Comparison of the Transcriptomic Signatures in Pediatric and Adult CML
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Samples and Clinical Data Analysis
2.2. RNAseq Analysis
2.3. RT-qPCR
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hijiya, N.; Schultz, K.R.; Metzler, M.; Millot, F.; Suttorp, M. Pediatric chronic myeloid leukemia is a unique disease that requires a different approach. Blood 2016, 127, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Millot, F.; Traore, P.; Guilhot, J.; Nelken, B.; Leblanc, T.; Leverger, G.; Plantaz, M.; Bertrand, Y.; Bordigoni, P.; Guilhot, F. Clinical and biological features at diagnosis in 40 children with chronic myeloid leukemia. Pediatrics 2005, 116, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Valencia, K.; Erice, O.; Kostyrko, K.; Hausmann, S.; Guruceaga, E.; Tathireddy, A.; Flores, N.M.; Sayles, L.C.; Lee, A.G.; Fragoso, R.; et al. The Mir181ab1 cluster promotes KRAS-driven oncogenesis and progression in lung and pancreas. J. Clin. Investig. 2020, 130, 1879–1895. [Google Scholar] [CrossRef] [PubMed]
- Badger-Brown, K.M.; Gillis, L.C.; Bailey, M.L.; Penninger, J.M.; Barber, D.L. CBL-B is required for leukemogenesis mediated by BCR-ABL through negative regulation of bone marrow homing. Leukemia 2013, 27, 1146–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harnois, T.; Constantin, B.; Rioux, A.; Grenioux, E.; Kitzis, A.; Bourmeyster, N. Differential interaction and activation of Rho family GTPases by p210bcr-abl and p190bcr-abl. Oncogene 2003, 22, 6445–6454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengupta, A.; Banerjee, D.; Chandra, S.; Banerji, S.K.; Ghosh, R.; Roy, R.; Banerjee, S.; A Sengupta, D.B. Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia 2007, 21, 949–955. [Google Scholar] [CrossRef]
- Johan, M.Z.; Samuel, M.S. Rho-ROCK signaling regulates tumor-microenvironment interactions. Biochem. Soc. Trans. 2019, 47, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Ramaraj, P.; Singh, H.; Niu, N.; Chu, S.; Holtz, M.; Yee, J.K.; Bhatia, R. Effect of mutational inactivation of tyrosine kinase activity on BCR/ABL-induced abnormalities in cell growth and adhesion in human hematopoietic progenitors. Cancer Res. 2004, 64, 5322–5331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beillard, E.; Pallisgaard, N.; van der Velden, V.H.; Bi, W.; Dee, R.; van der Schoot, E.; Delabesse, E.; MacIntyre, E.; Gottardi, E.; Saglio, G.; et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—A Europe against cancer program. Leukemia 2003, 17, 2474–2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassermann, F.; Jahn, T.; Miething, C.; Seipel, P.; Bai, R.Y.; Coutinho, S.; Peschel, C.; Duyster, J.; Tybulewicz, V. Association of Bcr-Abl with the proto-oncogene Vav is implicated in activation of the Rac-1 pathway. J. Biol. Chem. 2002, 277, 12437–12445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokoch, G.M.; Diebold, B.A. Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 2002, 100, 2692–2696. [Google Scholar] [CrossRef] [PubMed]
- Durkin, M.E.; Yuan, B.Z.; Zhou, X.; Zimonjic, D.B.; Lowy, D.R.; Thorgeirsson, S.S.; Popescu, N.C. DLC-1: A Rho GTPase-activating protein and tumour suppressor. J. Cell. Mol. Med. 2007, 11, 1185–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, K.F.; Lau, K.M.; Chan, N.P.; Wong, W.S.; Chik, K.W.; Shing, M.M.; Wong, R.; Cheng, G.; Li, C.K.; Ng, H.K.; et al. Frequent promoter hypermethylation of deleted in liver cancer-1 (DLC-1) gene in human leukemias. Cancer Res. 2005, 65 (Suppl. S9), 429–430. [Google Scholar]
- Diaz-Blanco, E.; Bruns, I.; Neumann, F.; Fischer, J.C.; Graef, T.; Rosskopf, M.; Brors, B.; Pechtel, S.; Bork, S.; Koch, A.; et al. Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 2007, 21, 494–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerber, J.M.; Gucwa, J.L.; Esopi, D.; Gurel, M.; Haffner, M.C.; Vala, M.; Nelson, W.G.; Jones, R.J.; Yegnasubramanian, S. Genome-wide comparison of the transcriptomes of highly enriched normal and chronic myeloid leukemia stem and progenitor cell populations. Oncotarget 2013, 4, 715–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolouri, H.; Farrar, J.E.; Triche, T., Jr.; Ries, R.E.; Lim, E.L.; Alonzo, T.A.; Ma, Y.; Moore, R.; Mungall, A.J.; Marra, M.; et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat. Med. 2018, 24, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clinical/Demographic Features | Pediatric (n = 9) | Adult (n = 10) | Pediatric vs. Adult | ||
---|---|---|---|---|---|
n | % | n | % | p-value * | |
Demographic characteristics | |||||
Age at diagnosis (years) | |||||
Median (IQR) | 10 (9–13) | 54 (33–62) | <0.0001 | ||
Sex | |||||
Male | 8 | 88.9 | 9 | 90.0 | 1.0000 |
Female | 1 | 11.1 | 1 | 10.0 | |
Race/Ethnicity | |||||
Asian | 4 | 44.4 | 1 | 10.0 | 0.1771 |
Hispanic | 2 | 22.2 | 2 | 20.0 | |
White non-Hispanic | 2 | 22.2 | 6 | 60.0 | |
Black non-Hispanic | 0 | 0 | 1 | 10.0 | |
Other | 1 | 11.1 | 0 | 0 | |
Clinical features at diagnosis | |||||
CML diagnosis | |||||
Chronic phase | 7 | 77.8 | 10 | 100.0 | 0.2105 |
Unknown/not reported | 2 | 22.2 | 0 | 0 | |
WBC count (×109/liter) $ | |||||
Median (IQR) | 255 (95–351) | 143 (64–260) | 0.4908 | ||
Platelet count (×109/liter) $ | |||||
Median (IQR) | 627 (617–870) | 305 (205–371) | 0.0004 | ||
Spleen size (cm) + | |||||
Median (IQR) | 5 (2–5) | 0 (0–0) | 0.0739 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youn, M.; Smith, S.M.; Lee, A.G.; Chae, H.-D.; Spiteri, E.; Erdmann, J.; Galperin, I.; Jones, L.M.; Donato, M.; Abidi, P.; et al. Comparison of the Transcriptomic Signatures in Pediatric and Adult CML. Cancers 2021, 13, 6263. https://doi.org/10.3390/cancers13246263
Youn M, Smith SM, Lee AG, Chae H-D, Spiteri E, Erdmann J, Galperin I, Jones LM, Donato M, Abidi P, et al. Comparison of the Transcriptomic Signatures in Pediatric and Adult CML. Cancers. 2021; 13(24):6263. https://doi.org/10.3390/cancers13246263
Chicago/Turabian StyleYoun, Minyoung, Stephanie M. Smith, Alex Gia Lee, Hee-Don Chae, Elizabeth Spiteri, Jason Erdmann, Ilana Galperin, Lara Murphy Jones, Michele Donato, Parveen Abidi, and et al. 2021. "Comparison of the Transcriptomic Signatures in Pediatric and Adult CML" Cancers 13, no. 24: 6263. https://doi.org/10.3390/cancers13246263
APA StyleYoun, M., Smith, S. M., Lee, A. G., Chae, H.-D., Spiteri, E., Erdmann, J., Galperin, I., Jones, L. M., Donato, M., Abidi, P., Bittencourt, H., Lacayo, N., Dahl, G., Aftandilian, C., Davis, K. L., Matthews, J. A., Kornblau, S. M., Huang, M., Sumarsono, N., ... Sakamoto, K. M. (2021). Comparison of the Transcriptomic Signatures in Pediatric and Adult CML. Cancers, 13(24), 6263. https://doi.org/10.3390/cancers13246263