Activation of the Complement System in Patients with Cancer Cachexia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Diagnosis of Cancer Cachexia and Screening of Cachexia Status
2.3. Collection of Plasma Samples
2.4. ELISAs
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Concentrations of Complement Factors in the Blood of Patients with and without Weight Loss and Inflammation
3.3. Correlation Analysis of Complement Factors and Cachexia Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baracos, V.E.; Martin, L.; Korc, M.; Guttridge, D.C.; Fearon, K.C.H. Cancer-associated cachexia. Nat. Rev. Dis. Prim. 2018, 4, 17105. [Google Scholar] [CrossRef]
- Evans, W.J.; Morley, J.E.; Argilés, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G.; et al. Cachexia: A new definition. Clin. Nutr. 2008, 27, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Argiles, J.M.; Busquets, S.; Stemmler, B.; López-Soriano, F.J. Cancer cachexia: Understanding the molecular basis. Nat. Rev. Cancer 2014, 14, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.M.; Kempen, L.J.A.P.; Hardy, R.S.; Langen, R.C.J. Inflammation and Skeletal Muscle Wasting During Cachexia. Front. Physiol. 2020, 11, 597675. [Google Scholar] [CrossRef]
- Mueller, T.C.; Burmeister, M.A.; Bachmann, J.; Martignoni, M.E. Cachexia and pancreatic cancer: Are there treatment options? World J. Gastroenterol. 2014, 20, 9361. [Google Scholar] [PubMed]
- Seelaender, M.; Batista, M.; Lira, F.; Silverio, R.; Rossi-Fanelli, F. Inflammation in cancer cachexia: To resolve or not to resolve (is that the question?). Clin. Nutr. 2012, 31, 562–566. [Google Scholar] [CrossRef]
- Chen, J.L.; Walton, K.L.; Qian, H.; Colgan, T.D.; Hagg, A.; Watt, M.J.; Harrison, C.; Gregorevic, P. Differential Effects of IL6 and Activin A in the Development of Cancer-Associated Cachexia. Cancer Res. 2016, 76, 5372–5382. [Google Scholar] [CrossRef] [Green Version]
- Melchor, S.; Saunders, C.M.; Sanders, I.; Hatter, J.A.; Byrnes, K.A.; Coutermarsh-Ott, S.; Ewald, S.E. IL-1R Regulates Disease Tolerance and Cachexia in Toxoplasma gondii Infection. J. Immunol. 2020, 204, 3329–3338. [Google Scholar] [CrossRef]
- Chiappalupi, S.; Sorci, G.; Vukasinovic, A.; Salvadori, L.; Sagheddu, R.; Coletti, D.; Renga, G.; Romani, L.; Donato, R.; Riuzzi, F. Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. J. Cachexia Sarcopenia Muscle 2020, 11, 929–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, A.S.; das Neves, R.X.; Rosa-Neto, J.C.; dos Santos Lira, F.; Batista, M.L., Jr.; Alcantara, P.S.; Otoch, J.P.; Seelaender, M. White adipose tissue IFN-γ expression and signalling along the progression of rodent cancer cachexia. Cytokine 2017, 89, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Trouw, L.; Blom, A.; Gasque, P. Role of complement and complement regulators in the removal of apoptotic cells. Mol. Immunol. 2008, 45, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Afshar-Kharghan, V. The role of the complement system in cancer. J. Clin. Investig. 2017, 127, 780–789. [Google Scholar] [CrossRef] [Green Version]
- Saleh, J.; Al-Maqbali, M.; Abdel-Hadi, D. Role of Complement and Complement-Related Adipokines in Regulation of Energy Metabolism and Fat Storage. Compr. Physiol. 2019, 9, 1411–1429. [Google Scholar] [CrossRef]
- Phieler, J.; Garcia-Martin, R.; Lambris, J.; Chavakis, T. The role of the complement system in metabolic organs and metabolic diseases. Semin. Immunol. 2013, 25, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, K.; He, S.; He, L.; Chen, J.; Cheng, X.; Zhang, G.; Zhu, B. Complement component 3 is a prognostic factor of non-small cell lung cancer. Mol. Med. Rep. 2014, 10, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Kojouharova, M.; Reid, K.; Gadjeva, M. New insights into the molecular mechanisms of classical complement activation. Mol. Immunol. 2010, 47, 2154–2160. [Google Scholar] [CrossRef] [PubMed]
- Garred, P.; Genster, N.; Pilely, K.; Bayarri-Olmos, R.; Rosbjerg, A.; Ma, Y.J.; Skjoedt, M.O. A journey through the lectin pathway of complement—MBL and beyond. Immunol. Rev. 2016, 274, 74–97. [Google Scholar] [CrossRef]
- de Córdoba, S.R.; Harris, C.L.; Morgan, B.P.; Llorca, O. Lessons from functional and structural analyses of disease-associated genetic variants in the complement alternative pathway. Biochim. Biophys. Acta Mol. Basis Dis. 2011, 1812, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Janeway, C.A., Jr.; Travers, P.; Walport, M.; Shlomchik, M.J. Immunobiology: The Immune System in Health and Disease, 5th ed.; Garland Science: New York, NY, USA, 2001. Available online: https://www.ncbi.nlm.nih.gov/books/NBK10757/ (accessed on 29 September 2021).
- Lubbers, R.; van Essen, M.; Van Kooten, C.; Trouw, L.A. Production of complement components by cells of the immune system. Clin. Exp. Immunol. 2017, 188, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Elvington, M.; Liszewski, M.K.; Bertram, P.; Kulkarni, H.S.; Atkinson, J.P. A C3(H20) recycling pathway is a component of the intracellular complement system. J. Clin. Investig. 2017, 127, 970–981. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Cao, S.; Zhang, D.; Li, H.; Kijlstra, A.; Yang, P. Increased Complement 3a Receptor is Associated with Behcet’s disease and Vogt-Koyanagi-Harada disease. Sci. Rep. 2017, 7, 15579. [Google Scholar] [CrossRef]
- Asgari, E.; Le Friec, G.; Yamamoto, H.; Perucha, E.; Sacks, S.; Koehl, J.; Cook, H.T.; Kemper, C. C3a modulates IL-1β secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood 2013, 122, 3473–3481. [Google Scholar] [CrossRef] [Green Version]
- Barnum, S.R.; Bubeck, D.; Schein, T.N. Soluble Membrane Attack Complex: Biochemistry and Immunobiology. Front. Immunol. 2020, 11, 585108. [Google Scholar] [CrossRef]
- Mourtzakis, M.; Prado, C.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, D.P.J.; Bakens, M.J.A.M.; Coolsen, M.M.E.; Rensen, S.S.; Van Dam, R.M.; Bours, M.J.L.; Weijenberg, M.P.; DeJong, C.H.C.; Damink, S.O. Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pancreatic cancer. J. Cachexia Sarcopenia Muscle 2016, 8, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Nehring, S.M.; Goyal, A.; Bansal, P.; Patel, B.C. C Reactive Protein (CRP); StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Argiles, J.M.; Stemmler, B.; López-Soriano, F.J.; Busquets, S. Inter-tissue communication in cancer cachexia. Nat. Rev. Endocrinol. 2018, 15, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Fearon, K.C.; Glass, D.J.; Guttridge, D.C. Cancer Cachexia: Mediators, Signaling, and Metabolic Pathways. Cell Metab. 2012, 16, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Kamp, C.M.O.D.; Langen, R.C.; Snepvangers, F.J.; de Theije, C.C.; Schellekens, J.M.; Laugs, F.; Dingemans, A.-M.C.; Schols, A.M. Nuclear transcription factor κ B activation and protein turnover adaptations in skeletal muscle of patients with progressive stages of lung cancer cachexia. Am. J. Clin. Nutr. 2013, 98, 738–748. [Google Scholar] [CrossRef] [Green Version]
- Thorgersen, E.B.; Barratt-Due, A.; Haugaa, H.; Harboe, M.; Pischke, S.E.; Nilsson, P.H.; Mollnes, T.E. The role of complement in liver injury, regeneration, and transplantation. Hepatology 2019, 70, 725–736. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Gao, B. The complement system in liver diseases. Cell. Mol. Immunol. 2006, 3, 333–340. [Google Scholar]
- Poursharifi, P.; Lapointe, M.; Fisette, A.; Lu, H.; Roy, C.; Munkonda, M.N.; Fairlie, D.; Cianflone, K. C5aR and C5L2 act in concert to balance immunometabolism in adipose tissue. Mol. Cell. Endocrinol. 2014, 382, 325–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wright, W.; Bernlohr, D.A.; Cushman, S.W.; Chen, X. Alterations of the classic pathway of complement in adipose tissue of obesity and insulin resistance. Am. J. Physiol. Metab. 2007, 292, E1433–E1440. [Google Scholar] [CrossRef]
- Reis, E.S.; Mastellos, D.; Ricklin, D.; Mantovani, A.; Lambris, J.D. Complement in cancer: Untangling an intricate relationship. Nat. Rev. Immunol. 2017, 18, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Scherbakov, N.; Doehner, W. Cachexia as a common characteristic in multiple chronic disease. J. Cachexia Sarcopenia Muscle 2018, 9, 1189–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindels, L.B.; Neyrinck, A.; Loumaye, A.; Catry, E.; Walgrave, H.; Cherbuy, C.; Leclercq, S.; Van Hul, M.; Plovier, H.; Pachikian, B.; et al. Increased gut permeability in cancer cachexia: Mechanisms and clinical relevance. Oncotarget 2018, 9, 18224–18238. [Google Scholar] [CrossRef] [Green Version]
- Puppa, M.J.; White, J.P.; Sato, S.; Cairns, M.; Baynes, J.W.; Carson, J.A. Gut barrier dysfunction in the ApcMin/+ mouse model of colon cancer cachexia. Biochim. Biophys. Acta Mol. Basis Dis. 2011, 1812, 1601–1606. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Guo, C.; Zhang, D.; Zhang, J.; Wang, X.; Geng, C. The Altered Tight Junctions: An Important Gateway of Bacterial Translocation in Cachexia Patients with Advanced Gastric Cancer. J. Interf. Cytokine Res. 2014, 34, 518–525. [Google Scholar] [CrossRef] [Green Version]
- Rensen, S.S.; Slaats, Y.; Driessen, A.; Peutz-Kootstra, C.J.; Nijhuis, J.; Steffensen, R.; Greve, J.W.; Buurman, W.A. Activation of the complement system in human nonalcoholic fatty liver disease. Hepatology 2009, 50, 1809–1817. [Google Scholar] [CrossRef]
- Legoedec, J.; Gasque, P.; Jeanne, J.F.; Fontaine, M. Expression of the complement alternative pathway by human myoblasts in vitro: Biosynthesis of C3, factor B, factor H and factor I. Eur. J. Immunol. 1995, 25, 3460–3466. [Google Scholar] [CrossRef]
- Legoedec, J.; Gasque, P.; Jeanne, J.-F.; Scotte, M.; Fontaine, M. Complement classical pathway expression by human skeletal myoblasts in vitro. Mol. Immunol. 1997, 34, 735–741. [Google Scholar] [CrossRef]
- Rouaud, T.; Siami, N.; Dupas, T.; Gervier, P.; Gardahaut, M.-F.; Auda-Boucher, G.; Thiriet, C. Complement C3 of the innate immune system secreted by muscle adipogenic cells promotes myogenic differentiation. Sci. Rep. 2017, 7, 171. [Google Scholar] [CrossRef]
- Long, K.K.; Pavlath, G.K.; Montano, M. Sca-1 influences the innate immune response during skeletal muscle regeneration. Am. J. Physiol. Physiol. 2011, 300, C287–C294. [Google Scholar] [CrossRef] [Green Version]
- Mevorach, D.; Mascarenhas, J.O.; Gershov, D.; Elkon, K.B. Complement-dependent Clearance of Apoptotic Cells by Human Macrophages. J. Exp. Med. 1998, 188, 2313–2320. [Google Scholar] [CrossRef] [PubMed]
- Markiewski, M.M.; Mastellos, D.; Tudoran, R.; DeAngelis, R.A.; Strey, C.W.; Franchini, S.; Wetsel, R.A.; Erdei, A.; Lambris, J. C3a and C3b Activation Products of the Third Component of Complement (C3) Are Critical for Normal Liver Recovery after Toxic Injury. J. Immunol. 2004, 173, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Syriga, M.; Mavroidis, M. Complement system activation in cardiac and skeletal muscle pathology: Friend or foe? Adv. Exp. Med. Biol. 2013, 735, 207–218. [Google Scholar]
- Vanderveen, B.N.; Murphy, E.A.; Carson, J.A. The Impact of Immune Cells on the Skeletal Muscle Microenvironment during Cancer Cachexia. Front. Physiol. 2020, 11, 1037. [Google Scholar] [CrossRef] [PubMed]
- Naito, A.T.; Sumida, T.; Nomura, S.; Liu, M.-L.; Higo, T.; Nakagawa, A.; Okada, K.; Sakai, T.; Hashimoto, A.; Hara, Y.; et al. Complement C1q Activates Canonical Wnt Signaling and Promotes Aging-Related Phenotypes. Cell 2012, 149, 1298–1313. [Google Scholar] [CrossRef] [Green Version]
- Gasque, P.; Morgan, B.P.; Legoedec, J.; Chan, P.; Fontaine, M. Human skeletal myoblasts spontaneously activate allogeneic complement but are resistant to killing. J. Immunol. 1996, 156, 3402–3411. [Google Scholar]
- Halme, J.; Sachse, M.; Vogel, H.; Giese, T.; Klar, E.; Kirschfink, M. Primary human hepatocytes are protected against complement by multiple regulators. Mol. Immunol. 2009, 46, 2284–2289. [Google Scholar] [CrossRef]
- Acosta, J.; Hettinga, J.; Fluckiger, R.; Krumrei, N.; Goldfine, A.; Angarita, L.; Halperin, J. Molecular basis for a link between complement and the vascular complications of diabetes. Proc. Natl. Acad. Sci. USA 2000, 97, 5450–5455. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, B.; Hamad, O.A.; Ahlström, H.; Kullberg, J.; Johansson, L.S.O.; Lindhagen, L.; Haenni, A.; Ekdahl, K.N.; Lind, L. C3 and C4 are strongly related to adipose tissue variables and cardiovascular risk factors. Eur. J. Clin. Investig. 2014, 44, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Dev, R.; Bruera, E.; Dalal, S. Insulin resistance and body composition in cancer patients. Ann. Oncol. 2018, 29, ii18–ii26. [Google Scholar] [CrossRef] [PubMed]
- Ricklin, D.; Mastellos, D.; Reis, E.S.; Lambris, J.D. The renaissance of complement therapeutics. Nat. Rev. Nephrol. 2017, 14, 26–47. [Google Scholar] [CrossRef] [Green Version]
Variable | Overall | No Cachexia | Cachexia | Cachexia | p |
---|---|---|---|---|---|
Without Inflammation | With Inflammation | ||||
n | 62 | 13 | 26 | 23 | - |
Male/Female (%) | 35/27 (56.5/43.5) | 6/7 (46.2/53.8) | 14/12 (53.8/46.2) | 15/8 (65.2/34.8) | 0.511 |
Age (years) | 68.3 (63.1, 75.2) | 67.6 (61.4, 76.3) | 70.2 (63.2, 74.8) | 67.8 (64.9, 74.2) | 0.997 |
Weight (kg) | 68.5 (58.7, 81.5) | 76.5 (68.0, 82.2) | 67.1 (56.5, 78.1) | 67.0 (59.0, 82.3) | 0.150 |
BMI (kg/m2) | 24.4 (21.7, 26.8) | 26.9 (25.6, 28.3) | 23.5 (21.6, 26.1) † | 23.0 (20.7, 25.7) † | 0.015 |
Weight loss percentage (%) | 7.2 (4,0, 12.2) | 1.9 (0.0, 3.0) | 9.7 (5.7, 12.7) † | 9.5 (7.3, 13.9) † | <0.001 |
L3-IMAT (cm2) | |||||
Male | 14.6 (7.2, 19.5) | 18.0 (10.3, 21.6) | 12.2 (6.3, 19.7) | 13.5 (7.4, 17.6) | 0.581 |
Female | 9.7 (7.6, 19.2) | 13.9 (10.7, 18.4) | 8.1 (7.7, 22.3) | 7.7 (7.2, 13.6) | 0.292 |
M-RA (HU) | |||||
Male | 35.3 (30.8, 42.8) | 35.5 (33.7, 38.3) | 32.5 (29.4, 41.2) | 35.3 (32.5, 44.2) | 0.757 |
Female | 37.4 (30.0, 40.7) | 37.4 (31.4, 40.0) | 35.6 (28.5, 40.9) | 36.8 (33.1, 41.6) | 0.843 |
L3-SMI (cm2/m2) | |||||
Male | 46.7 (41.7, 50.3) | 47.0 (45.6, 48.3) | 47.6 (43.2, 51.3) | 43.0 (40.3, 48.8) | 0.564 |
Female | 36.1 (34.2, 42.5) | 38.9 (35.8, 42.7) | 36.7 (34.9, 42.5) | 35.1 (33.5, 39.4) | 0.665 |
L3-VATI (cm2/m2) | |||||
Male | 63.9 (33.4, 79.7) | 70.6 (66.3, 79.7) | 64.6 (31.8, 85.1) | 44.4 (30.5, 71.6) | 0.221 |
Female | 28.9 (12.4, 47.7) | 39.7 (25.1, 48.8) | 29.0 (10.2, 49.4) | 28.7 (4.8, 37.3) | 0.446 |
L3-SATI (cm2/m2) | |||||
Male | 43.6 (31.6, 57.3) | 52.1 (39.8, 59.2) | 47.1 (34.8, 56.0) | 39.7 (27.1, 45.6) | 0.349 |
Female | 67.6 (49.7, 87.8) | 87.1 (63.8, 88.8) | 59.3 (46.7, 77.2) | 63.1 (30.0, 85.3) | 0.413 |
C3a (ng/mL) | 90,0 (52.3, 120.8) | 61.6 (46.8, 86.8) | 81.4 (47.9, 124.0) | 102.4 (89.4, 158.0) † | 0.019 |
TCC (mAU/mL) | 2005.5 (1718.6, 2602.9) | 1805.1 (1552.1, 2569.4) | 1938.5 (1724.6, 2310.6) | 2297.5 (2021.5, 3057.8) | 0.051 |
C1q (μg/mL) | 10.5 (8.2, 13.0) | 10.2 (9.4, 12.6) | 10.3 (8.3, 13.2) | 11.3 (7.3, 13.7) | 0.882 |
MBL (ng/mL) | 437.3 (167.8, 1498.9) | 694.4 (385.8, 1503.0) | 333.7 (191.0, 1185.8) | 406.4 (138.2, 1564.7) | 0.730 |
IL-6 (pg/mL) | 5.1 (2.9, 15.0) | 4.4 (1.3, 9.8) | 4.1 (1.9, 6.5) | 11.2 (6.0, 31.7) ‡ | 0.042 |
CRP (mg/L) | 9.0 (4.0, 20.8) | 12.5 (10.3, 31.8) | 4.0 (2.0, 5.3) † | 22.0 (12.8, 32.5) ‡ | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, M.; Vaes, R.D.W.; van Bijnen, A.A.J.H.M.; Olde Damink, S.W.M.; Rensen, S.S. Activation of the Complement System in Patients with Cancer Cachexia. Cancers 2021, 13, 5767. https://doi.org/10.3390/cancers13225767
Deng M, Vaes RDW, van Bijnen AAJHM, Olde Damink SWM, Rensen SS. Activation of the Complement System in Patients with Cancer Cachexia. Cancers. 2021; 13(22):5767. https://doi.org/10.3390/cancers13225767
Chicago/Turabian StyleDeng, Min, Rianne D. W. Vaes, Annemarie A. J. H. M. van Bijnen, Steven W. M. Olde Damink, and Sander S. Rensen. 2021. "Activation of the Complement System in Patients with Cancer Cachexia" Cancers 13, no. 22: 5767. https://doi.org/10.3390/cancers13225767
APA StyleDeng, M., Vaes, R. D. W., van Bijnen, A. A. J. H. M., Olde Damink, S. W. M., & Rensen, S. S. (2021). Activation of the Complement System in Patients with Cancer Cachexia. Cancers, 13(22), 5767. https://doi.org/10.3390/cancers13225767