in Claudin 18.2(+) advanced or recurrent GC (FAST trial) | Overall: PFS: 7.5 vs. 5.3 months (p < 0.0005) OS: 13.0 vs. 8.3 months (p < 0.0005) ≥70% Claudin 18.2(+): PFS: 9.0 vs. 5.7 months (p < 0.0005) OS: 16.5 vs. 8.9 months (p < 0.0005) |
ATM | Bang, Y.J. et al. [72] | RCT (phase 2) | 124 | Olaparib + paclitaxel vs. placebo + paclitaxel in recurrent or metastatic GC | OS—overall: 13.1 vs. 8.3 months (p = 0.005) OS—ATM low: not reached vs. 8.2 months (p = 0.002) PFS: 3.91 vs. 3.55 months (p = 0.131) ORR: 26.4 vs. 19.1% (p = 0.162) |
AKT | Bang, Y.J. et al. [73] | RCT (phase 2) | 153 | Ipatasertib + mFOLFOX6 vs. placebo + mFOLFOX6 in advanced or metastatic GC | PFS: 6.6 vs. 7.5 months (p = 0.56) |
HDAC | Yoo, C. et al. [74] | Phase 2 | 45 | Vorinostat + capecitabine + cisplatin as first-line therapy in AGC | OS: 12.7 months PFS: 5.9 months ORR: 42% |
MMP9 | Shah, M.A. et al. [75] | Phase 2 | 40 | Andecaliximab + mFOLFOX6 in advanced GC | PFS: 7.8 months ORR: 48% |
Shah, M.A. et al. [76] | RCT (phase 3) | 432 | Andecaliximab + mFOLFOX vs. placebo + mFOLFOX | OS: 12.5 vs. 11.8 months (p = 0.56) PFS: 7.5 vs. 7.1 months (p = 0.10) ORR: 51 vs. 41% | |
PD-1/PD-L1 | Muro, K. et al. [77] | Phase 1b | 36 | Pembrolizumab in PD-L1(+) AGC | ORR: 22% |
Fuchs, C.S. et al. [78] | Phase 2 | 259 | Pembrolizumab in previously treated AGC (KEYNOTE-059 trial) | OS: 5.6 months (PD-L1(+)/(−): 5.8/4.9 months) PFS: 2.0 months ORR: 11.6% (PD-L1(+)/(−): 15.5/6.4%, p = 0.02) | |
Kim, S.T. et al. [79] | Phase 2 | 61 | Pembrolizumab in metastatic GC | ORR: 85.7% in MSI-H, 100% in EBV+ | |
Kawazoe, A. et al. [80] | Phase 2b | 54 | Pembrolizumab + S-1 + oxaliplatin in PD-L1(+) HER2-negative AGC | PFS: 9.4 months ORR: 72.2% | |
Wang, F. et al. [81] | Phase 1b/2 | 76 | 1: Toripalimab (chemo-refractory) 2: Toripalimab + CT (CT-naïve) in AGC | 1: OS: 4.8 months, PFS: 1.9 months, ORR: 12.1% 2. OS: not reached; PFS: 5.8 months; ORR: 66.7%; | |
Kang, Y.K. et al. [82] | RCT (phase 3) | 493 | Nivolumab or placebo in CT-refractory AGC (ATTRACTION-2 trial) | OS: 5.26 vs. 4.14 months (p < 0.0001) PFS: 1.61 vs. 1.45 months (p < 0.0001) ORR: 11.2 vs. 0% | |
Huang, J. et al. [83] | Phase 1 | 30 | SHR-1210 in recurrent or metastatic GC refractory or intolerant to previous CT | ORR: 23.3% | |
Moehler, M. et al. [84] | Phase 3 | 499 | Avelumab vs. chemotherapy after first-line induction chemotherapy in patients with gastric or GEJ cancer | OS: 10.4 vs. 10.9 months (p = 0.18) OS in PD-L1(+): 16.2 vs. 17.7 months (p = 0.64) | |
PD-1/PD-L1 HER2 | Janjigian, Y.Y. et al. [85] | Phase 2 | 37 | Pembrolizumab + trastuzumab as first-line therapy in HER2(+) metastatic GC | PFS: 70% at 6 months |
Catenacci, D.V. et al. [86] | Phase 1b-2 trial | 95 | Pembrolizumab + margetuximab in locally advanced or metastastic HER2(+), PD-L1-unselected GE cancer | ORR: 18.48% | |
PD-1/PD-L1 CTLA-4 | Kelly, R.J. et al. [87] | RCT (phase 2) | 63 | Durvalumab + tremelimumab vs. durvalumab alone vs. tremelimumab alone as scond-line therapy in CT-refractory AGC | OS: 9.2 vs. 3.4 vs. 7.7 months PFS: 1.8 vs. 1.6 vs. 1.7 months ORR: 7.4 vs. 0 vs. 8.3% |
CIK-cells | Shi, L. et al. [88] | Non-randomized controlled trial | 151 | 3 cycles of CIK-cell therapy vs. no CIK-cell therapy after curative gastrectomy and adjuvant chemotherapy for gastric adenocarcinoma | Intestinal type— 5-year OS: 46.8 vs. 31.4%, p = 0.045 5-year DFS: 42.4 vs. 15.7%, p = 0.023 Diffuse or mixed-type— 5-year OS: 7.4 vs. 7.7%, p = 0.97 5-year DFS: 3.7 vs. 0%, p = 0.96 |
Biomarker | Study | Design | Patient Number | Aim | Outcome |
---|---|---|---|---|---|
HER2 | Iqbal, S. et al. [44] | Phase 2 | 47 | Lapatinib as first-line therapy in advanced or metastatic GC | HER2(+) vs. HER(−): OS 6.8 vs. 3.0 months (p = 0.0031) IL-8 high vs. IL-8 low expression: OS 3.0 vs. 5.6 months (p = 0.016) |
Shitara, K. et al. [19] | Prospective observational study | 364 | Impact of HER2 status and trastuzumab treatment on prognosis of AGC | HER2(+) + trastuzumab vs. HER(−): OS 24.7 vs. 13.9 months (p = 0.03) HER2(+) w/o trastuzumab vs. HER2(−): OS 13.5 vs. 13.9 months (p = 0.091) | |
Okines, A.F. et al. [11] | RCT | 415 | Prognostic and predictive impact of HER2 status (tissue samples from MAGIC trial) | HER2 status not prognostic and not predictive for response to CT | |
Matsumoto, T. et al. [13] | Phase 2 | 89 | HER2 expression in AGC with extensive LNM, correlation between HER2 status and survival | HER2(+) vs. HER2(−): 3-year OS 66.7 vs. 38.7% (p = 0.022) Multivariate analysis: HER2 status not prognostic | |
Press, M.F. et al. [14] | RCT | 487 | Screening of adenocarcinoma for HER2-amplification, lapatinib in HER2(+) EG cancer | 16.1% HER2 amplification, HER2 amplification levels correlated with PFS (p = 0.035), but not with OS | |
Feizy, A. et al. [16] | Prospective observational study | 210 | Association of HER2 expression and survival | No association between HER2 expression and survival (p = 0.88) | |
Kim, S.T. et al. [89] | Phase 2 | 32 | Capecitabine + oxaliplatin + lapatinib in HER2(+) AGC | High vs. low level HER2 amplification: predictive for treatment response (p = 0.02) | |
Shah, M.A. et al. [23] | RCT (phase 2/3) | 182 | Biomarker analysis of the GATSBY study: Trastuzumab emtansine vs. taxane as second-line therapy in HER2-positive AGC | High vs. low HER2 expression associated with longer OS; high HER2 expression predictor of OS | |
EGFR HER2 | Sanchez-Vega, F. et al. [50] | Phase 2 | 20 | Afatinib in trastuzumab-resistant HER2(+) EG cancer | Treatment response associated with EGFR + HER2 coamplification |
EGFR | Luber, B. et al. [90] | Phase 2 | 39 | Cetuximab + oxaliplatin/leucovorin/5-fluorouracil in 1st line metastatic EGJC or GC | Increased EGFR gene copy numbers associated with better OS (p = 0.011) |
Moehler, M. et al. [55] | Phase 2 | 49 | Cetuximab + irinotecan/folinic acid/5-FU as first-line therapy of HER2(+) AGC | EGFR-expressing vs. nonexpressing tumors: ORR 84 vs. 23% (p = 0.041) | |
Zhang, X. et al. [57] | Phase 2 | 47 | Cetuximab + cisplatin/capecitabine in untreated AGC | High vs. low EGFR expression: OS: 16.6 vs. 9.5 months (p = 0.12), PFS: 7.1 vs. 4.0 months (p = 0.078) | |
Liu, X. et al. [58] | Phase 2 | 61 | Cetuximab + modified FOLFIRI in metastatic GC | EGFR(+) vs. EGFR(−): similar ORR and OS | |
Stahl, M. et al. [52] | RCT (phase 2) | 160 | Panitumumab + CT vs. placebo + CT in untreated locally advanced EG cancer | Shorter PFS and OS with EGFR expression | |
VEGF | Moehler, M. et al. [63] | Phase 2 | 51 | Sunitinib monotherapy in pretreated AGC | VEGF-C expression vs. no expression: PFS: 1.2 vs. 2.9 months (p = 0.012) |
Van Cutsem, E. et al. [91] | RCT | 774 | Bevacizumab + CT vs. placebo + CT (AVAGAST study), correlations between BM and clinical outcomes | Placebo group: baseline low vs. high VEGF-A: OS: 12.9 vs. 8.3 months. Bevacizumab group: baseline high vs. low VEGF-A: higher OS (p = 0.07) | |
Moehler, M. et al. [64] | RCT (phase 2) | 91 | Sunitinib + FOLFIRI vs. placebo + FOLFIRI as second- or third-line therapy in AGC | Baseline low vs. high VEGF-A: PFS: 166 vs. 91 days (p = 0.017) Baseline low vs. high VEGFR2: PFS: 107 vs. 167 days (p = 0.044) | |
Liu, X. et al. [58] | Phase 2 | 61 | Cetuximab + modified FOLFIRI in metastatic GC | Low vs. high baseline plasma VEGF: ORR: 55 vs. 5.3% (p = 0.001), OS: 12 vs. 5 months (p < 0.0001), PFS: 14.0 vs. 6.8 months (p = 0.035) | |
Van Cutsem, E. et al. [92] | RCT | 637 | Biomarker analysis from RAINBOW trial (2nd line ramucirumab + CT vs. placebo + CT in AGC) | VEGF not predictive for ramucirumab efficacy. | |
FGFR | Kim, S.T. et al. [93] | Phase 2 | 66 | Pazopanib + CT in metastatic or recurrent GC | FGFR2(+) vs. FGFR2(−): PFS: 8.5 vs. 5.6 months (p = 0.05) OS: 13.2 vs. 11.4 months (p = 0.055) ORR: 85.7 vs. 59.6% |
Won, E. et al. [65] | Phase 2 | 32 | Nintedanip as second-line therapy in metastatic EG cancer | FGFR2(+) vs. FGFR2(−): PFS: 3.5 vs. 1.9 months (p = 0.92) | |
HGFR/MET | Stahl, M. et al. [52] | RCT (phase 2) | 160 | Panitumumab + CT vs. placebo + CT in untreated locally advanced EG cancer | Shorter PFS and OS with MET expression. |
Sanchez-Vega, F. et al. [50] | Phase 2 | 20 | Afatinib in trastuzumab-resistant HER2(+) EG cancer | Resistance associated with MET amplification. | |
PD-1/PD-L1 | Fuchs, C.S. et al. [78] | Phase 2 | 259 | Pembrolizumab in previously treated unselected AGC (KEYNOTE-059 trial) | PFS: 2.1 vs. 2.0 months in PD-L1(+) vs. PD-L1(−) ORR: 15.5 vs. 6.4% in PD-L1(+) vs. PD-L1(−) |
Kim, S.T. et al. [79] | Phase 2 | 61 | Pembrolizumab in metastatic GC | ORR: 50 vs. 0% in PD-L1(+) vs. PD-L1(−) (p < 0.001) | |
Wang, F. et al. [81] | Phase 1b/2 | 76 | Toripalimab (chemo-refractory) or Toripalimab + CT (CT-naïve) in AGC | PD-L1 overexpression not associated with survival | |
Huang, J. et al. [83] | Phase 1 | 30 | SHR-1210 in recurrent or metastatic GC refractory to CT | ORR: 23.1% in PD-L1(+) and 26.7% in PD-L1(−) (p = 1.0) | |
Choi, Y.Y. et al. [94] | RCT | 592 | PD-L1 expression as prognostic and predictive BM (BM study of CLASSIC trial) | Multivariate analysis of DFS: stromal PD-L1 independent prognostic factors (p = 0.044) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niclauss, N.; Gütgemann, I.; Dohmen, J.; Kalff, J.C.; Lingohr, P. Novel Biomarkers of Gastric Adenocarcinoma: Current Research and Future Perspectives. Cancers 2021, 13, 5660. https://doi.org/10.3390/cancers13225660
Niclauss N, Gütgemann I, Dohmen J, Kalff JC, Lingohr P. Novel Biomarkers of Gastric Adenocarcinoma: Current Research and Future Perspectives. Cancers. 2021; 13(22):5660. https://doi.org/10.3390/cancers13225660
Chicago/Turabian StyleNiclauss, Nadja, Ines Gütgemann, Jonas Dohmen, Jörg C. Kalff, and Philipp Lingohr. 2021. "Novel Biomarkers of Gastric Adenocarcinoma: Current Research and Future Perspectives" Cancers 13, no. 22: 5660. https://doi.org/10.3390/cancers13225660
APA StyleNiclauss, N., Gütgemann, I., Dohmen, J., Kalff, J. C., & Lingohr, P. (2021). Novel Biomarkers of Gastric Adenocarcinoma: Current Research and Future Perspectives. Cancers, 13(22), 5660. https://doi.org/10.3390/cancers13225660