Brentuximab-Induced Peripheral Neurotoxicity: A Multidisciplinary Approach to Manage an Emerging Challenge in Hodgkin Lymphoma Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Epidemiology of BVIN
3. Mechanisms of Brentuximab-Induced Peripheral Neurotoxicity
4. Types and Forms of BVIN Presentation and Timing
5. Risk Factors for BVIN
6. Early Diagnosis and Management of BVIN
6.1. Early Detection and Timely Assessment of BVIN Are Crucial in Achieving a Better Outcome
6.2. Proper Management of BVIN Requires a Multidisciplinary Approach
6.2.1. Dose Adjustments
6.2.2. Patients
6.2.3. Multidisciplinary Approach
6.2.4. Pharmacologic Treatment of BVIN
7. Prognosis and Long-Term Outcomes of BVIN
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikolaenko, L.; Nademanee, A. Brentuximab vedotin and its use in the treatment of advanced Hodgkin’s lymphoma. Futur. Oncol. 2020, 16, 2273–2282. [Google Scholar] [CrossRef]
- Domingo-Domènech, E.; Sureda, A. Treatment of Hodgkin Lymphoma Relapsed after Autologous Stem Cell Transplantation. J. Clin. Med. 2020, 9, 1384. [Google Scholar] [CrossRef]
- Younes, A.; Gopal, A.K.; Smith, S.E.; Ansell, S.M.; Rosenblatt, J.D.; Savage, K.J.; Ramchandren, R.; Bartlett, N.L.; Cheson, B.D.; De Vos, S.; et al. Results of a Pivotal Phase II Study of Brentuximab Vedotin for Patients with Relapsed or Refractory Hodgkin’s Lymphoma. J. Clin. Oncol. 2012, 30, 2183–2189. [Google Scholar] [CrossRef]
- Connors, J.M.; Jurczak, W.; Straus, D.J.; Ansell, S.M.; Kim, W.S.; Gallamini, A.; Younes, A.; Alekseev, S.; Illés, Á.; Picardi, M.; et al. Brentuximab Vedotin with Chemotherapy for Stage III or IV Hodgkin’s Lymphoma. N. Engl. J. Med. 2018, 378, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Straus, D.J.; Długosz-Danecka, M.; Connors, J.M.; Alekseev, S.; Illés, Á.; Picardi, M.; Lech-Maranda, E.; Feldman, T.; Smolewski, P.; Savage, K.J.; et al. Brentuximab vedotin with chemotherapy for stage III or IV classical Hodgkin lymphoma (ECHELON-1): 5-year update of an international, open-label, randomised, phase 3 trial. Lancet Haematol. 2021, 8, e410–e421. [Google Scholar] [CrossRef]
- Moskowitz, C.H.; Nademanee, A.; Masszi, T.; Agura, E.; Holowiecki, J.; Abidi, M.H.; Chen, A.I.; Stiff, P.; Gianni, A.M.; Carella, A.; et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2015, 385, 1853–1862. [Google Scholar] [CrossRef]
- Moskowitz, C.H.; Walewski, J.; Nademanee, A.; Masszi, T.; Agura, E.; Holowiecki, J.; Abidi, M.H.; Chen, A.I.; Stiff, P.; Viviani, S.; et al. Five-year PFS from the AETHERA trial of brentuximab vedotin for Hodgkin lymphoma at high risk of progression or relapse. Blood 2018, 132, 2639–2642. [Google Scholar] [CrossRef] [Green Version]
- Fanale, M.A.; Horwitz, S.M.; Forero-Torres, A.; Bartlett, N.L.; Advani, R.H.; Pro, B.; Chen, R.W.; Davies, A.; Illidge, T.; Huebner, D.; et al. Brentuximab vedotin in the front-line treatment of patients with CD30+ peripheral T-cell lymphomas: Results of a phase I study. J. Clin. Oncol. 2014, 32, 3137–3143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pro, B.; Advani, R.; Brice, P.; Bartlett, N.L.; Rosenblatt, J.D.; Illidge, T.; Matous, J.; Ramchandren, R.; Fanale, M.; Connors, J.M.; et al. Brentuximab Vedotin (SGN-35) in Patients with Relapsed or Refractory Systemic Anaplastic Large-Cell Lymphoma: Results of a Phase II Study. J. Clin. Oncol. 2012, 30, 2190–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pro, B.; Advani, R.; Brice, P.; Bartlett, N.L.; Rosenblatt, J.D.; Illidge, T.; Matous, J.; Ramchandren, R.; Fanale, M.; Connors, J.M.; et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood 2017, 130, 2709–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, H.M.; Kim, Y.H.; Horwitz, S.M.; Dummer, R.; Scarisbrick, J.; Quaglino, P.; Zinzani, P.L.; Wolter, P.; Sanches, J.A.; Ortiz-Romero, P.L.; et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): An international, open-label, randomised, phase 3, multicentre trial. Lancet 2017, 390, 555–566. [Google Scholar] [CrossRef]
- Berger, G.; McBride, A.; Lawson, S.; Royball, K.; Yun, S.; Gee, K.; Riaz, I.B.; Saleh, A.A.; Puvvada, S.; Anwer, F. Brentuximab vedotin for treatment of non-Hodgkin lymphomas: A systematic review. Crit. Rev. Oncol. 2016, 109, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Oak, E.; Bartlett, N. A safety evaluation of brentuximab vedotin for the treatment of Hodgkin lymphoma. Expert Opin. Drug Saf. 2016, 15, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Pike, C.T.; Birnbaum, H.G.; Muehlenbein, C.E.; Pohl, G.M.; Natale, R.B. Healthcare Costs and Workloss Burden of Patients with Chemotherapy-Associated Peripheral Neuropathy in Breast, Ovarian, Head and Neck, and Nonsmall Cell Lung Cancer. Chemother. Res. Pr. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wilson, K.L.; Kagan, J.; Panjabi, S. Cost of peripheral neuropathy in patients receiving treatment for multiple myeloma: A US administrative claims analysis. Ther. Adv. Hematol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, A.J.; Schöder, H.; Yahalom, J.; McCall, S.J.; Fox, S.Y.; Gerecitano, J.; Grewal, R.; Hamlin, P.; Horwitz, S.; Kobos, R.; et al. PET-adapted sequential salvage therapy with brentuximab vedotin followed by augmented ifosamide, carboplatin, and etoposide for patients with relapsed and refractory Hodgkin's lymphoma: A non-randomised, open-label, single-centre, phase 2 study. Lancet Oncol. 2015, 16, 284–292. [Google Scholar] [CrossRef]
- Garcia-Sanz, R.; Sureda, A.; de la Cruz, F.; Canales, M.; Gonzalez, A.P.; Pinana, J.L.; Rodriguez, A.; Gutierrez, A.; Domingo-Domenech, E.; Sanchez-Gonzalez, B.; et al. Brentuximab vedotin and ESHAP is highly effective as second-line therapy for Hodgkin lymphoma patients (long-term results of a trial by the Spanish GELTAMO Group). Ann. Oncol. 2019, 30, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Casulo, C.; Advani, R.H.; Budde, E.; Barr, P.M.; Batlevi, C.L.; Caron, P.; Constine, L.S.; Dandapani, S.V.; Drill, E.; et al. Brentuximab Vedotin Combined with Chemotherapy in Patients with Newly Diagnosed Early-Stage, Unfavorable-Risk Hodgkin Lymphoma. J. Clin. Oncol. 2021, 39, 2257–2265. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, S.; O’Connor, O.A.; Pro, B.; Illidge, T.; Fanale, M.; Advani, R.; Bartlett, N.; Christensen, J.H.; Morschhauser, F.; Domenech, E.D.; et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): A global, double-blind, randomised, phase 3 trial. Lancet 2018, 393, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Plattel, W.J.; Bergamasco, A.; Trinchese, F.; Gavini, F.; Bent-Ennakhil, N.; Zomas, A.; Castillon, G.; Arredondo-Bisono, T.; Cristarella, T.; Moride, Y.; et al. Effectiveness of brentuximab vedotin monotherapy in relapsed or refractory Hodgkin lymphoma: A systematic review and meta-analysis. Leuk. Lymphoma 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mariotto, S.; Tecchio, C.; Sorio, M.; Bertolasi, L.; Turatti, M.; Tozzi, M.C.; Benedetti, F.; Cavaletti, G.; Monaco, S.; Ferrari, S. Clinical and neurophysiological serial assessments of brentuximab vedotin-associated peripheral neuropathy. Leuk. Lymphoma 2019, 60, 2806–2809. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; Ko, Y.H.; Lin, S.-Y.; Au, W.-Y.; Kim, S.J.; Kim, W.S.; Choi, M.K.; Yang, Q.-M.Q.-M.; Park, S. Brentuximab vedotin for relapsed or refractory CD30+ Hodgkin lymphoma: A multicenter analysis from Asia. OncoTargets Ther. 2014, 7, 1717–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagadailov, E.A.; Corman, S.L.; Chirikov, V.; Johnson, C.; Macahilig, C.; Seal, B.; Dalal, M.R.; Bröckelmann, P.J.; Illidge, T. Real-world effectiveness of brentuximab vedotin versus physicians’ choice chemotherapy in patients with relapsed/refractory Hodgkin lymphoma following autologous stem cell transplantation in the United Kingdom and Germany. Leuk. Lymphoma 2017, 59, 1413–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younes, A.; Bartlett, N.; Leonard, J.P.; Kennedy, D.A.; Lynch, C.M.; Sievers, E.; Forero-Torres, A. Brentuximab Vedotin (SGN-35) for Relapsed CD30-Positive Lymphomas. New Engl. J. Med. 2010, 363, 1812–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanale, M.A.; Forero-Torres, A.; Rosenblatt, J.D.; Advani, R.; Franklin, A.R.; Kennedy, D.A.; Han, T.H.; Sievers, E.; Bartlett, N. A Phase I Weekly Dosing Study of Brentuximab Vedotin in Patients with Relapsed/Refractory CD30-Positive Hematologic Malignancies. Clin. Cancer Res. 2011, 18, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Gopal, A.K.; Ramchandren, R.; O'Connor, O.A.; Berryman, R.B.; Advani, R.; Chen, R.; Smith, S.E.; Cooper, M.; Rothe, A.; Matous, J.V.; et al. Safety and efficacy of brentuximab vedotin for Hodgkin lymphoma recurring after allogeneic stem cell transplantation. Blood 2012, 120, 560–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Gopal, A.K.; Smith, S.E.; Ansell, S.M.; Rosenblatt, J.D.; Savage, K.J.; Connors, J.M.; Engert, A.; Larsen, E.K.; Huebner, D.; et al. Five-year survival and durability results of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood 2016, 128, 1562–1566. [Google Scholar] [CrossRef]
- Forero-Torres, A.; Fanale, M.; Advani, R.; Bartlett, N.L.; Rosenblatt, J.D.; Kennedy, D.A.; Younes, A. Brentuximab Vedotin in Transplant-Naïve Patients with Relapsed or Refractory Hodgkin Lymphoma: Analysis of Two Phase I Studies. Oncology 2012, 17, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Ogura, M.; Tobinai, K.; Hatake, K.; Ishizawa, K.; Uike, N.; Uchida, T.; Suzuki, T.; Aoki, T.; Watanabe, T.; Maruyama, D.; et al. Phase I / II study of brentuximab vedotin in J apanese patients with relapsed or refractory CD 30-positive H odgkin's lymphoma or systemic anaplastic large-cell lymphoma. Cancer Sci. 2014, 105, 840–846. [Google Scholar] [CrossRef]
- Chen, R.; Palmer, J.M.; Martin, P.; Tsai, N.; Kim, Y.; Chen, B.T.; Popplewell, L.; Siddiqi, T.; Thomas, S.; Mott, M.; et al. Results of a Multicenter Phase II Trial of Brentuximab Vedotin as Second-Line Therapy before Autologous Transplantation in Relapsed/Refractory Hodgkin Lymphoma. Biol. Blood Marrow Transplant. 2015, 21, 2136–2140. [Google Scholar] [CrossRef] [Green Version]
- Walewski, J.; Hellmann, A.; Siritanaratkul, N.; Ozsan, G.H.; Ozcan, M.; Chuncharunee, S.; Goh, A.S.; Jurczak, W.; Koren, J.; Paszkiewicz-Kozik, E.; et al. Prospective study of brentuximab vedotin in relapsed/refractory Hodgkin lymphoma patients who are not suitable for stem cell transplant or multi-agent chemotherapy. Br. J. Haematol. 2018, 183, 400–410. [Google Scholar] [CrossRef] [Green Version]
- Broccoli, A.; Onlus, F.I.L.; Argnani, L.; Botto, B.; Corradini, P.; Pinto, A.; Re, A.; Vitolo, U.; Fanti, S.; Stefoni, V.; et al. First salvage treatment with bendamustine and brentuximab vedotin in Hodgkin lymphoma: A phase 2 study of the Fondazione Italiana Linfomi. Blood Cancer J. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kuruvilla, J.; Ramchandren, R.; Santoro, A.; Paszkiewicz-Kozik, E.; Gasiorowski, R.; Johnson, N.A.; Fogliatto, L.M.; Goncalves, I.; de Oliveira, J.S.R.; Buccheri, V.; et al. Pembrolizumab versus brentuximab vedotin in relapsed or refractory classical Hodgkin lymphoma (KEYNOTE-204): An interim analysis of a multicentre, randomised, open-label, phase 3 study. Lancet Oncol. 2021, 22, 512–524. [Google Scholar] [CrossRef]
- Song, Y.; Guo, Y.; Huang, H.; Li, W.; Ke, X.; Feng, J.; Xu, W.; Miao, H.; Kinley, J.; Song, G.; et al. Phase II single-arm study of brentuximab vedotin in Chinese patients with relapsed/refractory classical Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Expert Rev. Hematol. 2021, 14, 867–875. [Google Scholar] [CrossRef] [PubMed]
- LaCasce, A.S.; Bociek, R.G.; Sawas, A.; Caimi, P.; Agura, E.; Matous, J.; Ansell, S.M.; Crosswell, H.E.; Islas-Ohlmayer, M.; Behler, C.; et al. Brentuximab vedotin plus bendamustine: A highly active first salvage regimen for relapsed or refractory Hodgkin lymphoma. Blood 2018, 132, 40–48. [Google Scholar] [CrossRef]
- LaCasce, A.S.; Bociek, R.G.; Sawas, A.; Caimi, P.; Agura, E.; Matous, J.; Ansell, S.M.; Crosswell, H.E.; Islas-Ohlmayer, M.; Behler, C.; et al. Three-year outcomes with brentuximab vedotin plus bendamustine as first salvage therapy in relapsed or refractory Hodgkin lymphoma. Br. J. Haematol. 2020, 189, e86–e90. [Google Scholar] [CrossRef] [Green Version]
- Herrera, A.F.; Moskowitz, A.J.; Bartlett, N.L.; Vose, J.M.; Ramchandren, R.; Feldman, T.A.; LaCasce, A.S.; Ansell, S.M.; Moskowitz, C.H.; Fenton, K.; et al. Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 2018, 131, 1183–1194. [Google Scholar] [CrossRef]
- Diefenbach, C.S.; Hong, F.; Ambinder, R.F.; Cohen, J.B.; Robertson, M.J.; David, K.A.; Advani, R.H.; Fenske, T.S.; Barta, S.K.; Palmisiano, N.D.; et al. Ipilimumab, nivolumab, and brentuximab vedotin combination therapies in patients with relapsed or refractory Hodgkin lymphoma: Phase 1 results of an open-label, multicentre, phase 1/2 trial. Lancet Haematol. 2020, 7, e660–e670. [Google Scholar] [CrossRef]
- Kersten, M.J.; Driessen, J.; Zijlstra, J.M.; Plattel, W.J.; Morschhauser, F.; Lugtenburg, P.J.; Brice, P.; Hutchings, M.; Gastinne, T.; Liu, R.; et al. Combining brentuximab vedotin with dexamethasone, high-dose cytarabine and cisplatin as salvage treatment in relapsed or refractory Hodgkin lymphoma: The phase II HOVON/LLPC Transplant BRaVE study. Haematologica 2020, 106, 1129–1137. [Google Scholar] [CrossRef] [Green Version]
- Lynch, R.C.; Cassaday, R.D.; Smith, S.D.; Fromm, J.R.; Cowan, A.J.; Warren, E.H.; Shadman, M.S.; Shustov, A.; Till, B.G.; Ujjani, C.S.; et al. Dose-dense brentuximab vedotin plus ifosfamide, carboplatin, and etoposide for second-line treatment of relapsed or refractory classical Hodgkin lymphoma: A single centre, phase 1/2 study. Lancet Haematol. 2021, 8, e562–e571. [Google Scholar] [CrossRef]
- Rothe, A.; Sasse, S.; Goergen, H.; Eichenauer, D.A.; Lohri, A.; Jäger, U.; Bangard, C.; Böll, B.; Baildon, M.V.B.; Theurich, S.; et al. Brentuximab vedotin for relapsed or refractory CD30+ hematologic malignancies: The German Hodgkin Study Group experience. Blood 2012, 120, 1470–1472. [Google Scholar] [CrossRef] [Green Version]
- Gibb, A.; Jones, C.; Bloor, A.; Kulkarni, S.; Illidge, T.; Linton, K.; Radford, J. Brentuximab vedotin in refractory CD30+ lymphomas: A bridge to allogeneic transplantation in approximately one quarter of patients treated on a Named Patient Programme at a single UK center. Haematologica 2012, 98, 611–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinzani, P.; Sasse, S.; Radford, J.; Gautam, A.; Bonthapally, V. Brentuximab vedotin in relapsed/refractory Hodgkin lymphoma: An updated review of published data from the named patient program. Crit. Rev. Oncol. 2016, 104, 65–70. [Google Scholar] [CrossRef]
- Garciaz, S.; Coso, D.; Peyrade, F.; Fürst, S.; Duran, S.; Chetaille, B.; Brenot-Rossi, I.; DeVillier, R.; Granata, A.; Blaise, D.; et al. Brentuximab vedotin followed by allogeneic transplantation as salvage regimen in patients with relapsed and/or refractory Hodgkin's lymphoma. Hematol. Oncol. 2013, 32, 187–191. [Google Scholar] [CrossRef]
- Salihoglu, A.; Elverdi, T.; Karadoğan, I.; Paydas, S.; Özdemir, E.; Erdem, G.; Karadurmus, N.; Akyol, G.; Kaynar, L.; Yeğin, Z.; et al. Brentuximab vedotin for relapsed or refractory Hodgkin lymphoma: Experience in Turkey. Ann. Hematol. 2014, 94, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Monjanel, H.; Deville, L.; Ram-Wolff, C.; Venon, M.-D.; Franchi, P.; Benet, C.; De Kerviler, E.; Malphettes, M.; Thieblemont, C.; Brice, P. Brentuximab vedotin in heavily treated Hodgkin and anaplastic large-cell lymphoma, a single centre study on 45 patients. Br. J. Haematol. 2014, 166, 306–308. [Google Scholar] [CrossRef]
- Perrot, A.; Monjanel, H.; Bouabdallah, R.; Quittet, P.; Sarkozy, C.; Bernard, M.; Stamatoullas, A.; Borel, C.; Bouabdallah, K.; Nicolas-Virelizier, E.; et al. Impact of post-brentuximab vedotin consolidation on relapsed/refractory CD30+ Hodgkin lymphomas: A large retrospective study on 240 patients enrolled in the French Named-Patient Program. Haematologica 2016, 101, 466–473. [Google Scholar] [CrossRef] [Green Version]
- Bröckelmann, P.J.; Zagadailov, E.A.; Corman, S.L.; Chirikov, V.; Johnson, C.; Macahilig, C.; Seal, B.; Dalal, M.R.; Illidge, T. Brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma who are Ineligible for autologous stem cell transplant: A Germany and United Kingdom retrospective study. Eur. J. Haematol. 2017, 99, 553–558. [Google Scholar] [CrossRef]
- Eyre, T.A.; Phillips, E.H.; Linton, K.M.; Arumainathan, A.; Kassam, S.; Gibb, A.; Allibone, S.; Radford, J.; Peggs, K.; Burton, C.; et al. Results of a multicentre UK-wide retrospective study evaluating the efficacy of brentuximab vedotin in relapsed, refractory classical Hodgkin lymphoma in the transplant naive setting. Br. J. Haematol. 2017, 179, 471–479. [Google Scholar] [CrossRef]
- Pellegrini, C.; Broccoli, A.; Pulsoni, A.; Rigacci, L.; Patti, C.; Gini, G.; Mannina, D.; Tani, M.; Rusconi, C.; Romano, A.; et al. Italian real life experience with brentuximab vedotin: Results of a large observational study on 234 relapsed/refractory Hodgkin’s lymphoma. Oncotarget 2017, 8, 91703–91710. [Google Scholar] [CrossRef] [Green Version]
- Pavone, V.; Mele, A.; Carlino, D.; Specchia, G.; Gaudio, F.; Perrone, T.; Mazza, P.; Palazzo, G.; Guarini, A.; Loseto, G.; et al. Brentuximab vedotin as salvage treatment in Hodgkin lymphoma naïve transplant patients or failing ASCT: The real life experience of Rete Ematologica Pugliese (REP). Ann. Hematol. 2018, 97, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Clarivet, B.; Vincent, L.; Vergely, L.; Bres, V.; Foglia, K.; Cartron, G.; Hillaire-Buys, D.; Faillie, J.-L. Adverse reactions related to brentuximab vedotin use: A real-life retrospective study. Therapies 2018, 74, 343–346. [Google Scholar] [CrossRef]
- Tien, F.-M.; Tsai, C.-H.; Liu, J.-H.; Lin, C.-T. Brentuximab vedotin as a salvage treatment for relapsed and refractory Hodgkin lymphoma patients in Taiwan. J. Formos. Med Assoc. 2019, 118, 1466–1470. [Google Scholar] [CrossRef]
- Král, Z.; Michalka, J.; Móciková, H.; Marková, J.; Sýkorová, A.; Belada, D.; Jungová, A.; Vokurka, S.; Lukášová, M.; Procházka, V.; et al. Treatment of Relapsed/Refractory Hodgkin Lymphoma: Real-World Data from the Czech Republic and Slovakia. J. Cancer 2019, 10, 5041–5048. [Google Scholar] [CrossRef]
- Kort, J.; Chidiac, A.; El Sayed, R.; Massoud, R.; Nehme, R.; Bazarbachi, A.; El-Cheikh, J. Safety and efficacy of four cycles of Brentuximab Vedotin as consolidation after autologous peripheral stem cell transplantation in relapsed/refractory Hodgkin lymphoma. Leuk. Lymphoma 2020, 61, 1732–1735. [Google Scholar] [CrossRef]
- Izutsu, K.; Ogura, M.; Tobinai, K.; Hatake, K.; Sakamoto, S.; Nishimura, M.; Hoshino, M. Safety profile of brentuximab vedotin in Japanese patients with relapsed/refractory Hodgkin lymphoma or systemic anaplastic large cell lymphoma: A post-marketing surveillance study. Int. J. Hematol. 2021, 113, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Akay, O.M.; Ozbalak, M.; Pehlivan, M.; Yildiz, B.; Uzay, A.; Yigenoglu, T.N.; Elverdi, T.; Kaynar, L.; Ayyildiz, O.; Hindilerden, I.Y.; et al. Brentuximab vedotin consolidation therapy after autologous stem-cell transplantation in patients with high-risk Hodgkin lymphoma: Multicenter retrospective study. Hematol. Oncol. 2021, 39, 498–505. [Google Scholar] [CrossRef]
- Iannitto, E.; Romano, A.; Scalzulli, P.R.; Bonanno, V.; Scalone, R.; Chiarenza, A.; Pirosa, M.C.; Caruso, A.L.; Minoia, C.; Mantuano, S.; et al. Brentuximab vedotin in association with bendamustine in refractory or multiple relapsed Hodgkin lymphoma. A retrospective real-world study. Eur. J. Haematol. 2020, 104, 581–587. [Google Scholar] [CrossRef]
- Damlaj, M.; Abuelgasim, K.A.; Alhejazi, A.; AlAhmari, B.; Alaskar, A.; Alzahrani, M. Brentuximab vedotin containing salvage followed by consolidation post autologous hematopoietic stem cell transplantation in high risk relapsed refractory classical Hodgkin lymphoma. Bone Marrow Transplant. 2020, 55, 2322–2325. [Google Scholar] [CrossRef]
- Pinczés, L.I.; Szabó, R.; Illés, Á.; Földeák, D.; Piukovics, K.; Szomor, Á.; Gopcsa, L.; Miltényi, Z. Real-world efficacy of brentuximab vedotin plus bendamustine as a bridge to autologous hematopoietic stem cell transplantation in primary refractory or relapsed classical Hodgkin lymphoma. Ann. Hematol. 2020, 99, 2385–2392. [Google Scholar] [CrossRef] [PubMed]
- Ulu, B.U.; Dal, M.S.; Hindilerden, I.Y.; Akay, O.M.; Mehtap, Ö.; Büyükkurt, N.; Hindilerden, F.; Güneş, A.K.; Yiğenoğlu, T.N.; Başcı, S.; et al. Brentuximab vedotin and bendamustine: An effective salvage therapy for relapsed or refractory Hodgkin lymphoma patients. J. Chemother. 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J. Brentuximab Vedotin: A Review in CD30-Positive Hodgkin Lymphoma. Drugs 2017, 77, 435–445. [Google Scholar] [CrossRef]
- Sureda, A.; André, M.; Borchmann, P.; Da Silva, M.G.; Gisselbrecht, C.; Vassilakopoulos, T.P.; Zinzani, P.L.; Walewski, J. Improving outcomes after autologous transplantation in relapsed/refractory Hodgkin lymphoma: A European expert perspective. BMC Cancer 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Li, T.; Timmins, H.C.; Lazarus, H.M.; Park, S.B. Peripheral neuropathy in hematologic malignancies—Past, present and future. Blood Rev. 2020, 43, 100653. [Google Scholar] [CrossRef]
- Jalali, A.; Ha, F.J.; Chong, G.; Grigg, A.; Mckendrick, J.; Schwarer, A.P.; Doig, R.; Hamid, A.; Hawkes, E.A. Hodgkin lymphoma: An Australian experience of ABVD chemotherapy in the modern era. Ann. Hematol. 2016, 95, 809–816. [Google Scholar] [CrossRef]
- Ramchandren, R.; Advani, R.; Ansell, S.M.; Bartlett, N.; Chen, R.; Connors, J.M.; Feldman, T.; Forero-Torres, A.; Friedberg, J.W.; Gopal, A.K.; et al. Brentuximab Vedotin plus Chemotherapy in North American Subjects with Newly Diagnosed Stage III or IV Hodgkin Lymphoma. Clin. Cancer Res. 2019, 25, 1718–1726. [Google Scholar] [CrossRef] [Green Version]
- Younes, A.; Santoro, A.; Shipp, M.; Zinzani, P.L.; Timmerman, J.M.; Ansell, S.; Armand, P.; Fanale, M.; Ratanatharathorn, V.; Kuruvilla, J.; et al. Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: A multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016, 17, 1283–1294. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Zinzani, P.L.; Fanale, M.A.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J. Clin. Oncol. 2017, 35, 2125–2132. [Google Scholar] [CrossRef] [PubMed]
- Psimaras, D.; Velasco, R.; Birzu, C.; Tamburin, S.; Lustberg, M.; Bruna, J.; Argyriou, A.A. Immune checkpoint inhibitors-induced neuromuscular toxicity: From pathogenesis to treatment. J. Peripher. Nerv. Syst. 2019, 24, S74–S85. [Google Scholar] [CrossRef]
- Deng, C.; Pan, B.; O'Connor, O.A. Brentuximab Vedotin. Clin. Cancer Res. 2012, 19, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Donaghy, H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. mAbs 2016, 8, 659–671. [Google Scholar] [CrossRef]
- Doronina, S.; Toki, B.E.; Torgov, M.Y.; Mendelsohn, B.; Cerveny, C.G.; Chace, D.F.; Deblanc, R.L.; Gearing, R.P.; Bovee, T.D.; Siegall, C.B.; et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 2003, 21, 778–784. [Google Scholar] [CrossRef]
- Best, R.L.; LaPointe, N.E.; Azarenko, O.; Miller, H.; Genualdi, C.; Chih, S.; Shen, B.-Q.; Jordan, M.A.; Wilson, L.; Feinstein, S.C.; et al. Microtubule and tubulin binding and regulation of microtubule dynamics by the antibody drug conjugate (ADC) payload, monomethyl auristatin E (MMAE): Mechanistic insights into MMAE ADC peripheral neuropathy. Toxicol. Appl. Pharmacol. 2021, 421, 115534. [Google Scholar] [CrossRef]
- Mariotto, S.; Ferrari, S.; Sorio, M.; Benedetti, F.; Tridente, G.; Cavallaro, T.; Gajofatto, A.; Monaco, S. Brentuximab vedotin: Axonal microtubule’s Apollyon. Blood Cancer J. 2015, 5, e343. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.J.; Swain, S. Peripheral Neuropathy Induced by Microtubule-Stabilizing Agents. J. Clin. Oncol. 2006, 24, 1633–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saber, H.; Leighton, J.K. An FDA oncology analysis of antibody-drug conjugates. Regul. Toxicol. Pharmacol. 2015, 71, 444–452. [Google Scholar] [CrossRef]
- Stagg, N.J.; Shen, B.-Q.; Brunstein, F.; Li, C.; Kamath, A.V.; Zhong, F.; Schutten, M.; Fine, B.M. Peripheral neuropathy with microtubule inhibitor containing antibody drug conjugates: Challenges and perspectives in translatability from nonclinical toxicology studies to the clinic. Regul. Toxicol. Pharmacol. 2016, 82, 1–13. [Google Scholar] [CrossRef]
- Lu, D.; Gillespie, W.R.; Girish, S.; Agarwal, P.; Li, C.; Hirata, J.; Chu, Y.-W.; Kagedal, M.; Leon, L.; Maiya, V.; et al. Time-to-Event Analysis of Polatuzumab Vedotin-Induced Peripheral Neuropathy to Assist in the Comparison of Clinical Dosing Regimens. CPT: Pharmacometrics Syst. Pharmacol. 2017, 6, 401–408. [Google Scholar] [CrossRef]
- Corbin, Z.A.; Nguyen-Lin, A.; Li, S.; Rahbar, Z.; Tavallaee, M.; Vogel, H.; Salva, K.A.; Wood, G.S.; Kim, Y.H.; Nagpal, S. Characterization of the peripheral neuropathy associated with brentuximab vedotin treatment of Mycosis Fungoides and Sézary Syndrome. J. Neuro-Oncology 2017, 132, 439–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van De Donk, N.W.C.; Dhimolea, E. Brentuximab vedotin. mAbs 2012, 4, 458–465. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.P.; Staudacher, A.H. Could bystander killing contribute significantly to the antitumor activity of brentuximab vedotin given with standard first-line chemotherapy for Hodgkin lymphoma? Immunotherapy 2014, 6, 371–375. [Google Scholar] [CrossRef]
- Hoffmann, J.; Soliman, M.; Koch, J.; Liman, J.; Schön, M.; Mitteldorf, C. Demyelinating neuropathy and local toxicity caused by extravasated Brentuximab vedotin. J. Eur. Acad. Dermatol. Venereol. 2020, 34. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lin, Z.; Arnst, K.E.; Miller, D.D.; Li, W. Tubulin Inhibitor-Based Antibody-Drug Conjugates for Cancer Therapy. Molecules 2017, 22, 1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fargeot, G.; Dupel-Pottier, C.; Stephant, M.; Lazarovici, J.; Thomas, L.; Mouthon-Reignier, C.; Riad, B.; Carde, P.; Berzero, G.; Tafani, C.; et al. Brentuximab vedotin treatment associated with acute and chronic inflammatory demyelinating polyradiculoneuropathies. J. Neurol. Neurosurg. Psychiatry 2020, 91, 786–788. [Google Scholar] [CrossRef] [PubMed]
- Pastorelli, F.; Derenzini, E.; Plasmati, R.; Pellegrini, C.; Broccoli, A.; Casadei, B.; Argnani, L.; Salvi, F.; Pileri, S.; Zinzani, P.L. Severe peripheral motor neuropathy in a patient with Hodgkin lymphoma treated with brentuximab vedotin. Leuk. Lymphoma 2013, 54, 2318–2321. [Google Scholar] [CrossRef]
- Smith, C.A.; Gruss, H.-J.; Davis, T.; Anderson, D.; Farrah, T.; Baker, E.; Sutherland, G.R.; Brannan, C.I.; Copeland, N.G.; Jenkins, N.A.; et al. CD30 antigen, a marker for Hodgkin's lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 1993, 73, 1349–1360. [Google Scholar] [CrossRef]
- Lozeron, P.; Denier, C.; Lacroix, C.; Adams, D. Long-term Course of Demyelinating Neuropathies Occurring During Tumor Necrosis Factor-α–Blocker Therapy. Arch. Neurol. 2009, 66, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Argyriou, A.A.; Bruna, J.; Anastopoulou, G.G.; Velasco, R.; Litsardopoulos, P.; Kalofonos, H.P. Assessing risk factors of falls in cancer patients with chemotherapy-induced peripheral neurotoxicity. Support. Care Cancer 2019, 28, 1991–1995. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.B.; DeAngelis, L. Cancer-treatment-induced neurotoxicity—focus on newer treatments. Nat. Rev. Clin. Oncol. 2015, 13, 92–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forero-Torres, A.; Holkova, B.; Goldschmidt, J.; Chen, R.; Olsen, G.; Boccia, R.V.; Bordoni, R.E.; Friedberg, J.W.; Sharman, J.P.; Palanca-Wessels, M.C.; et al. Phase 2 study of frontline brentuximab vedotin monotherapy in Hodgkin lymphoma patients aged 60 years and older. Blood 2015, 126, 2798–2804. [Google Scholar] [CrossRef] [Green Version]
- Tavee, J. Nerve conduction studies: Basic concepts. In Handbook of Clinical Neurology; Elsevier: New York, NY, USA, 2017; pp. 217–224. [Google Scholar]
- Dummer, R.; Prince, H.M.; Whittaker, S.; Horwitz, S.M.; Kim, Y.H.; Scarisbrick, J.; Quaglino, P.; Zinzani, P.L.; Wolter, P.; Eradat, H.; et al. Patient-reported quality of life in patients with relapsed/refractory cutaneous T-cell lymphoma: Results from the randomised phase III ALCANZA study. Eur. J. Cancer 2020, 133, 120–130. [Google Scholar] [CrossRef]
- Evens, A.M.; Connors, J.M.; Younes, A.; Ansell, S.M.; Kim, W.S.; Radford, J.; Feldman, T.; Tuscano, J.; Savage, K.J.; Oki, Y.; et al. Older patients (aged ≥60 years) with previously untreated advanced-stage classical Hodgkin lymphoma: A detailed analysis from the phase III ECHELON-1 study. Haematologica 2021. [Google Scholar] [CrossRef]
- Gibb, A.; Pirrie, S.J.; Linton, K.; Warbey, V.; Paterson, K.; Davies, A.J.; Collins, G.P.; Menne, T.; McKay, P.; Fields, P.A.; et al. Results of a UK National Cancer Research Institute Phase II study of brentuximab vedotin using a response-adapted design in the first-line treatment of patients with classical Hodgkin lymphoma unsuitable for chemotherapy due to age, frailty or comorbidity (BREVITY). Br. J. Haematol. 2020, 193, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Friedberg, J.W.; Forero-Torres, A.; Bordoni, R.E.; Cline, V.J.M.; Donnelly, D.P.; Flynn, P.J.; Olsen, G.; Chen, R.; Fong, A.; Wang, Y.; et al. Frontline brentuximab vedotin in combination with dacarbazine or bendamustine in patients aged ≥60 years with HL. Blood 2017, 130, 2829–2837. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Lu, H.; Chen, C.; Gu, Z.; Hu, M.; Liu, L.; Yu, J.; Wei, G.; Huo, J. Diabetes mellitus as a risk factor for chemotherapy-induced peripheral neuropathy: A meta-analysis. Support. Care Cancer 2021, 29, 7461–7469. [Google Scholar] [CrossRef]
- Sempere-Bigorra, M.; Julián-Rochina, I.; Cauli, O. Chemotherapy-Induced Neuropathy and Diabetes: A Scoping Review. Curr. Oncol. 2021, 28, 3124–3138. [Google Scholar] [CrossRef]
- Briani, C.; Visentin, A.; Cerri, F.; Quattrini, A. From pathogenesis to personalized treatments of neuropathies in hematological malignancies. J. Peripher. Nerv. Syst. 2020, 25, 212–221. [Google Scholar] [CrossRef]
- Grisold, W.; Grisold, A.; Marosi, C.; Meng, S.; Briani, C. Neuropathies associated with lymphoma†. Neuro-Oncology Pr. 2015, 2, 167–178. [Google Scholar] [CrossRef]
- Han, T.H.; Gopal, A.; Ramchandren, R.; Goy, A.; Chen, R.; Matous, J.V.; Cooper, M.; Grove, L.E.; Alley, S.C.; Lynch, C.M.; et al. CYP3A-Mediated Drug-Drug Interaction Potential and Excretion of Brentuximab Vedotin, an Antibody−Drug Conjugate, in Patients with CD30-Positive Hematologic Malignancies. J. Clin. Pharmacol. 2013, 53, 866–877. [Google Scholar] [CrossRef]
- Bakitas, M.A. Background noise: The experience of chemotherapy-induced peripheral neuropathy. Nurs. Res. 2007, 56, 323–331. [Google Scholar] [CrossRef]
- Salgado, T.M.; Liu, J.; Reed, H.L.; Quinn, C.S.; Syverson, J.G.; Le-Rademacher, J.; Lopez, C.L.; Beutler, A.S.; Loprinzi, C.L.; Vangipuram, K.; et al. Patient factors associated with discrepancies between patient-reported and clinician-documented peripheral neuropathy in women with breast cancer receiving paclitaxel: A pilot study. Breast 2020, 51, 21–28. [Google Scholar] [CrossRef]
- Knoerl, R. CE: Chemotherapy-Induced Peripheral Neuropathy. AJN, Am. J. Nurs. 2021, 121, 26–30. [Google Scholar] [CrossRef]
- Alberti, P.; Bernasconi, D.P.; Cornblath, D.R.; Merkies, I.S.J.; Park, S.B.; Velasco, R.; Bruna, J.; Psimaras, D.; Koeppen, S.; Pace, A.; et al. Prospective Evaluation of Health Care Provider and Patient Assessments in Chemotherapy-Induced Peripheral Neurotoxicity. Neurology 2021, 97, e660–e672. [Google Scholar] [CrossRef]
- Cavaletti, G.; Cornblath, D.R.; Merkies, I.S.; Postma, T.J.; Rossi, E.; Alberti, P.; Bruna, J.; Argyriou, A.A.; Briani, C.; Velasco, R.; et al. Patients' and physicians' interpretation of chemotherapy-induced peripheral neurotoxicity. J. Peripher. Nerv. Syst. 2018, 24, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frigeni, B.; Piatti, M.; Lanzani, F.; Alberti, P.; Villa, P.; Zanna, C.; Ceracchi, M.; Ildebrando, M.; Cavaletti, G. Chemotherapy-induced peripheral neurotoxicity can be misdiagnosed by the National Cancer Institute Common Toxicity scale. J. Peripher. Nerv. Syst. 2011, 16, 228–236. [Google Scholar] [CrossRef]
- Griffith, K.A.; Dorsey, S.G.; Renn, C.L.; Zhu, S.; Johantgen, M.E.; Cornblath, D.R.; Argyriou, A.A.; Cavaletti, G.; Merkies, I.S.J.; Alberti, P.; et al. Correspondence between neurophysiological and clinical measurements of chemotherapy-induced peripheral neuropathy: Secondary analysis of data from the CI-PeriNomS study. J. Peripher. Nerv. Syst. 2014, 19, 127–135. [Google Scholar] [CrossRef]
- Cavaletti, G.; Frigeni, B.; Lanzani, F.; Piatti, M.; Rota, S.; Briani, C.; Zara, G.; Plasmati, R.; Pastorelli, F.; Caraceni, A.; et al. The Total Neuropathy Score as an assessment tool for grading the course of chemotherapy-induced peripheral neurotoxicity: Comparison with the National Cancer Institute-Common Toxicity Scale. J. Peripher. Nerv. Syst. 2007, 12, 210–215. [Google Scholar] [CrossRef]
- Clifford, K.; Copeland, A.; Knutzen, G.; Samuelson, E.; Grove, L.; Schiavo, K. Brentuximab Vedotin: A Nursing Perspective on Best Practices and Management of Associated Adverse Events. Clin. J. Oncol. Nurs. 2018, 22, E103–E114. [Google Scholar] [CrossRef]
- Kanzawa-Lee, G.A. Chemotherapy-Induced Peripheral Neuropathy. J. Infus. Nurs. 2020, 43, 155–166. [Google Scholar] [CrossRef]
- Yost, K.; Cella, D.; Chawla, A.; Holmgren, E.; Eton, D.; Ayanian, J.; West, D. Minimally important differences were estimated for the Functional Assessment of Cancer Therapy–Colorectal (FACT-C) instrument using a combination of distribution- and anchor-based approaches. J. Clin. Epidemiology 2005, 58, 1241–1251. [Google Scholar] [CrossRef]
- Yeo, F.; Ng, C.C.; Loh, K.W.J.; Molassiotis, A.; Cheng, H.L.; Au, J.S.K.; Leung, K.T.; Li, Y.C.; Wong, K.-H.; Suen, L.; et al. Minimal clinically important difference of the EORTC QLQ-CIPN20 for worsening peripheral neuropathy in patients receiving neurotoxic chemotherapy. Support. Care Cancer 2019, 27, 4753–4762. [Google Scholar] [CrossRef]
- Longley, J.; Johnson, P.W.M. Personalized medicine for Hodgkin lymphoma: Mitigating toxicity while preserving cure. Hematol. Oncol. 2021, 39, 39–45. [Google Scholar] [CrossRef]
- Gewandter, J.S.; Freeman, R.; Kitt, R.A.; Cavaletti, G.; Gauthier, L.R.; McDermott, M.P.; Mohile, N.A.; Mohlie, S.G.; Smith, A.G.; Tejani, M.A.; et al. Chemotherapy-induced peripheral neuropathy clinical trials. Neurology 2017, 89, 859–869. [Google Scholar] [CrossRef]
- Gewandter, J.S.; Kleckner, A.S.; Marshall, J.H.; Brown, J.S.; Curtis, L.H.; Bautista, J.; Dworkin, R.H.; Kleckner, I.R.; Kolb, N.; Mohile, S.G.; et al. Chemotherapy-induced peripheral neuropathy (CIPN) and its treatment: An NIH Collaboratory study of claims data. Support. Care Cancer 2019, 28, 2553–2562. [Google Scholar] [CrossRef]
- Yu, A.; Street, D.; Viney, R.; Goodall, S.; Pearce, A.; Haywood, P.; Haas, M.; Battaglini, E.; Goldstein, D.; Timmins, H.; et al. Clinical assessment of chemotherapy-induced peripheral neuropathy: A discrete choice experiment of patient preferences. Support. Care Cancer 2021, 29, 6379–6387. [Google Scholar] [CrossRef]
- Alberti, P.; Rossi, E.; Cornblath, D.; Merkies, I.; Postma, T.; Frigeni, B.; Bruna, J.; Velasco, R.; Argyriou, A.A.; Kalofonos, H.P.; et al. Physician-assessed and patient-reported outcome measures in chemotherapy-induced sensory peripheral neurotoxicity: Two sides of the same coin. Ann. Oncol. 2013, 25, 257–264. [Google Scholar] [CrossRef]
- Suri, A.; Mould, D.R.; Song, G.; Collins, G.; Endres, C.J.; Gomez-Navarro, J.; Venkatakrishnan, K. Population Pharmacokinetic Modeling and Exposure–Response Assessment for the Antibody-Drug Conjugate Brentuximab Vedotin in Hodgkin's Lymphoma in the Phase III ECHELON-1 Study. Clin. Pharmacol. Ther. 2019, 106, 1268–1279. [Google Scholar] [CrossRef]
- Loprinzi, C.L.; Lacchetti, C.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Hertz, D.L.; Kelley, M.R.; Lavino, A.; Lustberg, M.B.; Paice, J.A.; et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. J. Clin. Oncol. 2020, 38, 3325–3348. [Google Scholar] [CrossRef]
- Bröckelmann, P.J.; McMullen, S.; Ben Wilson, J.; Mueller, K.; Goring, S.; Stamatoullas, A.; Zagadailov, E.; Gautam, A.; Huebner, D.; Dalal, M.; et al. Patient and physician preferences for first-line treatment of classical Hodgkin lymphoma in Germany, France and the United Kingdom. Br. J. Haematol. 2018, 184, 202–214. [Google Scholar] [CrossRef] [Green Version]
- Nademanee, A.; Sureda, A.; Stiff, P.; Holowiecki, J.; Abidi, M.; Hunder, N.; Pecsok, M.; Uttarwar, M.; Purevjal, I.; Sweetenham, J. Safety Analysis of Brentuximab Vedotin from the Phase III AETHERA Trial in Hodgkin Lymphoma in the Post-Transplant Consolidation Setting. Biol. Blood Marrow Transplant. 2018, 24, 2354–2359. [Google Scholar] [CrossRef] [Green Version]
- Hertz, D.L.; Childs, D.S.; Park, S.B.; Faithfull, S.; Ke, Y.; Ali, N.T.; McGlown, S.M.; Chan, A.; Grech, L.B.; Loprinzi, C.L.; et al. Patient-centric decision framework for treatment alterations in patients with Chemotherapy-induced Peripheral Neuropathy (CIPN). Cancer Treat. Rev. 2021, 99, 102241. [Google Scholar] [CrossRef]
- Kaley, T.J.; DeAngelis, L.M. Therapy of chemotherapy-induced peripheral neuropathy. Br. J. Haematol. 2009, 145, 3–14. [Google Scholar] [CrossRef]
- Velasco, R.; Bruna, J.; Briani, C.; Argyriou, A.A.; Cavaletti, G.; Alberti, P.; Frigeni, B.; Cacciavillani, M.; Lonardi, S.; Cortinovis, D.; et al. Early predictors of oxaliplatin-induced cumulative neuropathy in colorectal cancer patients. J. Neurol. Neurosurg. Psychiatry 2013, 85, 392–398. [Google Scholar] [CrossRef]
- Alberti, P.; Rossi, E.; Argyriou, A.A.; Kalofonos, H.P.; Briani, C.; Cacciavillani, M.; Campagnolo, M.; Bruna, J.; Velasco, R.; Cazzaniga, M.E.; et al. Risk stratification of oxaliplatin induced peripheral neurotoxicity applying electrophysiological testing of dorsal sural nerve. Support. Care Cancer 2018, 26, 3143–3151. [Google Scholar] [CrossRef] [PubMed]
- Stubblefield, M.D.; McNeely, M.; Alfano, C.M.; Mayer, D.K. A prospective surveillance model for physical rehabilitation of women with breast cancer. Cancer 2012, 118, 2250–2260. [Google Scholar] [CrossRef]
- Kanzawa-Lee, G.A.; Larson, J.L.; Resnicow, K.; Smith, E.M.L. Exercise Effects on Chemotherapy-Induced Peripheral Neuropathy. Cancer Nurs. 2020, 43, E172–E185. [Google Scholar] [CrossRef]
- Popescu, R.A.; Roila, F.; Arends, J.; Metro, G.; Lustberg, M. Supportive Care: Low Cost, High Value. Am. Soc. Clin. Oncol. Educ. Book 2021, 41, 240–250. [Google Scholar] [CrossRef]
- Duregon, F.; Vendramin, B.; Bullo, V.; Gobbo, S.; Cugusi, L.; Di Blasio, A.; Neunhaeuserer, D.; Zaccaria, M.; Bergamin, M.; Ermolao, A. Effects of exercise on cancer patients suffering chemotherapy-induced peripheral neuropathy undergoing treatment: A systematic review. Crit. Rev. Oncol. 2018, 121, 90–100. [Google Scholar] [CrossRef]
- Streckmann, F.; Kneis, S.; Leifert, J.A.; Baumann, F.T.; Kleber, M.; Ihorst, G.; Herich, L.; Grüssinger, V.; Gollhofer, A.; Bertz, H. Exercise program improves therapy-related side-effects and quality of life in lymphoma patients undergoing therapy. Ann. Oncol. 2014, 25, 493–499. [Google Scholar] [CrossRef]
- Galloway, E.; Griffith, M.; Rosenthal, A. Multidisciplinary Management of Adolescent and Young Adult Patients with Hodgkin Lymphoma. Curr. Treat. Options Oncol. 2021, 22, 1–13. [Google Scholar] [CrossRef]
- Tofthagen, C.; Visovsky, C.M.; Hopgood, R.; Rodriguez, R. Chemotherapy-Induced Peripheral Neuropathy. Clin. J. Oncol. Nurs. 2013, 17, 138–144. [Google Scholar] [CrossRef]
- Smith, E.M.; Pang, H.; Cirrincione, C.; Fleishman, S.; Paskett, E.D.; Ahles, T.; Bressler, L.R.; Fadul, C.E.; Knox, C.; Le-Lindqwister, N.; et al. Alliance for Clinical Trials in Oncology. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: A randomized clinical trial. JAMA 2013, 309, 1359–1367. [Google Scholar] [CrossRef]
- Velasco, R.; Besora, S.; Argyriou, A.A.; Santos, C.; Sala, R.; Izquierdo, C.; Simó, M.; Gil-Gil, M.; Pardo, B.; Jiménez, L.; et al. Duloxetine against symptomatic chemotherapy-induced peripheral neurotoxicity in cancer survivors: A real world, open-label experience. Anti-Cancer Drugs 2021, 32, 88–94. [Google Scholar] [CrossRef]
- Kanbayashi, Y.; Inagaki, M.; Ueno, H.; Hosokawa, T. Predictors of the usefulness of duloxetine for chemotherapy-induced peripheral neuropathy. Med Oncol. 2017, 34. [Google Scholar] [CrossRef]
- Velasco, R.; Bruna, J. Taxane-Induced Peripheral Neurotoxicity. Toxics 2015, 3, 152–169. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, S.D.; Nademanee, A.; Masszi, T.; Holowiecki, J.; Abidi, M.; Chen, A.; Stiff, P.; Viviani, S.; Sweetenham, J.W.; Radford, J.; et al. Quality of life results from a phase 3 study of brentuximab vedotin consolidation following autologous haematopoietic stem cell transplant for persons with Hodgkin lymphoma. Br. J. Haematol. 2016, 175, 860–867. [Google Scholar] [CrossRef] [Green Version]
- Eikeland, S.A.; Smeland, K.B.; Mols, F.; Fagerli, U.-M.; Bersvendsen, H.S.; Kiserud, C.E.; Fosså, A. Chemotherapy-induced peripheral neuropathy after modern treatment of Hodgkin’s lymphoma; symptom burden and quality of life. Acta Oncol. 2021, 1–10. [Google Scholar] [CrossRef]
Author Year | Study N | Schedule | Age Median, (Range) | Cycles· Median, (Range) | Overall PN | Grade ≥3 PN | Cessation due to PN | PN Onset | PN Evolution (Median Time) |
---|---|---|---|---|---|---|---|---|---|
BV MONOTHERAPY IN RELAPSE/REFRACTORY HL CLINICAL TRIALS | |||||||||
Younes 2010 | Phase I | SA | 36 y | - | 36% | 1 pt | 3 pt | 9 w | 63% CR |
[24] | 45 (42 HL) | data | (3–24) | ||||||
Fanale 2012 | Phase I | SA | 33 | 4 | 73% | S: 6 pt | 8 pt | Any: 6.1 w | G2: Time R/I: 12.1 w |
[25] | 44 (38 HL) | Weekly dose | (12–82) | (1–12) | M: 3 pt | G3: 25.9 w | G3: Time I: 21.6 w | ||
Gopal 2012 | Phase II | SA | 32 | 8 | 52% | 2 pt | 5 pt | - | 54% R/I |
[26] | 25 | (20–56) | (1–16) | ||||||
Younes 2012 [3] | Phase II | SA | 31 | 9 | 55% | 8 % | 9 pt | Any: 12.4 w | 80 % R/I; 50% CR |
Chen 2016 [27] | 102 | (15–77) | (1–16) | G2/327.3– 38.0w | Time R/I: 13.2 w | ||||
Forero–Torres 2012 [28] | Phase I 20 | SA * 9 pt weekly | 31.5 (12–87) | - | 45% | 0% | 0 pt | - | - |
Ogura 2014 | Phase I/II | SA | 41 | 16 | 60% | 0 % | - | 11.3 w (0.3–48.9) | Only resolved 1 pt |
[29] | 20 | (22-88) | (4-16) | ||||||
Chen 2015 | Phase II | SA | 34 | 4 | 52% | 0 % | 0 pt | - | - |
[30] | 37 | (11-67) | (1-4) | ||||||
Moskowitz | Phase III | SA | 33 | 15 | 67% | S: 10% | 38 pt | 13·7 (0·1–47·4) w | 90% R/I; 73% CR |
[6,7] | 329 | (18–71) | (1–16) | M: 6% | (23%) | Time R/I: 37.6 w | |||
Walewski 2018 | Phase IV | SA | 32 | 7 | 35% | 3% | 1 pt | 9.4 w (0.6–39.1) | 57 % CR |
[31] | 60 | (18–75) | (1–16) | ||||||
Stefoni 2020 [32] | Phase II 20 | SA | 73 (61–86) | 7 (1–16) | 33% | 1 pt | 3 pt | PN starting from cycle 2 | - |
Kuruvilla 2021 | Phase III | SA | 35 | 12% > 16 | 18% | 3 % | 8 pt | - | - |
[33] | 153 | (25–80) | doses | ||||||
Song 2021 | Phase II | SA | 30 | 10 | 47% | 0% | 3 pt | Any: 10.6(0.3–45.4) w G2: 11.9 (0.3–45.4) w | 55% R/I |
[34] | 39 (30HL) | (21–64) | (2–16) | ||||||
BV IN COMBINATION WITH CHEMOTHERAPY IN R/R CLINICAL TRIALS | |||||||||
Moskowitz 2015 | Phase II | SA seq** | 31 | 2 | 49% | 0 % | 0 pt | - | - |
[16] | 45 | Weekly After ICI | (13–65) | ||||||
O’Connor 2018 | Phase I /II | C | 38 (25–70) | I: 6 | 32% | - | - | - | - |
(1–6) | |||||||||
[4] | I (28); II (37) | +Benda | 34 (18–72) | II: 5 | |||||
(2–6) | |||||||||
LaCasce 2018/2020 | Phase I/II | C | 36 | 10 | 54.4% | 3.6% | 7.3% | - | 63% R/I |
[35,36] | 53 | +Benda | (19–79) | (1–14) | R/I: 3 w (0.4–37) | ||||
Herrera 2018 | Phase I/II | C | 36 | 4 | 20% | 1 pt | 1 pt | ||
[37] | 61 | + Nivo | (18–69) | (1–4) | |||||
Garcia-Sanz 2019 | Phase I/II | C | 36 | Up to 7 | 22% | - | 3 pt | - | All resolved |
[17] | 66 | BRESHAP | (18–66) | C | |||||
Broccoli 2019 | Phase II | C +Benda | 38 | 4 | 1.8% | 0 pt | - | 100% R | |
[32] | 40 | BBV | (20–59) | ||||||
Diefenbach 2020 | Phase I/II | C | 33–40 | 7 | 52% | 1 pt | - | - | - |
[38] | 64 | +Ipi/Nivo | (26–51) | (4–12) | |||||
Kersten 2021 | Phase II | C | 29 | 3 | 32.7% | 0 % | 0 pt | - | 100 % R |
[39] | 55 | BV-DHAP | (19–71) | ||||||
Lynch 2021 | Phase I/II *** | C | 31 | 4 doses | 36% | 2% | - | ||
[40] | BV-ICE | (28–45) | |||||||
BV MONOTHERAPY IN R/R HL RETROSPECTIVE STUDIES | |||||||||
Rothe 2012 | Retrospective | SA | 35 | 7 | 31% | 0 % | 0 pt | - | - |
[41] | 45 | (1–12) | |||||||
Gibb 2013 | Retrospective | SA | 41.5 | 5.5 | - | 3 pt | - | - | - |
[42] | 24 | (21–78) | (1–13) | (12.5%) | |||||
Zinzani 2013 | Retrospective | SA | 27.5 | 8 | 21.5% | 5 pt | 3 pt | - | 90 % R/I |
[43] | 65 | (12–66) | (3–16) | Time R/I: 12 w | |||||
Graciaz 2014 | Retrospective | SA | 35 | 5 | - | 1 pt | 0 pt | - | - |
[44] | 24 | (20–60) | (2–8) | ||||||
Yang 2014 | Retrospective | SA | 30 | 5 | - | 0 pt | - | - | - |
[22] | 22 | (16–57) | (1–18) | ||||||
Salihoglu 2015 | Retrospective | SA | 26 | 7 | 32.7% | 2 pt | 1 pt | - | - |
[45] | 58 | (13–62) | (2–18) | ||||||
Monjanel 2014 | Retrospective | SA | 35 | 7 | 11.1% | 0 % | - | - | - |
[46] | 45 (32 HL) | (20–69) | (1–16) | ||||||
Perrot 2016 | Retrospective | SA | 30 | 6 | 29.3% | 2.3 % | - | PN peaking | - |
[47] | 240 | (14–78) | (1–16) | at cycle 7 | |||||
Brockelmann 2017 | Retrospective | SA | 70 | 8 | 9.6% | - | - | - | - |
[48] | 136 | (6–15) | |||||||
Eyre 2017 | Retrospective | SA | 32 | 4 | 9% | 2 pt | - | - | - |
[49] | 99 | (13–70) | (1–9) | ||||||
Pellegrini 2017 | Retrospective | SA | 35.4 | 6 | - | 7.2% | - | - | 90% R/I |
[50] | 234 | (18–79) | (1–16) | Time R/I: 12w | |||||
Zagadailov 2018 | Retrospective | SA | 50.5% | 7.5 | 8.7% | - | 17.6% | - | - |
[23] | 196 | >45 y | (5–11) | ||||||
Pavone 2018 | Retrospective | SA | 34 | 4/8 | 50% | 7% | - | - | - |
[51] | 70 | (15–84) | (1–16) | ||||||
Clairivet 2018 | Retrospective | SA | 43.2 | 5 | 33.3% | 0% | - | - | - |
[52] | 39 | (14–82) | (1–23) | ||||||
Tien 2019 | Retrospective | SA | 28 | 5.5 | 20% | - | - | - | - |
[53] | 20 | (15–85) | (1–19) | ||||||
Král 2019 | Retrospective | SA | 30.5 | 7.5 | 36.2% | 0% | 0 pt | - | - |
[54] | 58 | (20–53) | (3–16) | ||||||
Kort 2020 | Retrospective | SA | 25.5 | 4 | - | 0% | 0 pt | - | - |
[55] | 20 | (18–61) | (3–4) | ||||||
Izutsu 2021 | Retrospective | SA | 62 | 5.5 | 40.7% S | 8.2% S | 23 pt | Within 9 w in 61% | - |
[56] | 182 | (14–93) | 5.0% M | 3.9%M | Within 27 w in 90% | ||||
Akay 2021 | Retrospective | SA | 31 | 8 | 21% | 11% | 9 pt | - | - |
[57] | 75 | (18–65) | (3–15) | ||||||
BV IN COMBINATION WITH CHEMOTHERAPY FOR R/R HL RETROSPECTIVE STUDIES | |||||||||
Ianitto 2020 | Retrospective | C | 34 | 48% | - | 11% | - | - | - |
[58] | 47 | BVB | (18–76) | 6 cycles | |||||
Damlaj 2020 | Retrospective | C | 22 | 15 | 35% | 5% | 20% | - | 100% R/ I |
[59] | 20 | (Various) | (15–47) | (5–16) | |||||
Pinczés 2020 | Retrospective | C | - | 3 | 12.2% | 2.4% | - | - | - |
[60] | 41 | BVB | (1–16) | ||||||
Uncu Ulu 2021 [61] | Retrospective 61 | C BvB | 33 (18–76) | 4 (2–11) | NR | 6.5% | 4 pt | - | R in 2 pts, 2 pt G3 PN was stable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco, R.; Domingo-Domenech, E.; Sureda, A. Brentuximab-Induced Peripheral Neurotoxicity: A Multidisciplinary Approach to Manage an Emerging Challenge in Hodgkin Lymphoma Therapy. Cancers 2021, 13, 6125. https://doi.org/10.3390/cancers13236125
Velasco R, Domingo-Domenech E, Sureda A. Brentuximab-Induced Peripheral Neurotoxicity: A Multidisciplinary Approach to Manage an Emerging Challenge in Hodgkin Lymphoma Therapy. Cancers. 2021; 13(23):6125. https://doi.org/10.3390/cancers13236125
Chicago/Turabian StyleVelasco, Roser, Eva Domingo-Domenech, and Anna Sureda. 2021. "Brentuximab-Induced Peripheral Neurotoxicity: A Multidisciplinary Approach to Manage an Emerging Challenge in Hodgkin Lymphoma Therapy" Cancers 13, no. 23: 6125. https://doi.org/10.3390/cancers13236125
APA StyleVelasco, R., Domingo-Domenech, E., & Sureda, A. (2021). Brentuximab-Induced Peripheral Neurotoxicity: A Multidisciplinary Approach to Manage an Emerging Challenge in Hodgkin Lymphoma Therapy. Cancers, 13(23), 6125. https://doi.org/10.3390/cancers13236125