The Vulvar Immunohistochemical Panel (VIP) Project: Molecular Profiles of Vulvar Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patients and Study Design
2.2. Sample Processing
2.3. Immunohistochemical Interpretation
2.4. Statistical Analysis
3. Results
3.1. Clinico-Pathological Findings
3.2. Immunohistochemical Results
3.3. Oncogenic Growth Factor-Receptors
3.3.1. p16 and p53
3.3.2. EGFR
3.3.3. HER2
3.4. Tumoral Immune Microenvironment
3.5. Mismatch Repair Proteins
3.6. Hormonal Environment
3.7. Neoangiogenesis
3.8. Statistical Analysis
3.9. Cluster Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, E.A.; Werth, A.J.; Sharaf, R.; Montesion, M.; Sokol, E.S.; Pavlick, D.C.; McLaughlin-Drubin, M.; Erlich, R.; Toma, H.; Williams, K.J.; et al. Vulvar squamous cell carcinoma: Comprehensive genomic profiling of HPV+ versus HPV– forms reveals distinct sets of potentially actionable molecular targets. JCO Precis. Oncol. 2020, 4, 647–661. [Google Scholar] [CrossRef]
- De San José, S.; Alemany, L.; Ordi, J.; Tous, S.; Alejo, M.; Bigby, S.M.; Joura, E.A.; Maldonado, P.; Laco, J.; Bravo, I.G.; et al. Worldwide human papillomavirus genotype attribution in over 2000 cases of intraepithelial and invasive lesions of the vulva. Eur. J. Cancer 2013, 49, 3450–3461. [Google Scholar] [CrossRef] [PubMed]
- Garganese, G.; Romito, A.; Scambia, G.; Fagotti, A. New developments in rare vulvar and vaginal cancers. Curr. Opin. Oncol. 2021, 33, 485–492. [Google Scholar] [CrossRef]
- Garganese, G.; Fragomeni, S.M.; Pasciuto, T.; Leombroni, M.; Moro, F.; Evangelista, M.T.; Bove, S.; Gentileschi, S.; Tagliaferri, L.; Paris, I.; et al. Ultrasound morphometric and cytologic preoperative assessment of inguinal lymph-node status in women with vulvar cancer: MorphoNode study. Ultrasound Obstet. Gynecol. 2020, 55, 401–410. [Google Scholar] [CrossRef]
- Fischerova, D.; Garganese, G.; Reina, H.; Fragomeni, S.M.; Cibula, D.; Nanka, O.; Rettenbacher, T.; Testa, A.C.; Epstein, E.; Guiggi, I.; et al. Terms, definitions and measurements to describe sonographic features of lymph nodes: Consensus opinion from the Vulvar International Tumor Analysis (VITA) group. Ultrasound Obstet. Gynecol. 2021, 57, 861–879. [Google Scholar] [CrossRef] [PubMed]
- Garganese, G.; Bove, S.; Fragomeni, S.; Moro, F.; Triumbari, E.K.A.; Collarino, A.; Verri, D.; Gentileschi, S.; Sperduti, I.; Scambia, G.; et al. Real-time ultrasound virtual navigation in 3D PET/CT volumes for superficial lymph-node evaluation: Innovative fusion examination. Ultrasound Obstet. Gynecol. 2021, 58, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Garganese, G.; Bove, S.; Zagaria, L.; Moro, F.; Fragomeni, S.M.; Ieria, F.P.; Gentileschi, S.; Romeo, P.; Di Giorgio, D.; Giordano, A.; et al. Fusion of ultrasound and 3D single-photon-emission computed tomography/computed tomography to identify sentinel lymph nodes in vulvar cancer: Feasibility study. Ultrasound Obstet. Gynecol. 2019, 54, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Rufini, V.; Garganese, G.; Ieria, F.P.; Pasciuto, T.; Fragomeni, S.M.; Gui, B.; Florit, A.; Inzani, F.; Zannoni, G.F.; Scambia, G.; et al. Diagnostic performance of preoperative [18F] FDG-PET/CT for lymph node staging in vulvar cancer: A large single-centre study. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3303–3314. [Google Scholar] [CrossRef] [PubMed]
- Triumbari, E.K.A.; de Koster, E.J.; Rufini, V.; Fragomeni, S.M.; Garganese, G.; Collarino, A. 18F-FDG PET and 18F-FDG PET/CT in Vulvar Cancer: A Systematic Review and Meta-analysis. Clin. Nucl. Med. 2021, 46, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Collarino, A.; Garganese, G.; Fragomeni, S.M.; Pereira Arias-Bouda, L.M.; Ieria, F.P.; Boellaard, R.; Rufini, V.; de Geus-Oei, L.F.; Scambia, G.; Valdés Olmos, R.A.; et al. Radiomics in vulvar cancer: First clinical experience using 18F-FDG PET/CT images. J. Nucl. Med. 2018, 60, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Collarino, A.; Garganese, G.; Valdés Olmos, R.A.; Stefanelli, A.; Perotti, G.; Mirk, P.; Fragomeni, S.M.; Ieria, F.P.; Scambia, G.; Giordano, A.; et al. Evaluation of dual-timepoint 18F-FDG PET/CT imaging for lymph node staging in vulvar cancer. J. Nucl. Med. 2017, 58, 1913–1918. [Google Scholar] [CrossRef] [Green Version]
- Collarino, A.; Fuoco, V.; Garganese, G.; Pereira Arias-Bouda, L.M.; Perotti, G.; Manca, G.; Vidal-Sicart, S.; Giammarile, F.; de Geus-Oei, L.F.; Scambia, G.; et al. Lymphoscintigraphy and sentinel lymph node biopsy in vulvar carcinoma: Update from a European expert panel. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1261–1274. [Google Scholar] [CrossRef] [PubMed]
- Garganese, G.; Collarino, A.; Fragomeni, S.M.; Rufini, V.; Perotti, G.; Gentileschi, S.; Evangelista, M.; Ieria, F.P.; Zagaria, L.; Bove, S.; et al. Groin sentinel node biopsy and 18F-FDG PET/CT-supported preoperative lymph node assessment in cN0 patients with vulvar cancer currently unfit for minimally invasive inguinal surgery: The GroSNaPET study. Eur. J. Surg. Oncol. 2017, 43, 1776–1783. [Google Scholar] [CrossRef]
- NCCN. Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Vulvar Cancer. Available online: http://www.nccn.org (accessed on 25 August 2021).
- Gentileschi, S.; Servillo, M.; Garganese, G.; Fragomeni, S.M.; De Bonis, F.; Scambia, G.; Salgarello, M. Surgical therapy of vulvar cancer: How to choose the correct reconstruction? J. Gynecol. Oncol. 2016, 27, e60. [Google Scholar] [CrossRef] [Green Version]
- Gentileschi, S.; Servillo, M.; Garganese, G.; Fragomeni, S.; De Bonis, F.; Cina, A.; Scambia, G.; Salgarello, M. The lymphatic superficial circumflex iliac vessels deep branch perforator flap: A new preventive approach to lower limb lymphedema after groin dis-section-preliminary evidence. Microsurgery 2017, 37, 564–573. [Google Scholar] [CrossRef]
- Gentileschi, S.; Servillo, M.; Garganese, G.; Simona, F.; Scambia, G.; Salgarello, M. Versatility of pedicled anterolateral thigh flap in gynecologic reconstruction after vulvar cancer extirpative surgery. Microsurgery 2017, 37, 516–524. [Google Scholar] [CrossRef] [PubMed]
- van Triest, B.; Rasing, M.; van der Velden, J.; de Hullu, J.; Witteveen, P.O.; Beukema, J.C.; van der Steen-Banasik, E.; Westerveld, H.; Snyers, A.; Peters, M.; et al. Phase II study of definitive chemoradiation for locally advanced squamous cell cancer of the vulva: An efficacy study. Gynecol. Oncol. 2021, 163, 117–124. [Google Scholar] [CrossRef]
- Lancellotta, V.; Macchia, G.; Garganese, G.; Fionda, B.; Fragomeni, S.M.; D’Aviero, A.; Casà, C.; Gui, B.; Gentileschi, S.; Corrado, G.; et al. The role of brachytherapy (interventional radiotherapy) for primary and/or recurrent vulvar cancer: A Gemelli Vul.Can multidisciplinary team systematic review. Clin. Transl. Oncol. 2021, 23, 1611–1619. [Google Scholar] [CrossRef]
- Marco, A.; Luca, B.; Alberto, L.A.; Francesca, V.; Serena, N.; Tommaso, G.; Alessandro, B.; Fabio, L. Neoadjuvant chemotherapy followed by radical surgery in locally advanced vulvar carcinoma: A single-institution experience. Tumori J. 2021. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferri, L.; Garganese, G.; D’Aviero, A.; Lancellotta, V.; Fragomeni, S.M.; Fionda, B.; Casà, C.; Gui, B.; Perotti, G.; Gentileschi, S.; et al. Multidisciplinary personalized approach in the management of vulvar cancer—the Vul.Can team experience. Int. J. Gynecol. Cancer 2020, 30, 932–938. [Google Scholar] [CrossRef]
- Tranoulis, A.; Georgiou, D.; Founta, C.; Mehra, G.; Sayasneh, A.; Nath, R. Use of electrochemotherapy in women with vulvar cancer to improve quality-of-life in the palliative setting: A meta-analysis. Int. J. Gynecol. Cancer 2019, 30, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Corrado, G.; Cutillo, G.; Fragomeni, S.M.; Bruno, V.; Tagliaferri, L.; Mancini, E.; Certelli, C.; Paris, I.; Vizza, E.; Scambia, G.; et al. Palliative electrochemotherapy in primary or recurrent vulvar cancer. Int. J. Gynecol. Cancer 2020, 30, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Reade, C.J.; Eiriksson, L.R.; Mackay, H. Systemic therapy in squamous cell carcinoma of the vulva: Current status and future directions. Gynecol. Oncol. 2014, 132, 780–789. [Google Scholar] [CrossRef]
- Chin, J.Y.; Hong, T.S.; Ryan, D.P. Mitomycin in anal cancer: Still the standard of care. J. Clin. Oncol. 2012, 30, 4297–4301. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, G.; Fragomeni, S.M.; Inzani, F.; Fagotti, A.; Della Corte, L.; Gentileschi, S.; Tagliaferri, L.; Zannoni, G.F.; Scambia, G.; Garganese, G. Molecular pathways in vulvar squamous cell carcinoma: Implications for target therapeutic strategies. J. Cancer Res. Clin. Oncol. 2020, 146, 1647–1658. [Google Scholar]
- Zięba, S.; Chechlińska, M.; Kowalik, A.; Kowalewska, M. Genes, pathways and vulvar carcinoma—New insights from next-generation sequencing studies. Gynecol. Oncol. 2020, 158, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Del Pino, M.; Rodriguez-Carunchio, L.; Ordi, J. Pathways of vulvar intraepithelial neoplasia and squamous cell carcinoma. Histopathology 2013, 62, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Preti, M.; Rotondo, J.C.; Holzinger, D.; Micheletti, L.; Gallio, N.; McKay-Chopin, S.; Carreira, C.; Privitera, S.S.; Watanabe, R.; Ridder, R.; et al. Role of human papillomavirus infection in the etiology of vulvar cancer in Italian women. Infect. Agents Cancer 2020, 15, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zeimet, A.G. Molecular characterization of vulvar squamous cell cancer: High time to gain ground. Gynecol. Oncol. 2020, 158, 519–520. [Google Scholar] [CrossRef] [PubMed]
- Garganese, G.; Inzani, F.; Mantovani, G.; Santoro, A.; Valente, M.; Babini, G.; Petruzzellis, G.; Fragomeni, S.M.; Gentileschi, S.; Bove, S.; et al. The vulvar immunohistochemical panel (VIP) project: Molecular profiles of vulvar Paget’s disease. J. Cancer Res. Clin. Oncol. 2019, 145, 2211–2225. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, G.; Fagotti, A.; Franchi, M.; Scambia, G.; Garganese, G. Reviewing vulvar Paget’s disease molecular bases. Looking forward to personalized target therapies: A matter of CHANGE. Int. J. Gynecol. Cancer 2019, 29, 422–429. [Google Scholar] [CrossRef]
- Angelico, G.; Santoro, A.; Inzani, F.; Straccia, P.; Spadola, S.; Arciuolo, D.; Valente, M.; D’Alessandris, N.; Benvenuto, R.; Travaglino, A.; et al. An emerging anti-p16 antibody-BC42 clone as an alternative to the current E6H4 for use in the female genital tract pathological diagnosis: Our Experience and a review on p16ink4a functional significance, role in daily-practice diagnosis, prognostic potential, and technical pitfalls. Diagnostics 2021, 11, 713. [Google Scholar] [PubMed]
- Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Penault-Llorca, F.; et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an In-ternational TILs working group 2014. Ann. Oncol. 2015, 26, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Hicks, D.G.; Dowsett, M.; McShane, L.M.; Allison, K.H.; Allred, D.C.; Bartlett, J.M.S.; Bilous, M.; Fitzgibbons, P.; et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 3997–4013. [Google Scholar] [CrossRef] [PubMed]
- Hummel, M.; Edelmann, D.; Kopp-Schneider, A. Clustering of samples and variables with mixed-type data. PLoS ONE 2017, 12, e0188274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friendly, M. Corrgrams: Exploratory displays for correlation matrices. Am. Stat. 2002, 56, 316–324. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Zhang, Z. Prevalence of human papillomavirus and its prognostic value in vulvar cancer: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0204162. [Google Scholar] [CrossRef]
- Sand, F.L.; Nielsen, D.M.B.; Frederiksen, M.H.; Rasmussen, C.L.; Kjaer, S.K. The prognostic value of p16 and p53 expression for survival after vulvar cancer: A systematic review and meta-analysis. Gynecol. Oncol. 2019, 152, 208–217. [Google Scholar] [CrossRef]
- Trietsch, M.D.; Nooij, L.S.; Gaarenstroom, K.N.; van Poelgeest, M.I. Genetic and epigenetic changes in vulvar squamous cell carci-noma and its precursor lesions: A review of the current literature. Gynecol. Oncol. 2015, 136, 143–157. [Google Scholar] [CrossRef]
- Weberpals, J.I.; Lo, B.; Duciaume, M.M.; Spaans, J.N.; Clancy, A.A.; Dimitroulakos, J.; Goss, G.D.; Sekhon, H.S. Vulvar Squamous Cell Carcinoma (VSCC) as Two diseases: HPV status identifies distinct mutational profiles including oncogenic fibroblast growth factor receptor 3. Clin. Cancer Res. 2017, 23, 4501–4510. [Google Scholar] [CrossRef] [Green Version]
- Kashofer, K.; Regauer, S. Analysis of full coding sequence of the TP53 gene in invasive vulvar cancers: Implications for therapy. Gynecol. Oncol. 2017, 146, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Nooij, L.S.; Ter Haar, N.T.; Ruano, D.; Rakislova, N.; Van Wezel, T.; Smit, V.T.; Trimbos, B.J.; Ordi, J.; Van Poelgeest, M.I.; Bosse, T. Genomic characterization of vulvar (pre)cancers identifies distinct molecular subtypes with prognostic significance. Clin. Cancer Res. 2017, 23, 6781–6789. [Google Scholar] [CrossRef] [Green Version]
- Zięba, S.; Kowalik, A.; Zalewski, K.; Rusetska, N.; Goryca, K.; Piaścik, A.; Misiek, M.; Bakuła-Zalewska, E.; Kopczyński, J.; Kowalski, K.; et al. Somatic mutation profiling of vulvar cancer: Exploring therapeutic targets. Gynecol. Oncol. 2018, 150, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Preti, M.; Bucchi, L.; Micheletti, L.; Privitera, S.; Corazza, M.; Cosma, S.; Gallio, N.; Borghi, A.; Bevilacqua, F.; Benedetto, C. Four-decade trends in lymph node status of patients with vulvar squamous cell carcinoma in northern Italy. Sci. Rep. 2021, 11, 5661. [Google Scholar] [CrossRef]
- Mahner, S.; Jueckstock, J.; Hilpert, F.; Neuser, P.; Harter, P.; de Gregorio, N.; Hasenburg, A.; Sehouli, J.; Habermann, A.; Hillemanns, P.; et al. Adjuvant therapy in lymph node-positive vulvar cancer: The AGO-CaRE-1 study. J. Natl. Cancer Inst. 2015, 107, dju426. [Google Scholar] [CrossRef] [Green Version]
- Witteveen, P.O.; van der Velden, J.; Vergote, I.; Guerra, C.; Scarabeli, C.; Coens, C.; Demonty, G.; Reed, N. Phase II study on paclitaxel in patients with recurrent, metastatic or locally advanced vulvar cancer not amenable to surgery or radiotherapy: A study of the EORTC-GCG (European Organisation for Research and Treatment of Cancer—Gynaecological Cancer Gro). Ann. Oncology 2009, 20, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
- Cormio, G.; Loizzi, V.; Gissi, F.; Serrati, G.; Panzarino, M.; Carriero, C.; Selvaggi, L. Cisplatin and vinorelbine chemotherapy in recurrent vulvar carcinoma. Oncology 2009, 77, 281–284. [Google Scholar] [CrossRef]
- Wagenaar, H.C.; Colombo, N.; Vergote, I.; Hoctin-Boes, G.; Zanetta, G.; Pecorelli, S.; Lacave, A.J.; Van Hoesel, Q.; Cervantes, A.; Bolis, G.; et al. Bleomycin, methotrexate, and CCNU in locally advanced or recurrent, inoperable, squamous-cell carcinoma of the vulva: An EORTC gynaecological cancer cooperative group study. Gynecol. Oncol. 2001, 81, 348–354. [Google Scholar] [CrossRef]
- ESGO. Vulvar Cancer Guidelines. Available online: http://www.esgo.org (accessed on 25 August 2021).
- Johnson, G.A.; Mannel, R.; Khalifa, M.; Walker, J.L.; Wren, M.; Min, K.-W.; Benbrook, D.M. Epidermal growth factor receptor in vulvar malignancies and its relationship to metastasis and patient survival. Gynecol. Oncol. 1997, 65, 425–429. [Google Scholar] [CrossRef]
- Growdon, W.B.; Boisvert, S.L.; Akhavanfard, S.; Oliva, E.; Dias-Santagata, D.C.; Kojiro, S.; Horowitz, N.S.; Iafrate, A.J.; Borger, D.R.; Rueda, B.R. Decreased survival in EGFR gene amplified vulvar carcinoma. Gynecol. Oncol. 2008, 111, 289–297. [Google Scholar] [CrossRef]
- Oonk, M.H.; de Bock, G.H.; van der Veen, D.J.; Ten Hoor, K.A.; de Hullu, J.A.; Hollema, H.; van der Zee, A.G. EGFR expression is associated with groin node metastases in vulvar cancer, but does not improve their prediction. Gynecol. Oncol. 2007, 104, 109–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horowitz, N.S.; Olawaiye, A.B.; Borger, D.R.; Growdon, W.B.; Krasner, C.N.; Matulonis, U.A.; Liu, J.F.; Lee, J.; Brard, L.; Dizon, D.S. Phase II trial of erlotinib in women with squamous cell carcinoma of the vulva. Gynecol. Oncol. 2012, 127, 141–146. [Google Scholar] [CrossRef]
- Borella, F.; Preti, M.; Bertero, L.; Collemi, G.; Castellano, I.; Cassoni, P.; Cosma, S.; Carosso, A.R.; Bevilacqua, F.; Gallio, N.; et al. Is there a place for immune checkpoint inhibitors in vulvar neoplasms? A state of the art review. Int. J. Mol. Sci. 2020, 22, 190. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E.; et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Hecking, T.; Thiesler, T.; Schiller, C.; Lunkenheimer, J.-M.; Ayub, T.H.; Rohr, A.; Condic, M.; Keyver-Paik, M.-D.; Fimmers, R.; Kirfel, J.; et al. Tumoral PD-L1 expression defines a subgroup of poor-prognosis vulvar carcinomas with non-viral etiology. Oncotarget 2017, 8, 92890–92903. [Google Scholar] [CrossRef] [Green Version]
- Sznurkowski, J.J.; Żawrocki, A.; Sznurkowska, K.; Pęksa, R.; Biernat, W. PD-L1 expression on immune cells is a favorable prognostic factor for vulvar squamous cell carcinoma patients. Oncotarget 2017, 8, 89903–89912. [Google Scholar] [CrossRef] [Green Version]
- Choschzick, M.; Gut, A.; Fink, D. PD-L1 receptor expression in vulvar carcinomas is HPV-independent. Virchows Arch. 2018, 473, 513–516. [Google Scholar] [CrossRef]
- Howitt, B.E.; Sun, H.H.; Roemer, M.G.M.; Kelley, A.; Chapuy, B.; Aviki, E.; Pak, C.; Connelly, C.; Gjini, E.; Shi, Y.; et al. Genetic basis for PD-L1 expression in squamous cell carcinomas of the cervix and vulva. JAMA Oncol. 2016, 2, 518–522. [Google Scholar] [CrossRef]
- Chinn, Z.; Stoler, M.H.; Mills, A.M. PD-L1 and IDO expression in cervical and vulvar invasive and intraepithelial squamous ne-oplasias: Implications for combination immunotherapy. Histopathology 2019, 74, 256–268. [Google Scholar] [CrossRef]
- Tewari, K.S.; Sill, M.W.; Long, H.J., 3rd; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; et al. Improved survival with bevacizumab in advanced cervical cancer. N. Engl. J. Med. 2014, 370, 734–743. [Google Scholar] [CrossRef] [Green Version]
- Rosen, V.M.; Guerra, I.; McCormack, M.; Nogueira-Rodrigues, A.; Sasse, A.; Munk, V.C.; Shang, A. Systematic review and network meta-analysis of bevacizumab plus frst-line topotecan–paclitaxel or cisplatin–paclitaxel versus non-bevacizumab-containing therapies in persistent, recurrent, or metastatic cervical cancer. Int. J. Gynecol. Cancer 2017, 27, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
Patients’ Characteristics | All (n. 101) | Group A (n. 53) | Group B (n. 48) | p-Value |
---|---|---|---|---|
Lymph-Node-Negative | Lymph-Node-Positive | |||
Age | ||||
Median (range) | 78 (48–96) | 81 (48–96) | 75.5 (56–92) | 0.01 |
BMI | ||||
Median (range) | 26.3 (15.8–47.3) | 25.05 (15.8–42.2) | 29.7 (19–47.3) | 0.004 |
Comorbidities | ||||
None | 18 (17.8%) | 12 (22.6%) | 6 (12.5%) | 0.18 |
CV (hypertension and/or cardiovascular disease) | 25 (24.8%) | 9 (17%) | 16 (33.4%) | |
Diabetes | 7 (6.9%) | 3 (5.7%) | 4 (8.3%) | |
Multiple * | 51 (50.5%) | 29 (54.7%) | 22 (45.8%) | |
Tumor characteristics (primary site) | ||||
Site | ||||
Anterior | 55 (54.4%) | 27 (51.0%) | 28 (58.4%) | 0.91 |
Central | 10 (9.9%) | 6 (11.3%) | 4 (8.3%) | |
Posterior | 10 (9.9%) | 6 (11.3%) | 4 (8.3%) | |
Lateral | 26 (25.8%) | 14 (26.4%) | 12 (25%) | |
Focality | ||||
Unifocal | 98 (97%) | 52 (98.1%) | 46 (95.8%) | 0.6 |
Multifocal | 3 (3%) | 1 (1.9%) | 2 (4.2%) | |
Type of vulvar surgery | ||||
Partial vulvectomy | 30 (29.7%) | 14 (26.4%) | 16 (33.3%) | 0.78 |
Radical vulvectomy | 49 (48.5%) | 27 (50.9%) | 22 (45.9%) | |
Ultraradical vulvectomy | 22 (21.8%) | 12 (22.7%) | 10 (20.8%) | |
Inguino-femoral surgery ^ | ||||
SLNB | 56 (29.7%) | 44 (46.3%) | 12 (12.9%) | ° |
SLNB + Lymphadenectomy | 79 (42.1%) | 42 (44.2%) | 37 (39.8%) | |
Lymphadenectomy | 53 (28.2%) | 9 (9.5%) | 44 (47.3%) | |
Side | ||||
Monolateral | 6 (5.9%) | 5 (10.0%) | 1 (2.1%) | |
Bilateral | 91 (90.1%) | 45 (90.0%) | 46 (97.9%) | ° |
Grading | ||||
G1 | 9 (8.9%) | 9 (17%) | 0 (0%) | 0.001 |
G2 | 83 (82.2%) | 42 (79.2%) | 41 (85.4%) | |
G3 | 9 (8.9%) | 2 (3.8%) | 7 (14.6%) | |
Depth of invasion | ||||
Median (range), mm | 6 (0.9–25) | 6 (0.9–25) | 7 (0.9–25) | 0.001 |
Maximum tumor diameter | ||||
Median (range), mm | 35 (4–105) | 30 (5–80) | 39.5 (4–105) | 0.18 |
<2 cm | 25 (24.8%) | 17 (32.1%) | 8 (16.7%) | |
2–4 | 28 (27.7%) | 12 (22.6%) | 16 (33.3%) | |
≥4 cm | 48 (47.5%) | 24 (45.3%) | 24 (50%) | |
LVSI | ||||
Yes | 32 (31.7%) | 2 (3.8%) | 30 (62.5%) | <0.0001 |
No | 69 (68.3%) | 51 (96.2%) | 18 (37.5%) | |
Number of excised nodes | ||||
SLNs | 0.36 | |||
Total median number (range) | 3 (1–16) | 4 (1–10) | 3 (1–16) | |
Lymphadenectomy | ||||
Total median number (range) | 12 (1–43) | 6 (1–43) | 14 (5–31) | |
Extracapsular spread | ||||
Present | 10 (10.2%) a | 0 (0%) b | 9 (18.8%) c | ° |
Absent | 88 (89.8%) | 50 (100%) | 39 (81.2%) | |
FIGO Stage | ||||
I | 49 (48.5%) | 49 (92.5%) | 0 (0%) | ° |
II | 4 (4%) | 4 (7.5%) | 0 (0.0%) | |
III | 43(42.6%) | 0 (0%) | 43 (89.6%) | |
IV | ||||
A | 0 (0%) | 0 | 0 | |
B | 5 (4.9%) | 0 (0%) | 5 (10.4%) | |
Adjuvant treatment | ||||
RT | 53 (52.5%) | 23 (43.4%) | 30 (62.5%) | 0.018 |
RT-CT | 3 (3%) | 1 (1.9%) | 2 (4.2%) | |
CT | 2 (2%) | 0 (0%) | 2 (4.2%) | |
None | 43 (42.5%) | 29 (54.7%) | 14 (29.1%) | |
FU | ||||
DOD (%) | 12 (11.9%) | 2 (3.8%) | 10 (20.8%) | 0.006 |
OS Median (range, months) | 17 (1–67) | 22 (1–54) | 13.5 (1–67) | |
DFS median (range, months) | 14 (0.25–67) | 20 (1–52) | 9 (0.25–67) |
Biomarkers | T All | T Group A | T Group B | p-Value * | N Group B |
---|---|---|---|---|---|
n = 101 | n = 53 | n = 48 | n = 48 | ||
p16 | |||||
Negative (HPV-independent) | 87 (86.1%) a | 42 (79.2%) b | 45 (93.8%) c | 0.04 | 40 (90.9%) e |
Positive (HPV-associated) | 14 (13.9%) | 11 (20.8%) | 3 (6.2%) | 4 (9.1%) | |
p53 | |||||
Wild type | 26 (25.7%) a | 18 (34.0%) b | 8 (16.7%) c | 0.06 | 6 (13.6%) e |
Mutated | 75 (74.3%) | 35 (66.0%) | 40 (83.3%) | 38 (86.4%) | |
PD-L1 (% positive cells) | |||||
Median (q1/4–q3/4) (range) | 5 (1–20) (0–90) a | 5 (0–10) (0–90) b | 10 (2.75–30) (0–90) | 0.22 | 8 (0–25) (0–100) d |
Negative | 41 (40.6%) | 25 (47.2%) | 16 (33.3%) | 18 (40%) | |
Positive (> 5%) | 60 (59.4%) | 28 (52.8%) | 32 (66.7%) | 27 (60%) | |
TILs (CD3) | |||||
Slight | 13 (13.0%) f | 10 (18.9%) b | 3 (6.4%) g | 0.05 | - |
Moderate | 54 (54.0%) | 23 (43.4%) | 31 (66.0%) | ||
Intense | 33 (33.0%) | 20 (37.7%) | 13 (27.6%) | ||
MSH2 | |||||
Negative | 0 (0%) a | 0 (0%) b | 0 (0%) c | 1 | 0 (0%) d |
Positive | 101 (100%) | 53 (100%) | 48 (100%) | 45 (100%) | |
MSH6 | |||||
Negative | 0 (0%) a | 0 (0%) b | 0 (0%) c | 1 | 0 (0%) d |
Positive | 101 (100%) | 53 (100%) | 48 (100%) | 45 (100%) | |
MLH1 | |||||
Negative | 0 (0%) a | 0 (0%) b | 0 (0%) c | 1 | 0 (0%) d |
Positive | 101 (100%) | 53 (100%) | 48 (100%) | 45 (100%) | |
PMS2 | |||||
Negative | 0 (0%) a | 0 (0%) b | 0 (0%) c | 1 | 0 (0%) d |
Positive | 101 (100%) | 53 (100%) | 48 (100%) | 45 (100%) | |
EGFR | |||||
Low expression | 16 (15.8%) a | 11 (20.8%) b | 5 (10.4%) c | 0.25 | 2 (4.5%) e |
High expression | 85 (84.2%) | 42 (79.2%) | 43 (89.6%) | 42 (95.5%) | |
HER2/neu | |||||
Negative | 99 (98%) a | 52 (98.1%) b | 47 (98%) c | 1 | 42 (93.3%) d |
Overexpressed/amplified | 2 (2%) | 1 (1.9%) | 1 (2%) | 3 (6.7%) | |
ER (% positive cells) | |||||
Median (q1/4–q3/4) (range) | 0 (0–0) (0–40) a | 0 (0–0) (0–0) b | 0 (0–0) (0–40) c | 0.22 | 0 (0–0) (0–50) d |
Negative | 99 (98%) | 53 (100%) | 46 (95.8%) | 44 (97.8%) | |
Positive (≥1%) | 2 (2%) | 0 (0%) | 2 (4.2%) | 1 (2.2%) | |
PR (% positive cells) | |||||
Median (q1/4–q3/4) (range) | 0 (0–0) (0–15) a | 0 (0–0) (0–15) b | 0 (0–0) (0) c | 0.24 | 0 (0–0) (0–0) d |
Negative | 98 (97.1%) | 50 (94.3%) | 48 (100%) | 45 (100%) | |
Positive (≥1%) | 3 (2.9%) | 3 (5.7%) | 0 (0%) | 0 (0%) | |
VEGF | |||||
Absent, Weak, Moderate % <10 | 87 (86.1%) a | 45 (84.9%) b | 42 (87.5%) c | 0.77 | 37 (84.1%) e |
Moderate % ≥10, Strong | 14 (13.9%) | 8 (15.1%) | 6 (12.5%) | 7 (15.9%) | |
MVD | |||||
Mean MVD—median | 0.37 | ||||
(q1/4–q3/4) (range) | 28 (20–36) (5–63) a | 28 (20–32) (5–63) b | 29 (19.5–40) (7–57) | - | |
Max MVD—median | |||||
(q1/4–q3/4) (range) | 35 (25–50) (5–70) a | 30 (25–45) (5–70) b | 40 (30–54.25) (10–70) c | - | |
MVD sane tissue—median | |||||
(q1/4–q3/4) (range) | 20 (11–25) (5–60) h | 20 (10–25) (5–60) i | 15 (13.5–25) (5–60) l | - | |
MVD ratio—median | |||||
(q1/4–q3/4) (range) | 1.5 (1.06–2.25) (0.4–9.4) h | 1.5 (1.03–2.14) (0.4–9.4) i | 1.4 (1.08–2.34) (0.4–4.5) l | - |
Biomarkers | Odds Ratio | Confidence Interval at 95% | |
---|---|---|---|
p53 | 4.2686 * | 1.1478 | 15.8750 |
EGFR | 2.8069 | 0.7215 | 10.9206 |
p16 | 0.4105 | 0.0806 | 2.0924 |
PDL1 | 2.6857 * | 1.0024 | 7.1952 |
CD3 | 1.5377 | 0.7499 | 3.1531 |
VEGF | 0.2691 | 0.0615 | 1.1767 |
CD31 | 1.0044 | 0.3908 | 2.5811 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garganese, G.; Inzani, F.; Fragomeni, S.M.; Mantovani, G.; Della Corte, L.; Piermattei, A.; Santoro, A.; Angelico, G.; Giacò, L.; Corrado, G.; et al. The Vulvar Immunohistochemical Panel (VIP) Project: Molecular Profiles of Vulvar Squamous Cell Carcinoma. Cancers 2021, 13, 6373. https://doi.org/10.3390/cancers13246373
Garganese G, Inzani F, Fragomeni SM, Mantovani G, Della Corte L, Piermattei A, Santoro A, Angelico G, Giacò L, Corrado G, et al. The Vulvar Immunohistochemical Panel (VIP) Project: Molecular Profiles of Vulvar Squamous Cell Carcinoma. Cancers. 2021; 13(24):6373. https://doi.org/10.3390/cancers13246373
Chicago/Turabian StyleGarganese, Giorgia, Frediano Inzani, Simona Maria Fragomeni, Giulia Mantovani, Luigi Della Corte, Alessia Piermattei, Angela Santoro, Giuseppe Angelico, Luciano Giacò, Giacomo Corrado, and et al. 2021. "The Vulvar Immunohistochemical Panel (VIP) Project: Molecular Profiles of Vulvar Squamous Cell Carcinoma" Cancers 13, no. 24: 6373. https://doi.org/10.3390/cancers13246373
APA StyleGarganese, G., Inzani, F., Fragomeni, S. M., Mantovani, G., Della Corte, L., Piermattei, A., Santoro, A., Angelico, G., Giacò, L., Corrado, G., Fagotti, A., Zannoni, G. F., & Scambia, G. (2021). The Vulvar Immunohistochemical Panel (VIP) Project: Molecular Profiles of Vulvar Squamous Cell Carcinoma. Cancers, 13(24), 6373. https://doi.org/10.3390/cancers13246373